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Abstract—In this paper, a reduced-complexity cross-domain
iterative detection for orthogonal time frequency space (OTFS)
modulation is proposed, which exploits channel properties in
both time and delay-Doppler domains. Specifically, we first
show that in the time domain effective channel, the path delay
only introduces interference among samples in adjacent time
slots, while the Doppler becomes a phase term that does not
affect the channel sparsity. This “band-limited” matrix structure
motivates us to apply a reduced-size linear minimum mean
square error (LMMSE) filter to eliminate the effect of delay in
the time domain, while exploiting the cross-domain iteration for
minimizing the effect of Doppler by noticing that the time and
Doppler are a pair of Fourier dual. The state (MSE) evolution
was derived and compared with bounds to verify the effectiveness
of the proposed scheme. Simulation results demonstrate that the
proposed scheme achieves almost the same error performance as
the optimal detection, but only requires a reduced complexity.

I. INTRODUCTION

Future wireless networks are envisioned to accommodate
many emerging applications, such as low-earth orbit (LEO)
satellites and unmanned aerial vehicles (UAVs), where the
signal is inevitably transmitted over complex and challenging
channel scenarios. The recently proposed orthogonal time
frequency space (OTFS) modulation has shown to be a good
solution to signal transmissions over such channels [1], [2].
The information symbols in OTFS systems are multiplexed in
the delay-Doppler (DD) domain, leading to the full exploration
of appealing DD domain channel properties, including quasi-
static, separable, and sparse [3], which in return facilitates the
design of channel estimation and equalization. More impor-
tantly, OTFS can potentially achieve the full channel diversity
[1], which ensures better performance robustness compared to
currently deployed orthogonal frequency division multiplexing
(OFDM) over challenging transmission scenarios [3].

The promising performance of OTFS relies on advanced
equalization. However, optimal maximum-likelihood sequence
estimation (MLSE) usually requires prohibitively high detec-
tion complexity and cannot be directly applied to practical
systems. Thus, the design of reduced-complexity detection for
OTFS has acquired much attention. For instance, a message
passing (MP) algorithm based on maximum a posteriori
probability (MAP) was proposed in [4], where inter-symbol in-
terference (ISI) is Gaussian-approximated to reduce detection
complexity. An improved MP detector for OTFS was proposed

in [5], which can avoid 4-cycles in the factor graph. Fur-
thermore, many improved detection algorithms based on MP
were proposed, such as hybrid MAP and parallel interference
cancellation [6] and Gaussian approximate MP [7]. Note that
most OTFS detection schemes, including the aforementioned
ones, operate in the DD domain. However, when the time and
frequency resources for OTFS are limited, the DD domain
channel matrix could be dense due to insufficient resolution
of delay and Doppler, and consequently, DD domain detection
may suffer from high detection complexity. The cross-domain
iterative detection proposed in [8] was a preliminary attempt
to solve this issue by considering the detection in both time
and DD domains via iterative processing, which can achieve
almost the same error performance as ML detection even in
the presence of fractional Doppler shifts. The cross-domain
iterative detection is motivated by the unitary transformation
between the time and DD domains, ensuring that the detection
error in one domain is principally orthogonal to that in the
other domain. Thus, it allows cross-domain iterations for sig-
nal detection without introducing error propagation. However,
[8] applied a full-size linear minimum mean square error
(LMMSE) filter in the time domain, which, as we will show
later, does not fully exploit the advantages of cross-domain
iteration.

In this paper, we propose a novel cross-domain iterative
detection for OTFS with reduced complexity. The major
motivation is that the effects of delay and Doppler can be
decoupled and thus can be treated separately. We first review
the properties of the time domain OTFS effective channel
matrix, where we show that the path delay only introduces
interference among samples in adjacent time slots, while the
Doppler behaves as a phase term that does not affect the
channel sparsity. Based on the “band-limited” matrix structure,
we propose a reduced-size estimator in the time domain to
eliminate the effect of delay, while relying on cross-domain
iterations to minimize the effect of Doppler. Such a scheme
is motivated by the fact that the time and Doppler are a pair
of Fourier dual and therefore the effect of Doppler can be
minimized by iteratively exchanging the extrinsic information
between the time and DD domains. As a result, our proposed
detection enjoys much lower complexity while maintaining
the promising error performance of cross-domain iterative
detection. The effectiveness of the proposed scheme was
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verified by the derived state (MSE) evolution, which is also
compared with theoretical performance bounds. The numerical
results agree with our analysis and demonstrate a near-optimal
error performance.

Notations: FN and FH
N denote the discrete Fourier trans-

form (DFT) matrix and inverse DFT (IDFT) matrix of size
N × N , respectively; IN denotes the identity matrix of size
N × N ; ⊗ denotes the Kronecker product operator; (·)H

denotes the Hermitian transpose; (·)T denotes the transpose;
diag {·} denotes the diagonal matrix; δ (·) is the Dirac delta
function.

II. SYSTEM MODEL

A. Backgrounds on OTFS Transmissions
Without loss of generality, let us consider the transceiver

structure of OTFS transmissions in Fig. 1. Let M be the
number of delay bins (sub-carriers) and N be the number
of Doppler bins (time slots). Let T be the duration of each
time slot, and correspondingly, the sub-carrier spacing is
1/T . A length-MN DD domain information symbol vector
x is passed through an OTFS modulator, which performs
the inverse symplectic finite Fourier transform (ISFFT) and
the Heisenberg transform. The resultant discrete time domain
transmitted signal s is denoted as

s =
(
FH

N ⊗ IM
)
x. (1)

Consider a path-P linear time-varying (LTV) wireless chan-
nel given by

h (τ, ν) =

P∑
p=1

hpδ (τ − τp) δ (ν − νp), (2)

where hp is the fading coefficient for the p-th path, fol-
lowing a complex Gaussian distribution with zero mean and
variance 1/(2P ) per real dimension (uniform power profile);
and τp ∈ [0, T ) and νp ∈ [0, 1/T ) represent the delay and
Doppler shifts associated with the p-th path, respectively.
Particularly, we consider the discretized delay and Doppler
indices defined by lp = τpM/T and kp +κp = νpNT , where
0 ≤ lp ≤ M − 1 and 0 ≤ kp ≤ N − 1 are the corresponding
integer indices of delay and Doppler for the p-th path, while
κp ∈ (−0.5, 0.5] represents the fractional contribution of the
Doppler shift. In this paper, we focus only on the integer delay
case, which only asymptotically holds with a sufficiently large
signal bandwidth. In fact, our proposed scheme can also work
in the fractional delay case and more details can be found in
our journal paper.

Assume that gtx (t) and grx (t) are rectangular pulses, and a
reduced-cyclic-prefix (reduced-CP) structure is applied to the
system, the time domain vectorized input-output relation for
OTFS transmissions after CP removal can be given by

r = HTs+ n, (3)

where r is the time domain received vector of length MN ,
and n is the additive white Gaussian noise vector with zero
mean and one-sided power spectral density of N0. According
to [9], the time domain effective channel matrix HT can be
expressed as

ISFFT IFFT

Heisenberg Transform
s  tx tg

x y
FFT SFFT

Channel
Wigner Transform

 rx tg ,h  
r

DD domain

Time domain

Fig. 1. The transceiver structure of OTFS transmissions.
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Fig. 2. Brief illustration of the interference pattern between the time domain
transmitted vector s and the received vector r.

HT =

P∑
p=1

hpe
−j2π

kp+κp
NM lp∆kp+κpΠlp , (4)

where, ∆ = diag
{
α0, α1, . . . , αMN−1

}
is a diagonal matrix

with α
∆
= e

j2π
MN characterizing the Doppler influence, and

Π = circ
{
[0, 1, 0, . . . , 0]

T
MN×1

}
is the permutation ma-

trix (forward cyclic shift) characterizing the delay influence.
Finally, the DD domain received symbol vector y can be
obtained according to Fig. 1, given by

y = (FN ⊗ IM ) r = HDDx+w, (5)

where HDD
∆
= (FN ⊗ IM )HT

(
FH

N ⊗ IM
)

represents the
DD domain effective channel matrix, and w

∆
= (FN ⊗ IM )n

represents the DD domain effective noise vector with the same
distribution as the time domain noise.
B. Properties of the Time Domain Effective Channel Matrix

Let us review the characteristics of the time domain effective
channel matrix HT. As shown in (4), the path delay introduces
the time domain ISI. Noticing that 0 ≤ lp ≤ M −1, it is clear
that the interference induced by delay is restricted to adjacent
time slots. Following the conventional OFDM setup, we par-
tition s and r into N sub-blocks, each containing M samples,
i.e., r =

[
rH0 , r

H
1 , . . . , r

H
N−1

]H
and s =

[
sH0 , s

H
1 , . . . , s

H
N−1

]H
,

respectively, as shown in Fig. 2. Thus, the i-th received block
ri can have interference from only the (i− 1)-th block si−1

in the time domain. It should be noted that the first block s0
is interfered with by the last block sN−1 due to the appended
reduced CP [10]. According to this sub-block structure, HT

can be rewritten as

HT =



H0,0
T 0 0 · · · 0 H0,1

T

H1,1
T H1,0

T 0 · · · 0 0
0 H2,1

T H2,0
T · · · 0 0

...
...

. . .
. . .

...
...

0 0 0 · · · HN−2,0
T 0

0 0 0 · · · HN−1,1
T HN−1,0

T


, (6)

where Hi,0
T , i = 0, . . . , N−1, of size M×M are the diagonal

blocks of HT, given by

Hi,0
T =

P∑
p=1

hpe
−j2π

kp+κp
NM lp∆

kp+κp

i Π
lp
0 , (7)



and Hi,1
T , i = 0, . . . , N − 1, of size M × M are the first

sub-diagonal blocks of HT, i.e.,

Hi,1
T =

P∑
p=1

hpe
−j2π

kp+κp
NM lp∆

kp+κp

i Π
lp
1 , (8)

representing the inter-block interference from the (i− 1)-th
transmitted block to the i-th received block [10]. In addition,
in (7) and (8), ∆i = diag

{
αiM , αiM+1, . . . , αiM+M−1

}
characterizes the Doppler effect on the i-th received block,
while Π0 and Π1 are the forward shift and backward shift
matrices of size M ×M , respectively, i.e.,

Π0 =


0 . . . 0 0
1 . . . 0 0
...

. . .
. . .

...
0 . . . 1 0

,Π1 =


0 1 . . . 0
...

. . .
. . .

...
0 0 . . . 1
0 0 . . . 0

. (9)

Furthermore, we notice that the Doppler effect behaves like a
phase term in HT, which does not affect the channel sparsity.
The above observation suggests that the time domain effective
channel matrix HT has a “band-limited” structure, where each
row only has limited non-zero elements1.

According to the above analysis, we reformulate the block-
wise input-output relation in the time domain by

ri = Hi,0
T si +Hi,1

T s(i−1)N
+ ni, (10)

i = 0, . . . , N −1, where (·)N denotes mod-N operation. Note
that both ri and r(i+1)N

contain the information of si due to
the path delay. Thus, it is convenient to write[

ri
r(i+1)N

]
=

[
Hi,0

T

H
(i+1)N ,1

T

]
si +

[
Hi,1

T

H
(i+1)N ,0

T

][
s(i−1)N
s(i+1)N

]
+

[
ni

n(i+1)N

]
, (11)

which can be further written as
r̃i = Hi

Asi +Hi
Bs̃i + ñi. (12)

In (12), r̃i ∈C2M×1 is the observation at the receiver side
corresponding to si; Hi

A ∈ C2M×M is the effective observa-
tion matrix, characterizing the interference pattern related to
si; Hi

B ∈ C2M×2M is the effective interference matrix, char-
acterizing the additional interference from other transmitted
sub-blocks; s̃i ∈ C2M×1 is the interfering signal vector; and
ñi ∈ C2M×1 is the considered noise vector.

The above discussion naturally motivates us to design a time
domain estimator/detector that exploits the effective channel
matrix structure, and this is presented in the following section.

III. CROSS-DOMAIN ITERATIVE DETECTION FOR OTFS
MODULATION VIA DELAY-DOPPLER DECOUPLING

Based on (12), we propose to apply a reduced-size LMMSE
estimator for eliminating the delay interference, which has a
much lower complexity compared to the full-size LMMSE
estimator adopted in [8]. However, such estimator cannot
fully minimize the effect of Doppler. In [8], the authors

1We note that this observation holds roughly in the case of fractional delay.
However, the inter-block interference may span several sub-blocks due to the
insufficient delay resolution.
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Fig. 3. The block diagram of the considered cross-domain iterative receiver
with the time domain reduced-size LMMSE.

have shown that the cross-domain iteration can effectively
detect the OTFS signal by iteratively exchanging the extrinsic
information between the time domain and the DD domain due
to the fact that the time and Doppler are a pair of Fourier dual.
Following this idea, we adopt the cross-domain iteration to
minimize the Doppler interference as will be discussed later.

A. Reduced-Size LMMSE Estimator in the Time Domain

Based on (12), the block-wise LMMSE estimation matrix
Wi

MMSE for the i-th transmitted block si can be obtained as

Wi
MMSE = Ca,T

si

(
Hi

A

)H (
Hi

AC
a,T
si

(
Hi

A

)H
+Hi

BC
a,T
s̃i

(
Hi

B

)H
+N0I2M

)−1

, (13)

where Ca,T
si and Ca,T

s̃i
are the a priori covariance matrices of

si and s̃i and initialized as IM and I2M for the first iteration,
respectively. Furthermore, the a posteriori estimation output
mp,T

si of si is given by

mp,T
si = ma,T

si +Wi
MMSE

(
r̃i −Hi

Bm
a,T
s̃i

−Hi
Am

a,T
si

)
, (14)

where ma,T
si and ma,T

s̃i
are the a priori mean vectors of siand s̃i

with sizes M×1 and 2M×1, respectively. Note that the above
LMMSE estimator applies the successive interference cancel-
lation (SIC) to eliminate the interference from s̃i according to
the a priori information from the previous iteration.

The a posteriori covariance matrix Cp,T
si of si is given by

Cp,T
si = Ca,T

si −Wi
MMSEH

i
AC

a,T
si . (15)

Note that Ca,T
si should be a diagonal matrix due to the in-

dependent and identically distributed (i.i.d.) assumption of the
transmitted symbols. As such, we discard the non-diagonal en-
tries of Cp,T

si (treated as zeros) for further processing [8]. The
extrinsic covariance matrix Ce,T

si and mean me,T
si associated

with si from the LMMSE estimation can be written as

Ce,T
si =

((
Cp,T

si

)−1 −
(
Ca,T

si

)−1
)−1

(16)

and

me,T
si = Ce,T

si

((
Cp,T

si

)−1
mp,T

si −
(
Ca,T

si

)−1
ma,T

si

)
, (17)

respectively.

B. Cross-Domain Iterative Detection for OTFS

The extrinsic information Ce,T
si and me,T

si obtained from the
LMMSE estimation is passed to the DD domain as shown in
Fig. 3. According to the relationship between the DD domain
and time domain, the DD domain a priori information, Ca,DD

x

and ma,DD
x , are given by [8]

Ca,DD
x = Ce,T

s , (18)



and
ma,DD

x = (FN ⊗ IM )me,T
s , (19)

where Ce,T
s = diag

{
diag

{
Ce,T

s0

}
, . . . ,diag

{
Ce,T

sN−1

}}
and

me,T
s =

[(
me,T

s0

)T
, . . . ,

(
me,T

sN−1

)T
]T

are the extrinsic covari-

ance matrix and mean of s, respectively.
In the DD domain, the detection can be conducted in a sim-

ple symbol-by-symbol manner, e.g., Algorithm 2 in [8], where
the corresponding a posteriori mean mp,DD

x and covariance
matrix Cp,DD

x of the DD domain OTFS symbol x are then
passed back to the time domain for calculating the extrinsic
information2. Based on (1), the corresponding a posteriori
mean mp,DD

s and covariance matrix Cp,DD
s of s are given by

mp,DD
s =

(
FH

N ⊗ IM
)
mp,DD

x , (20)

and
Cp,DD

s =
(
FH

N ⊗ IM
)
Cp,DD

x (FN ⊗ IM ) , (21)

respectively. Then, the extrinsic information of s in terms of
the covariance matrix and mean can be obtained as [8]

Ce,DD
s =

((
Cp,DD

s

)−1 −
(
Ca,DD

s

)−1
)−1

, (22)

and

me,DD
s =Ce,DD

s

((
Cp,DD

s

)−1
mp,DD

s −
(
Ca,DD

s

)−1
me,T

s

)
, (23)

respectively. Next, the extrinsic information is fed back to
the time domain LMMSE estimator for the coming iteration.
Specifically, the a priori covariance matrix and mean of s are
updated to Ca,T

s = Ce,DD
s and ma,T

s = me,DD
s .

IV. PERFORMANCE ANALYSIS

A. Performance Analysis by State Evolution

In this subsection, we will characterize the asymptotic
MSE performance of the proposed detection scheme by state
evolution. Without loss of generality, we define the average a
priori variance of the inputs to the time domain estimator and
the DD domain estimator in the l-th iteration as

va,Ts (l)
∆
=E

[
Ce,DD

s [k, k]
]
= lim

MN→∞

1

MN
Tr

(
Ce,DD

s

)
, (24)

va,DD
s (l)

∆
=E

[
Ce,T

s [k, k]
]
= lim

MN→∞

1

MN
Tr

(
Ce,T

s

)
, (25)

where the expectation is with respect to the symbol index
k. The two states can also be viewed as the asymptotically
average MSEs of inputs in the l-th iteration. Assume that
the main diagonal entries of Ca,T

s and Ca,DD
x are of the

same value as va,Ts (l) and va,DD
s (l), respectively, for the l-th

iteration, va,DD
s (l) can be represented as [8]

va,DD
s (l) =

1
1

vp,T
s (l)

− 1

va,T
s (l)

, (26)

according to (16). Based on (15), the average a posteriori
variance of Cp,T

s can be obtained as

2As discussed in [8], the extrinsic information cannot be directly calculated
in the DD domain because of the symbol-by-symbol detection.

vp,Ts (l) =va,Ts (l)−
(
va,Ts (l)

)2
MN

×
N−1∑
i=0

Tr

{(
Hi

A

)H(
va,Ts (l)Hi

A

(
Hi

A

)H
+va,Ts (l)Hi

B

(
Hi

B

)H
+N0I2M

)−1

Hi
A

}
. (27)

According to [8], the update of the state va,Ts (l + 1) can be
given by

va,Ts (l + 1) =
1

1

vp,DD
s (l)

− 1

va,DD
s (l)

, (28)

where vp,DD
s (l)

∆
= lim
MN→∞

1
MNTr

(
Cp,DD

x

)
. By iteratively up-

dating the MSE state according to (26) and (28), the state
evolution can then be derived. Note that the above derivation
is heuristic due to the utilization of the Fourier transform.
Rigorous analysis of error performance may be discussed in
future work.

In addition to the derived state evolution, we further apply
bounding techniques to discuss the insights of the proposed
scheme. Note that the proposed scheme adopts the SIC for
time domain estimation. Therefore, depending on whether SIC
can fully eliminate the interference, the MSE performance
can be bounded by applying the treating interference as noise
(TIN) strategy (corresponding to the worst-case scenario)
and the genie-aided strategy (corresponding to the best-case
scenario). Due to the space limitation, we could not provide
the full details of these two bounds. However, we point
out that these two bounds can be derived by modifying the
corresponding covariance matrix of the interference terms
va,Ts (l)Hi

B

(
Hi

B

)H
in (27), and further details of the bounds

will be presented in our journal paper.
It should be noted that both TIN and genie-aided bounds are

of theoretical significance, as they together indicate whether
the residual interference in the time domain can be minimized
by the cross-domain iteration. As we will demonstrate in the
numerical results part, the TIN bound and genie-aided bound
will converge to each other after a sufficient number of cross-
domain iterations. This suggests that the adopted reduced-size
LMMSE estimator aligns well with the mechanism of the
cross-domain iterative detection, where only the interference
caused by the delay needs to be considered for the time domain
estimation, while the interference caused by Doppler can be
resolved naturally by the cross-domain iteration.

B. Complexity Analysis

The complexity of the cross-domain iterative detection has
been reported in [8]. In comparison, the proposed scheme
reduces the complexity by using a reduced-size LMMSE
estimator, whose complexity is in the order of O

(
(2M)

3
N
)

.
Furthermore, the complexity of the cross-domain iteration and
the DD domain symbol-by-symbol detection is O (MN logN)
and O (MN), respectively. Therefore, the proposed scheme
in total requires O

(
8M3N +MN logN +MN

)
complex-

ity per iteration, which is much less compared to
O
(
M3N3 +MN logN +MN

)
required in [8].
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Fig. 4. Comparison of time domain state (MSE) evolution performance of
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V. NUMERICAL RESULTS

We present numerical results of the proposed scheme in this
section. As an example, consider P = 4, M = 64, N = 32,
QPSK. The maximum delay and Doppler index are 10 and 5.

The state (MSE) evolution performance of the proposed
scheme at a signal-to-noise ratio (SNR) Es/N0 = 12 dB,
is given in Fig. 4, where both the actual MSE, the MSE
evolution results, and the derived TIN and genie-aided bounds
are presented in comparison to the results obtained from [8]3.
As shown in Fig. 4, our derived state evolution provides a
good prediction of the actual MSE performance, where both
the actual MSE and the MSE derived from the state evolution
decrease first and then saturate at MSEs around 9 × 10−5,
after sufficient iterations. Furthermore, we can observe that the
derived state evolution matches perfectly with both the TIN
and genie-aided bounds, which verifies the correctness of our
derivation. Finally, we notice that the proposed scheme only
exhibits marginal MSE loss compared to the scheme in [8] in
early iterations both numerically and theoretically, and this loss
becomes negligible with an increased number of iterations.

In Fig. 5, we compare the bit error rate (BER) performance
3In Fig. 4, the delay indices are [0, 8, 4, 6], the Doppler in-

dices are [4.82,−3.23, 1.38,−2.47], and the channel coefficients are
[−0.02− 0.09i, 0.40 + 0.73i, 0.03 + 0.45i, 0.15− 0.43i], respectively.

of the proposed scheme and the scheme in [8]. As observed
from the figure, the proposed scheme suffers from a noticeable
performance degradation with one iteration compared to the
scheme in [8] at high SNRs, due to the imperfect SIC adopted
in the scheme in early iterations. However, we notice that
the proposed scheme shows roughly the same performance
as the scheme in [8] with 5 iterations, and both their results
converge to the optimal performance obtained by using the
MP algorithm [6] with only integer delay and Doppler indices.
Therefore, we observe that the proposed scheme enjoys a near-
optimal performance with reduced complexity.

VI. CONCLUSION
In this paper, we proposed a novel reduced-complexity

cross-domain iterative detection for OTFS transmissions. By
utilizing the “bandlimitedness” of the time domain effective
channel matrix, the reduced-size time domain LMMSE is
performed in a block-wise manner, where we showed that
the potential performance degradation due to this reduced-
size estimation can be well compensated by using the cross-
domain framework. The state evolution and theoretical bounds
were also provided. Finally, numerical results showed that the
proposed scheme achieves a near-optimal performance.
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