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Abstract

We consider a sensing application where the sensor nodes are wirelessly powered by an energy

beacon. We focus on the problem of jointly optimizing the energy allocation of the energy beacon

to different sensors and the data transmission powers of the sensors in order to minimize the field

reconstruction error at the sink. In contrast to the standard ideal linear energy harvesting (EH) model, we

consider practical non-linear EH models. We investigate this problem under two different frameworks: i)

an optimization approach where the energy beacon knows the utility function of the nodes, channel state

information and the energy harvesting characteristics of the devices; hence optimal power allocation

strategies can be designed using an optimization problem and ii) a learning approach where the energy

beacon decides on its strategies adaptively with battery level information and feedback on the utility

function. Our results illustrate that deep reinforcement learning approach can obtain the same error levels

with the optimization approach and provides a promising alternative to the optimization framework.

I. INTRODUCTION

Wireless power transfer (WPT) is a promising technology for enabling energy-autonomous

future networked systems [1], [2]. At the moment, a significant part of the literature on WPT

systems focus on linear energy harvesting (EH) models where the average power that can be

harvested at the EH device is modeled as a linear function of the average power input to the

device. On the other hand, practical EH hardware circuitry design is limited by the non-linear
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Fig. 1. Sensors powered by an energy beacon transmitting to a sink.

characteristics of circuit components, which yields to energy harvesting efficiencies that highly

depend on the input power levels and input wave-forms.

Investigation of these issues have only recently started to appear in the communications

community: Refs. [3–6] show the superior performance of multi-sine waveforms for power

transfer compared to the traditional communication waveforms. Non-linear models for power

conversion efficiency in EH circuitry are investigated and performance improvements due to

usage of practical models in communication system design are illustrated [7–9]. In this article,

we contribute to this line of work by investigating the effect of non-linear power conversion on

the performance of a remote sensing system powered with WPT.

We consider the setting in Fig. 1 where the sensor nodes are wirelessly powered by an

energy beacon. Sensor nodes measure an unknown field of interest. We focus on the problem of

jointly optimizing the energy allocation of the energy beacon to different sensors and the data

transmission powers of the sensors in order to minimize the field reconstruction error at the sink.

In contrast to the line of work that focuses on remote estimation problems under total power

constraints or under wireless power transmission with linear EH models [10], we investigate this

problem under non-linear EH models.

We consider the above resource allocation problem under two different frameworks: i) an

optimization approach where the energy beacon knows the form of the utility function (i.e.

average field reconstruction error), channel state information and the EH characteristics of the

devices; hence can directly design resource allocation strategies using an optimization problem

and ii) a reinforcement learning (RL) approach where the energy beacon decides on its strategies
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adaptively based on the battery level information of the nodes and feedback on the utility function.

Recently, deep reinforcement learning techniques have shown state-of-the-art performance in

continuous control tasks [11] and machine learning in wireless networking applications has been

recently investigated [12]. Our results illustrate that although optimization and RL approaches

have access to different types of knowledge on the system parameters, they are able to obtain

the same error levels in the sensing problem considered here.

Notation: We denote a column vector by a = [a1; . . . ; an] ∈ Cn×1 where semi-colon ; is used

to separate the rows. The complex conjugate transpose of a matrix A is denoted by A†.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Sensing and Signal Model: There are ns sensors in the system. At time slot t, sensor i obtains

M realizations of the random variable xit and sends it to the sink using a noisy commu-

nication channel. The aim of the sensing system at time slot t is to estimate the M real-

izations of the unknown complex proper zero-mean spatially correlated signal xt defined as

xt = [x1
t ; . . . , x

i
t; . . . ;x

ns
t ] ∈ Cns×1, with Kxt = E[xtxt

†], Pxt , tr[Kxt ] < ∞. The reduced

eigenvalue decomposition of Kxt is denoted by Kxt = UtΛxtU
†
t where Λxt ∈ Rs×s is the

diagonal matrix of s non-zero eigenvalues and U ∈ Cns×s is the matrix of eigenvectors. In

the sequel, a realization of the random variable xit is denoted with xit,j for the sake of clarity

whenever needed.

Communications to the Sink: Sensors send their observations to the sink using a single cell

orthogonal division multiple access (OFDMA) set-up where the spectrum is divided into ns

equal sub-channels where each sensor is assigned to one sub-channel [13]. During time slot t,

M measurements of sensor i is sent to the sink in an uncoded manner as follows

yit,j = git

√
pit
σ2
xit

xit,j + wit,j, j = 1, . . . ,M (1)

where
√
pit ∈ R, denotes the power amplification factor adopted by sensor i at time slot t, git ∈ R

is the effective channel gain, yit,j ∈ C denotes the received observation and wit,j ∈ C denotes the

zero-mean proper white channel noise with variance σ2
w. The channel gain and channel noise

variance is assumed to be constant during transmission at time slot t. Hence, we choose pit values

that do not depend on the realization of the random variable.

The sink collects the measurements from sensors i = 1, . . . , ns and makes a linear minimum

mean-square error (LMMSE) estimate of the unknown values xt,j = [x1
t,j; . . . ;x

ns
t,j], ∀j. The
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resulting average mean-square error for large M is given by 1
M

∑M
j=1||xt,j − x̂t,j||2→ E[||xt −

x̂t||2] where x̂t,j is the LMMSE estimate of the xt,j . Hence, the estimation error εt(pt) =

E[||xt − x̂t||2] can be written as

εt (pt) = tr

[
(Λ−1

xt +
1

σ2
w

U †tGtP tUt)
−1

]
, (2)

where P t = diag(pt) ∈ Rns×ns , Gt = diag(gt) ∈ Rns×ns , pt = [p1
t ; . . . ; p

ns
t ] ∈ Rns×1, gt =

[|g1
t |2/σ2

x1t
; . . . ; |gnst |2/σ2

xnst
] ∈ Rns×1 and it is assumed that channel state information git, σ

2
w and

Kxt are known at the sink.

Wireless Power Transfer: The energy beacon serves ns sensors using an orthogonal energy

transmission scheme, such as the heterogeneous scenario where devices harvest energy in differ-

ent frequency bands whereas high EH efficiency in whole spectrum is challenging to achieve with

practical hardware [14]. We note that this type of orthogonal energy transmission formulation

also covers energy delivery by time division within time slot t with dedicated sharp energy beams

to each sensor [15]. The effective channel power gain for power transfer to sensor i during time

slot t is denoted by hit > 0. The energy beacon allocates an average power of qit to sensor i at

time slot t. Hence, the power input to the sensor node i is given by q̄it = qith
i
t. Let the power

that can be extracted by the node be denoted by dit. The conversion process between q̄it and dit

can be expressed as dit = φ(q̄it). where φ(.) is a possibly non-linear function. Hence, the energy

harvested by node i during time slot t can be written as

Ei
t = τEφ(q̄it) = τEφ(qith

i
t) (3)

where τE is the length of energy harvesting time slot. We consider the following models for

φ(.):

• The standard linear model with a constant power conversion efficiency

φL(q̄it) = ζq̄it, (4)

where 1 ≥ ζ ≥ 0 is the conversion efficiency. This is the typical model used in the literature

[13].

• The quadratic model [9]

φQ(q̄it) = α1(q̄it)
2

+ α2q̄
i
t + α3, (5)

where α1, α2, α3 ∈ R are the parameters of the model.
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Fig. 2. Comparison of the measurement data [14] and the linear model φL, the quadratic model φQ [9], the logistic function

model φS [7].

• The logistic/sigmoid function model [7]

φS(q̄it) =
P̄ − β3S

1− S
, (6)

P̄ =
β3

1 + exp(−β1(q̄it − β2))
, (7)

where S , 1
1+exp(β1β2)

, and β1, β2, β3 are the parameters of the model.

These models are illustrated in Fig. 2, where the parameters of all the models are found by

least-squares curve fitting of the measurement data from the hardware design of [14].

Energy Constraints at the Sensors: For large M , average power consumption associated with

(1) is given by

1

M

M∑
j=1

pit
σ2
xit

(xit,j)
2 → pit

σ2
xit

σ2
xit

= pit (8)

Hence, total energy spent by the sensor at time slot t is given by Jt = τIp
i
t, where τI = Mτ vI

is the duration of the information transmission and τ vI is the average duration of transmission

of each sensor value. Energy used by the sensor at any time slot could not exceed the available

energy. Hence, we have the following energy neutrality conditions
t∑
l=1

τIp
i
l ≤

t∑
l=1

τEφ(q̄it), t = 1, . . . , T. (9)
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where the initial energy in the battery is zero and the battery capacity is large enough so that

all the energy that is delivered to the device can be stored.

Problem Statement: Our goal is to jointly design the optimal power amplification factors pit at

the sensors and energy allocations qit for the energy beacon in order to minimize the mean-square

error over the whole time period of 1 ≤ t ≤ T

min
pt,qt

1

T

T∑
t=1

εt (pt) (10a)

s.t.
t∑
l=1

τIp
i
l ≤

t∑
l=1

τEφ(hilq
i
l), ∀t, ∀i (10b)

ns∑
i=1

τEq
i
t ≤ PB, ∀t, (10c)

pit ≥ 0, qit ≥ 0, ∀t, ∀i (10d)

where qt = [q1
t ; . . . , ; q

ns
t ] ∈ Rns×1 is the vector of power allocations by the energy beacon at

time t and PB is the power budget of the energy beacon. For notational simplicity, we normalize

as τI = τE = 1 in the rest of the article.

We consider this problem under two different frameworks: In the first approach, we consider

this optimization problem, i.e. (10), directly. Here, the covariance matrix of xt and all the relevant

channel state information (CSI) is assumed to be known. This off-line optimization set-up serves

as a benchmark. In the second approach, neither this information nor the form of the objective

function is known by the decision maker. A reinforcement learning approach that uses battery

level information at the nodes and feedback on the utility (i.e. distortion) is used to solve this

problem. This corresponds to a practical scenario where the sensor nodes and the sink report their

battery levels and the utility function to the decision maker (for instance, at the energy beacon),

respectively. The underlying assumption for the usage of RL approach is that the channels and

the statistical properties of the unknown field change in a way that RL agent can learn from the

previous experiences and can adaptively form a resource allocation strategy. In Section V, we

illustrate this point for the case of periodically changing signal covariance matrix.

III. OPTIMIZATION APPROACH

The objective function of (10) is a convex function of pt, since tr[X−1] is convex over X � 0.

Whether (10) constitutes a convex optimization problem is determined by (10b). If φ(hilq
i
l) is a
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concave function of qil , then the problem becomes convex; since (10b) becomes an upper bound

on a convex function. This is the case for φL(.) which is linear and hence concave; and for

φQ(.) which has α1 < 0 and hence concave [9]. Hence, given a strictly feasible point exists, the

Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for optimality. In the below,

we illustrate the usage of KKT conditions for φL(.) for the special case where the channel gains

and the covariance matrix of the field is constant over time but not necessarily over different

nodes:

Proposition 3.1: Let |git|= |gi|, |hit|= hi, Kxt = Kx = diag(σ2
xi). Then, we have the following:

i) Let φ = φL or φ = φQ with α1 < 0. Optimal pit and qit values do not depend on time. ii) Let

φ = φL. Optimal values are given by

pi =

√1

κ

hiζσ2
xi
σ2
w

|gi|2
− σ2

w

|gi|2

+

(11)

and qi = pi/(hiζ) where κ > 0 is a Lagrange multiplier so that
∑

i qi = PB and c+ , max(0, c).

Proof is given in Appendix VIII. Note that, in the optimal strategy no energy savings between

the time instants occur.

We note that, for φS(.), the problem is in general not convex, and sufficiency of KKT

conditions should be further investigated. On the other hand, optimal solutions can be determined

using numerical optimization methods with convergence guarantees for φL(.) and φQ(.) due to

convexity [16]. In Section V, we first solve (10) for φL(.) and φQ(.) using such tools [16]. We

then use the resulting solutions as benchmarks to evaluate the success of the RL approach. Then,

we investigate the problem with φS(.) using the RL approach.

IV. REINFORCEMENT LEARNING APPROACH

In this part, we redefine the problem as an RL problem. In an RL setting, the system dynamics

is assumed to be Markovian so that the next state of the system depends solely on the current

state and the action of the RL agent, i.e. it is independent of the previously visited states.

In particular, we assume that both the channel gains and the unknown field are statistically

independent random processes over time and the signal covariance matrix changes periodically.

The agent aims to maximize a reward signal based on its observations by interacting with

the environment without a priori knowledge of transition dynamics of the environment and its

rewards. We use the following notation: At step t, the observation of the agent, ot, is the limited
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view of the agent regarding the underlying state of the system. The action, at, is the decision

made by the RL agent based on its current observation of the system. The policy, π, guides

the decision of the agent by mapping an observation to an action. The agent’s aim is to reach

to an optimum policy which maximizes the sum of discounted rewards over time as given by

G =
∑

t γ
trt where γ is defined as the discount factor. Our aim is to minimize distortion, hence

we define the reward at time t as the negative of the distortion, i.e. rt = −εt, and the RL agent

tries to minimize the sum of distortions over multiple time slots.

We assume that the RL agent can get feedback on the battery levels of the nodes and on

the distortion after each step. However, it has no information on the statistics of the field to be

estimated; i.e. Kxt . We consider the observation space of the system as the combination of the

energy stored in the batteries of the nodes, bit, along with the reward returned in the previous

step, rt−1. We include the last reward information to capture the current state of the environment.

Hence, there are ns + 1 observations for the RL agent for an ns-node system.

RL agent controls both the energy beacon and the sensors. Its actions are 1) energy allocations

at the beacon, i.e. qit, and 2) transmission power factors at the sensors, i.e. pti. For qti , to make sure

that the transmitted energy to all nodes equals to the power budget of the energy beacon, PB,

as given by (10c), we define auxiliary variables sit for each node where the energy transferred

to a node is found using an exponential softmax operation qit = PB
exp(sit)∑
j exp(sjt )

which results in∑
i q
i
t = PB.

The second action, i.e. pit, is limited by the energy stored in the battery of node i at time

t, bit = b̄it−1 + φ(hitq
i
t) with b̄it−1 ,

∑t−1
l=1 φ(hilq

i
l) −

∑t−1
l=1 p

i
l as implicitly defined by (10b). The

agent only knows b̄it−1. We define another auxiliary variable, 0 ≤ ρit ≤ 1, which indicates the

ratio of pit to bit. Then, the transmission power pit of a node is given by pit = bit × ρit. There are

2ns actions to be determined for an ns-node system.

To represent the policy π of the RL agent, we use artificial neural networks due to recent

success of deep neural networks at representing complex policies [11]. In our scenario, both

state and action spaces are continuous. Hence, RL algorithms for discrete action spaces such

as deep Q-learning are not applicable. Naive discretization of the action and state spaces would

result in an explosion in the number of states which would make the problem intractable. Hence,

here we adopted a policy gradient approach referred as Trust Region Policy algorithm (TRPO)

which is suitable for continuous control problems and has shown state-of-the-art performance in

deep RL benchmarks [17], [18]. Further implementation details are presented in Section IX.
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V. NUMERICAL RESULTS

Let hit = AEAN
λ2dEi

γ

E

|Zi
t,E|2, where λ is the wavelength, dEi is the distance between the energy beacon

and node i, AN and AE are the total apertures of the sensor node and energy beacon antenna

arrays, respectively [13]. The propagation is assumed to be close to line of sight with path loss

coefficient γE = 2. Let f = vc/λ = 2.45GHz, vc = 3× 108m/s, AE = 0.2m2, AS = 0.005m2,

Zi
t,E ∼ CN (1, 0.2). We have |git|2= AIAN

λ2dIi
γ

I

|Zi
t,I |2, where γI = 3, AI = AE , Zi

t,I ∼ CN (1, 0.2)

and σ2
w = 0.1 µW. Here, Zi

t,E and Zi
t,I are statistically independent of each other and over t and

i. The dEi and dIi values are set according to the following scenario in 2-D plane: Energy Beacon

at (-1, 0), sink at (4, 0), node j at (0, j-4), j ∈ Z, j ∈ [1, 8] where the unit is meters. We assume

that the hardware design of [14] is used for the energy harvesting circuitry. The second order

statistics of xt is periodic in time with the period κ= 4: Kxt =UtΛxtU
†
t where Λxt = ns

tr[Λt]
Λt,

Λt = diag(ηt), ηt = [η1,t; . . . ; ηns,t] ∈ Rns×1 ηk,t = νt
k, 0 ≤ k ≤ ns − 1, νt = 0.2mod(t,κ),

where mod(t, κ) denotes modulo operation in base κ. The unitary matrices Ut = Umod(t,κ) are

drawn from the uniform (Haar) unitary matrix distribution. We report the normalized error with

ε̄ ∈ [0, 1], where ε̄ = ε/Px, ε =
∑T

t=1 εt(pt), Px =
∑T

t=1 tr[Kxt ] and T = 20.

We label the different scenarios as “S-AM -RM” where S ∈ {OPT,RL}, AM ∈ {L,Q, S},
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Fig. 4. Information transmission power allocation pit, ns = 8, nt = 20

RM ∈ {L,Q, S} refer to the solution method (optimization versus reinforcement learning),

assumed EH model for optimization and the actual EH model (φL, φQ, φS), respectively. For

instance, OPT -L-Q refers to the case where optimization problem in (10) is solved using

the model φL(.) using CVX [16] and the performance of the resulting pit and qit values are

evaluated based on φQ(.). Hence, this is the scenario where the resource allocation is based on

φL(.) whereas the actual EH hardware follows φQ(.). In this scenario, the nodes may not have

enough energy to implement pit values found for some time instants due to the erroneous model

assumption. For these cases, the node sends with all the energy available. If there is remaining

energy, it is used at t = T . It is assumed that energy harvested saturates for input values higher

than 2.8mW for the actual hardware of φQ(.), see Fig. 2. For RL scenarios, there are no cases

with discrepancy between assumed and actual models, since RL makes no assumptions on the

EH models and decides on the power allocations based on the feedback on the battery levels

and the distortion values.

We first consider the case with |Zi
t,I |= |Zi

t,E|= 1. The distortion versus power budget PB

curves are presented in Fig 3. Comparing the RL and OPT curves, we observe that the curves

are on top of each other for both L-L and Q-Q scenarios. This illustrates that RL approach
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successfully learns how to minimize the distortion even if it does not know the form of this

function or the channel gain values. It is also observed there is no significant performance

difference between RL-Q-Q and RL-S-S, which is consistent with the good fit of both models

with the measurement data as illustrated in Fig. 2. Comparing OPT -L-Q and OPT -Q-Q, we

observe that there is a performance gap due to the wrong assumption on the EH model, which

illustrates the need to design resource allocation based on realistic EH models.

An illustration of the optimal pit values for OPT -L-L are presented in Fig. 4. The nodes that

are closest to the energy beacon and the sink (j = 3, 4, 5) are transmitting with the highest power.

We observe that nodes save power to be able to transmit with higher power in the subsequent

time instants. We note that the periodic nature of the power allocation scheme over time is

consistent with the periodically changing correlation function of the unknown field.

Fig. 5 shows the convergence behavior of the RL algorithm which also includes the optimum

values from the optimization approach as the lower bound. The distortion reduces with more

episodes and approaches to the 2-3% of the optimum value at the ≈ 105th episode. Considering

that the time horizon is T = 20 time slots, RL algorithm needs to interact with the system for

≈ 2× 106 time slots. Further discussions are provided in Section VI.

We now discuss the case with Zi
t,I ∼ CN (1, 0.2) and Zi

t,E ∼ CN (1, 0.2). An average over

100 channel realizations are reported. We compare the following scenarios: i) Performance of

the direct solution of (10) where the CSI for all t are known, ii) Performance of the solution of
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(10) for |Zi
t,I |= |Zi

t,E|= 1 under stochastic channel realizations, iii) Performance of RL which

does not know CSI and the form of the utility function. For PB = 3W , we obtain the following

normalized distortion values: i) 1.342× 10−2, ii) 3.178× 10−2, iii) 2.89× 10−2 for φL(.) and i)

2.73 × 10−2, ii) 4.54 × 10−2, iii) 4.35 × 10−2 for φQ(.). We observe that the distortion values

obtained by the RL based approach is reasonably close to these benchmark values.

VI. DISCUSSIONS

We now provide a comparison of the off-line optimization and RL approaches. The main

advantage of the RL approach against the off-line optimization approach can be considered to

be the fact that RL approach does not rely on prior knowledge about the system and learns to

optimize performance by interacting with the system. Applicability of RL approach also does not

impose strong necessary conditions on the system set-up other than the Markovian assumption.

On the other hand, a standard application of an off-line optimization approach requires full

system knowledge, such as CSI information in our set-up.

Under the off-line optimization approach, for problems that can be formulated as convex opti-

mization problems, well-established numerical methods that guarantee convergence to an optimal

solution can be utilized [19]. On the other hand, RL approach, in general, does not provide such

formal convergence guarantees. Moreover, in practice RL approach typically requires a large

number of iterations to converge as illustrated in Fig. 5.

Due to this large number of iterations, hence the large number of interactions with the system,

the applicability of RL approach in low-power sensor networks is not straightforward. On the

other hand, it should be noted that the off-line optimization approach also requires a significant

training overhead since it assumes knowledge of systems parameters, for instance CSI and the

covariance matrix of the unknown field in our case. Acquiring this system model information

in an accurate manner typically requires multiple interactions with the system. Hence, it is

not a priori clear whether the RL approach, which implicitly combines system modeling and

optimization, or the off-line optimization approach, which treats modeling and optimization as

separate blocks, is more suitable for sensor network applications. We also note that RL approach

can be also used in a manner that effectively treats modeling and optimization as separate blocks,

i.e. RL agent can interact with a comprehensive system simulation instead of directly interacting

with the communication system. Further investigations of these issues are considered as future

work.
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VII. CONCLUSIONS

A comparison of the RL and optimization based approaches for resource allocation in wire-

lessly powered sensor networks is presented. Practical non-linear EH models are an important

part of the setting. Our results illustrate that RL based approaches show promising performance

with non-linear EH models and partial CSI scenarios.

VIII. APPENDIX: PROOF OF PROP. 3.1

i) Since Kx =diag(σ2
xi), (10a) can be written as

∑T
t=1

∑ns
i=1 εi(p

i
t), where εi(pit) =

σ2
wσ

2
xi

|gi|2pit+σ2
w

.

Suppose that Qi ≥ 0 is the total power allocated to node i over the whole time frame, i.e.∑
t q

i
t=Qi. Hence, for node i, (10) reduces to:

min
pit

T∑
t=1

εi(p
i
t) (12)

such that
∑t

l=1 p
i
l ≤

∑t
l=1 φ(hiqil), ∀t and

∑T
t=1 q

i
t =Qi. We consider the following relaxation

of this problem

min
pit

T∑
t=1

εi(p
i
t) (13)

such that
∑T

l=1 p
i
l ≤ P i where

P i = max
qil

T∑
l=1

φ(hiqil) (14)

over
∑

t q
i
t = Qi. (Eqn. (10b) is replaced with one total power constraint and the right hand

side of it is replaced with its maximum possible value.) The objective function of (13) is a

Schur-convex function since εi(p
i
t) is convex [20, Ch.3]. Hence, the optimization problem in

(13) is a minimization of a Schur-convex function over a total power constraint. Hence, the

optimum strategy for (13) is given by uniform pti over t [20, Ch.3], i.e. pti = P i/T . Similarly,

P i = Tφ(hiqil) with qil = Qi/T since (14) is a maximization of a Schur-concave function over

a total power constraint. We now observe that these optimal solutions to (13) and (14) are also

feasible for (12). Hence, optimal pit and qit values for (12) and hence for (10) do not depend on

time.

ii) Using φ = φL and part (i), i.e. pit = pi and pit = qi, (10) now can be written as the

minimization of
∑T

t=1

∑ns
i=1 εi(p

i) = T
∑ns

i=1 εi(p
i) such that

∑ns
i=1 q

i =
∑ns

i=1
pi

hiζ
≤ PB. The

Lagrangian can be written as
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L =
ns∑
i=1

εi(p
i) + κΩ(pi)− µipi, (15)

where κ ≥ 0, µi ≥ 0 are the Lagrange multipliers and Ω(pi) , (
∑ns

i=1
pi

hiζ
− PB).

Solving the KKT conditions, that is differentiating L with respect to pi and evaluating it

together with κΩ(pi) = 0, µiai = 0 and the feasibility conditions, reveals the solution in (11).

IX. APPENDIX: HYPERPARAMETERS OF THE RL ALGORITHM

We approximate the value function with a neural network with three hidden layers having

tanh activations. For the 8-node system that we consider, the size of the hidden layers are 90,

21 and 5. The policy is a multivariate Gaussian policy which is also represented with a neural

network with three layers having tanh activations. The size of the hidden layers are 90, 127

and 180. We have used Adam optimizer for both networks. We discount future rewards using a

discount factor of γ = 0.995.
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