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Abstract—Java deserialization vulnerability is a severe threat
in practice. Researchers have proposed static analysis solutions to
locate candidate vulnerabilities and fuzzing solutions to generate
proof-of-concept (PoC) serialized objects to trigger them. How-
ever, existing solutions have limited effectiveness and efficiency.

In this paper, we propose a novel hybrid solution ODDFUZZ
to efficiently discover Java deserialization vulnerabilities. First,
ODDFUZZ performs lightweight static taint analysis to identify
candidate gadget chains that may cause deserialization vulner-
abilities. In this step, ODDFUZZ tries to locate all candidates
and avoid false negatives. Then, ODDFUZZ performs directed
greybox fuzzing (DGF) to explore those candidates and generate
PoC testcases to mitigate false positives. Specifically, ODDFUZZ
applies a structure-aware seed generation method to guarantee
the validity of the testcases, and adopts a novel hybrid feedback
and a step-forward strategy to guide the directed fuzzing.

We implemented a prototype of ODDFUZZ and evaluated it
on the popular Java deserialization repository ysoserial. Results
show that, ODDFUZZ could discover 16 out of 34 known gadget
chains, while two state-of-the-art baselines only identify three of
them. In addition, we evaluated ODDFUZZ on real-world ap-
plications including Oracle WebLogic Server, Apache Dubbo,
Sonatype Nexus, and protostuff, and found six previously
unreported exploitable gadget chains with five CVEs assigned.

I. INTRODUCTION

The serialization mechanism [1], which is supported by
mainstream programming languages like Java, JavaScript,
PHP, and .NET, enables an application to convert an object
to a stream of bytes for cross-process or cross-platform data
transmission and persistence storage [2]. The counterpart of
serialization is deserialization, which reconstructs an object
from a serialized byte stream. This deserialization process
is dynamic, as different objects lead to polymorphic runtime
behaviors. Advanced language features (e.g., Java reflection
[3]) make the process even more dynamic. This process is
also open, i.e., crafted serialized objects may be injected by
adversaries, which breaks the traditional trust boundary of
inter-process data transmission and introduces attack surfaces.

Applications that unsafely deserialize incoming serialized
objects would be abused to invoke a series of methods on
the classpath, named gadget chains, and eventually hijack
security-sensitive code (e.g., Method.invoke()) or cause other
consequences (e.g., access control bypass) [4], [5]. Such open
dynamic deserialization (ODD) vulnerabilities are prevalent
and devastating. The past few years have seen a proliferation

of deserialization attacks in famous Java applications. For
example, a recent zero-day vulnerability (named Spring4Shell

[6]) discovered in the Spring Framework [7] allows an attacker
to send a specially crafted HTTP request to bypass protections
in the library’s HTTP request parser, leading to remote code
execution (RCE). Due to the dominance of Spring framework
in the Java ecosystem, a large number of applications could
potentially be impacted.

A limited number of tools [8]–[13] have been proposed to
discover ODD vulnerabilities in Java applications. The root
cause of ODD vulnerabilities is that, the deserialized objects
can reach (in terms of control flow) and affect (in terms of
data flow) the sensitive code (sinks) of target applications.
Therefore, a straightforward way to discover ODD vulnera-
bilities is static taint analysis, as GadgetInspector [12] does.
However, such a purely static solution may suffer precision
issues due to the limited support for Java deserialization-
related features [2], [14], resulting in both high false-negative
and high false-positive rates. Furthermore, it requires manual
inspection of the reports, which is time-consuming and error-
prone. To alleviate this problem, SerHybrid [13] adopts a
hybrid analysis solution, which analyzes the heap access paths
to find source objects that affect security-sensitive call sites,
and utilizes fuzzing [15], [16] to generate source injection
objects to verify whether the sinks are reachable.

However, these solutions in general have limited effective-
ness and efficiency due to three challenges. First, existing
static analysis solutions struggle to make trade-offs between
precision and recall. Due to the runtime polymorphism of Java
language, any available overridden method (gadget) on the
application’s classpath may be exploited to construct gadget
chains. Given that blindly enumerating all possible gadget
chains will inevitably suffer from the path explosion problem,
existing solutions often employ taint analysis [17] to prune
infeasible gadget chains. However, they either are prone to
precision issues [12], or may not work due to the huge
computation space caused by the prohibitive number of can-
didate gadget chains [18]. Second, existing fuzzing solutions
are ineffective at generating testcases (i.e., injection objects)
to reach sinks. Note that, the injection objects may have a
multilevel class hierarchy and their properties should satisfy
certain control-flow or data-flow constraints. Fuzzing solutions
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without prior knowledge about such a complex nested form
of structures are ineffective at generating qualified objects.
Third, existing fuzzing solutions are inefficient at generating
testcases to reach sinks. They are coverage-guided (i.e., trying
to cover more code) rather than target-directed (i.e., trying to
reach specific code sooner), thus wasting too much energy on
program paths that will not reach sinks.

In summary, Java is one of the most popular language
suffering devastating ODD vulnerabilities [19], but there are
few solutions to discover Java ODD vulnerabilities while
existing solutions have limited efficiency and effectiveness.
To address these challenges, we propose a novel hybrid
solution ODDFUZZ to discover ODD vulnerabilities for Java
applications. In particular, ODDFUZZ performs a lightweight
taint analysis, which makes a trade-off between precision and
recall when handling Java runtime polymorphism, to identify
possible candidate gadgets chains. Then, ODDFUZZ models
the data constraints of such gadget chains as a tree and utilizes
it to perform structure-aware fuzzing. Finally, ODDFUZZ
adopts a novel directed fuzzing solution driven by a step-
forward mutation strategy and a hybrid feedback, to reach
candidate vulnerabilities rapidly.

We implemented ODDFUZZ based on a popular Java
fuzzing framework JQF [20] and evaluated it on ysoserial
[8] which is a famous Java deserialization repository with 34
known gadget chains. As the evaluation results show, ODD-
FUZZ can identify 16 exploitable gadget chains without false
positives, while two state-of-the-art solutions GadgetInspector
and SerHybrid only respectively found three and two of them.
ODDFUZZ also identifies six previously unknown exploitable
gadget chains in four popular Java applications. We have
reported these vulnerabilities to the vendors and are working
with them on fixing these vulnerabilities. In total, five of these
six vulnerabilities have been assigned with new CVEs.

In summary, this paper makes the following contributions:
• We propose a novel solution to Java ODD vulnerability

discovery, i.e., ODDFUZZ, which adopts a lightweight taint
analysis to identify as many gadget chains as possible and
a directed fuzzing solution to validate true positive chains.

• We propose a step-forward and a structure-aware scheme to
efficiently guide directed fuzzing towards sensitive sinks.

• We discovered and responsibly report six previously un-
known exploitable gadget chains (i.e., ODD vulnerabilities).

• We will open source our tool ODDFUZZ1 to facilitate
further research.

II. BACKGROUND

A. Open Dynamic Deserialization

Open Dynamic Deserialization (ODD), also known as Ob-
ject Injection Vulnerabilities (OIVs) or insecure deserializa-
tion [21], refers to a security-critical bug that allows an
attacker to manipulate serialized objects to inject harmful
data into the application code. This insecure deserialization
behavior enables diverse attacks, including denial of service

1https://github.com/ODDFuzz/ODDFuzz

Fig. 1: An exemplary Java ODD vulnerability.

(DoS) attacks, or even remote code execution (RCE) [22].
ODD occurs not only in Java, but also in other mainstream
programming languages like JavaScript [23], PHP [18], [24],
and .NET [25].
Object Deserialization. Object serialization is a dynamic
process of converting objects into a flatter format that can be
sent and received as a sequential stream of bytes, for cross-
platform data transmission and persistence storage. Object
deserialization is the exact opposite of serialization, that is,
restoring this byte stream to the original object. In other words,
the object’s properties are preserved along with their assigned
values in the process of serialization and deserialization.

Such a deserialization mechanism is open, i.e., allowing
arbitrary objects to be deserialized, and dynamic, i.e., able to
invoke polymorphic methods or reflection-based behaviors and
explore diversified paths. These two features can introduce se-
rious ODD vulnerabilities [26]. Typically, deserialized objects
are assumed to be trustworthy after some checks. However, a
large Java application may implement different libraries with
their own dependencies. For developers, this creates a massive
pool of classes and methods that are difficult to manage
securely, because it is hard to predict which methods can be
invoked by the malicious data due to the dynamic nature of
Java. From the attacker’s perspective, deserializing data from
any provenance provides an entry point to an object injection
attack, if an attacker is able to chain code fragments of the
application together (and execute them in order) and passes
data to a security-sensitive call site. Such a code fragment
chain is called a gadget chain, and each code fragment of this
chain is called a gadget. Figure 1 shows a simplified code
snippet of CommonsCollections2, a well-known gadget chain
in Apache Commons Collections4 (ACC) library [8], which
enables remote code execution.



(a) The stack trace of the gadget chain in Figure 1.

(b) An injection object triggering Method.invoke().

Fig. 2: Constructing injection objects with POP.

Property-Oriented Programming. To exploit ODD vulner-
abilities, adversaries have to carefully set the properties of
the injection object, to chain multilevel objects of specific
classes and set certain fields to specific data values, in order to
invoke specific polymorphic methods and pass data to security-
sensitive call sites. Such a technique used in constructing
this injection object is called Property-Oriented Programming
(POP) [27]. POP allows an attacker to manipulate the data and
control flow of the application, thereby exploiting attacker-
controllable gadgets on the application’s classpath for deseri-
alization attacks.

Figure 2 depicts an example of how an attacker constructs
a malicious injection object with POP to exploit the ODD
vulnerability shown in Figure 1, where Figure 2a presents its
corresponding stack trace. An attacker instantiates an injection
object PriorityQueue, which contains a malicious payload
within its field queue (line 2), for exploitation. At the bottom
of Figure 2a are two exploitable gadgets, compare() (line
17) and transform() (line 22) in ACC, required to trigger
the security-sensitive call site Method.invoke() (line 25). To
enable the injection object to follow the execution flow that
the gadget chain specifies, the attacker should dynamically set
the property comparator (line 3) of PriorityQueue to an in-
stantiated TransformingComparator object, and iteratively sets
TransformingComparator’s property transform (line 16) to
another instance InvokerTransformer to facilitate the payload
object in queue reaching the sink, as shown in Figure 2b.
When this crafted injection object PriorityQueue is deserial-
ized via readObject(), the payload object in queue will flow
into the security-sensitive call site Method.invoke(), thereby
allowing remote code execution.

Fig. 3: Threat model.

Fig. 4: Workflow of directed greybox fuzzing.

B. Threat Model

Figure 3 illustrates the threat model that we explored in this
paper. Assume that there are attacker-controllable deserializa-
tion entry points in the target Java application. If an attacker
¶ injects crafted objects into these untrusted entry points,
the target application will · deserialize these objects and
automatically invoke attacker-specified gadget chains on the
application’s classpath. Then, ¸ malicious payloads carried by
injection objects will flow into the security-sensitive call sites,
enabling attackers to perform ODD attacks for exploitation.

This assumption is practical because insecure deserializa-
tion is common in the Java ecosystem. Take the prevalent
commercial platform Oracle WebLogic Server (WLS) [28]
as an example. The T3 protocol WLS adopts to transport
serialized data with other Java programs exposes a large attack
surface, which provides untrusted deserialization entry points
to attackers for sending payloads to the victim application.
Nonetheless, containing deserialization entry points does not
mean that the target application is vulnerable. As shown in
Figure 3 (red dotted arrows), given that remediating an ODD
vulnerability can be particularly difficult and costly, developers
prefer adopting whitelists or blacklists to restrict the deserial-
ization of untrusted objects [12], [29], [30]. However, once a
new gadget chain is discovered, existing defense solutions can
be easily bypassed [31]. Thus, in our threat model, information
about whether there are exploitable gadget chains on the
application’s classpath is more important.

C. Directed Greybox Fuzzing

Greybox Fuzzing (GF) has become an effective method to
detect vulnerabilities [15]. With different goals, it can usually
be divided into two types: Coverage-guided Greybox Fuzzing
(CGF) [32]–[34] and Directed Greybox Fuzzing (DGF) [35]–
[37]. CGF aims to explore previous undiscovered code snip-



TABLE I: State-of-the-art automated gadget chain discovery
tools. Intra-TA and Inter-TA respectively represent the in-
traprocedural and interprocedural taint analysis, while PTA
denotes the points-to analysis.

Technique Static
Analysis

Seed
Generation

Seed
Mutation

Seed
Prioritization

GadgetInspector [12] Intra-TA - - -
SerHybrid [13] PTA Heap graph - -
FUGIO [18] Inter-TA Property tree Heuristics Feedback-driven

ODDFUZZ Intra-TA Property tree Step-forward Target-directed

pets to achieve high code coverage, expecting to accidentally
trigger potential vulnerabilities. However, in some scenarios,
such as static report verification [38], the vulnerable code is
known and demands exploration. Hence, DGF are designed
to guide the fuzzer to a specific location of the program to
generate a Proof-of-Concept (PoC) testcase.

Figure 4 describes the workflow of the directed greybox
fuzzing. Typically, DGF can be split into two phases: static
analysis and fuzzing loop. At static analysis phase, the directed
fuzzer extracts both the call graph and control flow graphs
of the program to calculate the inter-procedural distance [35]
between the input binary and pre-defined targets. At the
fuzzing loop phase, target distance is usually used as feedback
information along with other fitness metrics like coverage
[39], [40] and similarity [36] to rapidly guide the fuzzer
towards the target sites. Then, the directed fuzzer selects the
seeds closer to the target sites in the seed pool according to
feedback information and allocates proper energy (i.e., power
scheduling) for mutation. The energy of a seed determines
how many new seeds can be generated. Then, the fuzzer adopts
various mutation strategies to steer the seeds to evolve towards
the desired target sites and executes the instrumented program.
A new seed with smaller distance will be preserved for the next
fuzzing loop.

III. MOTIVATION

Despite the severe impact of insecure deserialization in
practice, existing efforts on automatically discovering Java
ODD vulnerabilities (especially exploitable gadget chains)
are still unsatisfactory. For example, the state-of-the-art Java
gadget chain discovery tool GadgetInspector [12] can only
report few exploitable gadget chains in real-world applications.
In fact, as we will show in the rest of this section, to achieve
both a high recall (identifying more possible gadget chains)
and precision (confirming more exploitable gadget chains), a
Java ODD vulnerability discovery solution has to tackle three
fundamental challenges.

A. Challenge 1: Runtime Polymorphism

The root cause of ODD vulnerabilities is that, the untrusted
deserialized objects can reach (in terms of control flow) and
affect (in terms of data flow) the security-sensitive call sites
of target applications. Hence, existing works [12], [13] use
static analysis to identify a combination of available gadgets

in the code that can be exploited by attackers to customize
insecure deserialization paths. However, due to the runtime
polymorphism of Java language, virtual method invocations
cannot be determined based on the declared types. As a result,
it is difficult to precisely infer program paths that would be
taken at runtime, resulting in a high false-negative rate.

A straightforward way is to perform Class Hierarchy Anal-
ysis (CHA) [41] to take a comprehensive view of both explicit
and implicit method invocations. Unfortunately, blindly con-
sidering all available gadgets on the application’s classpath
will inevitably lead to path explosion because the number of
candidate gadgets increases exponentially as length increases.
Hence, as shown in Table I, GadgetInspector [12] respectively
computes passthrough data flows from method arguments to
1) return values and 2) method invocations, and enumerates
all available methods based on the class inheritance hierarchy
and method overriding hierarchy to chain exploitable gadgets.
However, given that the attacker-controllable property [42] can
propagate from a tainted argument to its subclass arguments
not tracked, a set of exploitable gadgets will be missed by
GadgetInspector since the Java runtime polymorphism is not
considered in its intraprocedural taint analysis. FUGIO [18]
computes interprocedural data flows on its built depth-bounded
call tree to prune infeasible gadget chains. However, when
applied to Java ODD gadget chain discovery, this solution may
not work because a typical Java application might integrate
hundreds of libraries with their own dependencies. This creates
a massive pool of classes and methods, making the call tree
too deep and breadth to deal with.

B. Challenge 2: Structured Input Construction

To invoke a series of exploitable gadgets on the application’s
classpath, the structure of injection objects is often organized
as a nested form with multilevel sub-objects. Still taking
the gadget chain in Figure 1 as an example. To trigger
the gadget compare() (line 17), the fuzzer should instantiate
the class TransformingComparator to which the overridden
method compare() belongs and assign this instance to the field
comparator (line 3) of the injection object PriorityQueue

through POP. This brings the challenge to constructing a
both syntactically (i.e., the generated injection object can
be (de)serialized) and semantically (the generated injection
object satisfies certain control- and data-flow constraints that
enable the gadget chain) valid fuzzed input, as it requires 1)
shaping the injection object’s multilevel hierarchy to enable
the execution of the reported gadget chain, and 2) assigning
proper property values to trigger the security-sensitive call
site. Without prior knowledge about such a complex nested
form of object structures, traditional fuzzing techniques cannot
thoroughly fuzz the entire gadget chain as they hardly figure
out complex structures behind each injected object.

An effective solution to handle such nested object structures
is generation-based fuzzing techniques. As shown in Figure
5, SerHybrid [13] performs points-to analysis to produce a
heap access path (pink-shaded), which satisfies the data-flow
constraints of reaching the security-sensitive call site, from



Fig. 5: The heap graph for the gadget chain in Figure 2.

the heap graph and uses fuzzing to assign random values to
the field properties not appear in the heap path according to
their types to generate valid injection objects for execution.
However, as the number of available gadgets increases, a
fuzzer unaware to the multilevel class hierarchy of the injec-
tion object may hard to assign proper values to those control-
data constraints-related properties. For example, it is unlikely
to select TransformingComparator from a large number of im-
plementations of the interface Comparator, resulting in runtime
exceptions. FUGIO [18] builds a property tree based on the
candidate gadget chain to satisfy the control-flow constraints
of sink-reachable injection objects, and mutates each property
with some heuristic rules to construct actual injection objects.
However, the random combination of arbitrary sub-objects
(property values) generated by fuzzing may be semantically
(hard to trigger target gadgets) invalid, blocking the injection
objects from reaching gadgets closer to target sinks.

C. Challenge 3: Target-Directed Fuzzing

Since the gadget chain is composed of a series of attacker-
controllable methods which are automatically executed during
object deserialization, the conventional code coverage is not
suitable to guide the fuzzer because a generated injection
object which triggers more code snippets may not be able
to reach the security-sensitive call site of the target chain. For
example, an injection object whose property comparator is
null (line 7 in Figure 2a) will be preserved by the coverage-
guided fuzzer (e.g., FUGIO) as an interesting seed for the next
fuzzing loop since it triggers new code snippet (line 13) in the
gadget siftDown() (line 6). As a result, the fuzzer will waste
most of its time budget on exploring unreachable paths.

Instead of focusing on maximizing the code coverage,
DGF prioritizes the seeds whose execution traces are close to
the target sites to gain directedness. State-of-the-art directed
fuzzers leverage the arithmetic mean of the distances of all
the basic blocks on a seed’s execution trace to select and
schedule the seeds to reach target sites rapidly. However,
such a seed distance can be biased and may not entirely
correspond to the expected execution path of a gadget chain
being validated since not every block drives the seed object
to execute towards the target sink expected in an identified
chain. Moreover, the execution traces of different seed objects
may vary greatly and can only be known at runtime since
modifications to a property of the seed object may activate the

Fig. 6: Overview of ODDFUZZ.

execution of multiple gadgets. Hence, target-directed fuzzing
feedback that can effectively evaluate the quality of generated
injection objects is desired.

IV. ODDFUZZ DESIGN

To tackle the aforementioned challenges of gadget chain
discovery discussed in Section III, we design ODDFUZZ
to support structure-aware directed greybox fuzzing. In this
section, we outline the overall design and workflow of ODD-
FUZZ, and explain its key components.

A. Overview

Figure 6 depicts an overview of ODDFUZZ. The workflow
of ODDFUZZ contains two main modules: ¶ In the identifier
module, ODDFUZZ takes a compiled file (e.g., Jar, War, or
Class files) of the program under testing (PUT) as input and
conducts a lightweight taint analysis to automatically enumer-
ate all potential gadget chains. · In the validator module,
ODDFUZZ generates a structure-aware seed based on the
identified gadget chains to construct syntactically valid injec-
tion objects for fuzzing. During the fuzzing loop, ODDFUZZ
combines step-forward mutation strategy and hybrid feedback
(seed distance and gadget coverage) to guide the fuzzer to
mutate injection objects towards the desired sinks. When a
generated injection object reaches the security-sensitive call
site, the given gadget chain will be reported as an exploitable
gadget chain.

B. Taint Analysis

An important condition for constructing an exploitable
gadget chain is that whether the attacker-controllable tainted
object can propagate from an entry point (i.e., source) to the
security-sensitive call site (i.e., sink) method. In other words,
if an exploitable gadget chain exists, there must be a call
path from the entry point to the security-sensitive call site. A
straightforward way is to construct Call Graph (CG) [43], [44]
to search for reachable paths [45]. However, due to the Java
runtime polymorphism, virtual method invocations cannot be
determined based on the declared types. To solve this problem,
we perform a lightweight summary-based taint analysis [17],
[46], [47] to identify suspicious gadget chains.
Method Summary Computation. ODDFUZZ first computes
static summaries for all methods on the classpath of the PUT
that are later used for constructing gadget chains.

Specifically, for each method, ODDFUZZ first extracts all
its arguments and this as method summaries. Then, to track



the information propagation between variables of each method,
we focus on four basic statements, including 1) Assign, 2)
Load, 3) Store and 4) Call. These statements are widely used
for data flow computation in taint analysis. The variable that
data-dependent on an argument of the method will also be
included in the method’s summaries. These method summaries
will be used to identify exploitable gadgets whose actual
arguments can be controlled by attackers to propagate tainted
values by altering the property values of an injection object.
Gadget Chain Identification. Since the gadget chain is a
sequence of method invocations that reflects a stack trace
from a magic method to a security-sensitive call site, ODD-
FUZZ should specify a list of exploitable magic methods and
security-sensitive call sites, and identify suspicious gadget
chains based on previous computed method summaries. In
this paper, we specified a total of 16 magic methods and 30
security-sensitive call sites (as shown in Appendix A).

Then, given that the Breadth-first-search (BFS) adopted
by GadgetInspector will skip visited methods (i.e., gadgets
which have been traversed on certain infeasible paths will
not be considered for gadget chain construction again even
if they are exploitable) and thus results in false negatives,
once a known magic method is found on the classpath of the
PUT, ODDFUZZ performs a Depth-first-search (DFS) starting
from this source gadget based on the method summaries
to chain exploitable gadgets. To avoid infinite loops (e.g.,
recursive calls), we set a threshold for the maximum length
of candidate gadget chain. Furthermore, to handle the runtime
polymorphism of Java language, we perform Class Hierarchy
Analysis (CHA) on the call statement only when the caller is
tainted, avoiding the path explosion issue caused by blindly
considering all available gadgets on the application’s classpath.
In particular, for a call statement r = x.k(a, · · · ), if the caller
variable x is tainted (e.g., comparator.compare() at line 12 in
Figure 1), all overriding methods of method k will be listed as
candidates. Otherwise, ODDFUZZ works like a normal CG-
based taint analyzer. This iterative analysis procedure will not
stop until a security-sensitive sink method is invoked or the
maximum length of the enumerated gadget chain exceeds a
threshold.

After all paths (i.e., gadget chains) from magic methods
to security-sensitive call sites are analyzed, ODDFUZZ runs
the validator module for validation. With the help of our
lightweight taint analysis, the effectiveness (identifying as
many gadget chains as possible) and scalability (analyzing
large applications with acceptable time overhead) of ODD-
FUZZ in gadget chain identification can be well balanced.

C. Structure-Aware Directed Greybox Fuzzing

Given a target Java application and a candidate gadget chain,
ODDFUZZ conducts structure-aware directed greybox fuzzing
to generate actual injection objects for validation. The main
fuzzing loop is as presented in Algorithm 1 in Appendix B,
which is composed of the following three main components.
Structured Seed Generation. As described in Section III-B,
constructing a syntactically valid injection object requires 1)

Fig. 7: A merged property tree for injection object generation.

devising its nested object hierarchy that reflects the execution
flow of a given gadget chain, and 2) assigning suitable property
values to corresponding multilevel sub-objects to facilitate
the injection object reaching the sensitive sink. However,
heavy use of nested structures makes gadget chain fuzzing
ineffective, as it requires well-designed property layout of
complex object structures, which is unfriendly to traditional
fuzzing solutions.

To this end, we design a structure-aware seed generation
approach to handle the complex nested forms by adopting a
hierarchical data structure called property tree [18], in which
the root node represents a class object that holds one or more
gadgets, and leaf nodes are a series of class fields which
contain the property type and name. As shown in Figure 7, to
generate an injection object shown in Figure 2, we instantiate
each class involved in the gadget chain and leverage reflection
to dynamically collect available properties of each class to
construct a property tree. Specifically, if the property type of
a field node in a property tree is an object represented (or
inherited) by another property tree of which the class holds
the next gadget in the target chain, we merge the two property
trees by connecting this field node to its corresponding class
object node (i.e., the root node of another property tree). It
is noteworthy that two property trees are also merged when
certain field node’s type in a property tree is the interface
implemented by the root node (a class object) of another
property tree. For example, the property type of the field node
comparator in the property tree of class PriorityQueue is
the interface Comparator. Hence, the two property trees of
class PriorityQueue and class TransformingComparator are
merged by connecting the field node Comparator comparator

and the root node TransformingComparator. We iteratively
integrate the property tree based on the invocation order of
the gadget chain until there are no more isolated but related
sub-trees.

When a suspicious gadget chain is identified by ODDFUZZ,
it will be fed into the input generator to construct a corre-
sponding property tree. The multilevel class hierarchy of a
target gadget chain can be well modeled with the property tree.
Then, the fuzzer starts traversing the backbone of this tree to
convert it into an initial injection object for fuzzing (the right
side of Figure 7). Other property nodes without successors
(e.g., Object[] queue) will be set to null for mutation.



Seed Prioritization via Hybrid Feedback. Using the above-
mentioned structure-aware seed generation that handles the
complex nested forms, we can successfully construct syntacti-
cally valid injection objects to enable the gadget chain fuzzing
process. However, as described in Section III-C, the execution
trace of an injection object is dynamically determined, which
means that randomly generating and mutating an injection
object leads to the sink-unawareness since the property layout
of this nested injection object varies greatly in different
fuzzing iterations. Such an indeterministic fuzzing campaign
without clear feedback guidance degenerates the fuzzer into a
semantics-blind dumb fuzzer. As a result, the fuzzer would be
confused about which direction to evolve and wastes time on
exploring unreachable paths, resulting in low efficiency.

In order to efficiently select and schedule the seeds to
reach the security-sensitive call site of a given gadget chain,
we propose a hybrid feedback-driven seed prioritization way.
Fundamentally, we aim to prioritize and assign more energy
to seeds closer to the target security-sensitive call site for
mutation. To this end, ODDFUZZ takes two types of feedback
metrics into account: seed distance and gadget coverage.

1) Seed Distance: Computing seed distance to prioritize
and schedule seeds to reach target sinks as rapid as possible
is a core component of DGF. Following the idea of AFLGo
[35] and Hawkeye [36], the distance between a seed s and the
target basic block Tb to which the security-sensitive call site
belongs is calculated as:

d(s, Tb) =

∑
m∈ξ(s) db(m,Tb)

|ξ(s)|
(1)

where db(m,Tb) is the distance between a basic block m in
the execution trace of seed s and the target basic block Tb. It is
noteworthy that instead of enumerating all the basic blocks on
the execution path of a seed s, we collect the executed basic
blocks ξ(s) within the gadgets of the target chain to compute
the seed distance, avoiding the fuzzer exploring irrelevant but
closer paths.

2) Gadget Coverage: Furthermore, we also adopt gadget
coverage (i.e., branch coverage of gadgets in a target chain)
as another metric to prioritize seeds which cover more program
paths. In the initial fuzzing stage, the gadget coverage aims
at guiding the fuzzer to select and prioritize diverse seeds,
avoiding getting stuck in local optimum caused by favoring
certain seeds with specific execution paths. While in the power
scheduling stage, the gadget coverage attempts to give seeds
with the same distance but covering more branches higher
chances for mutation.

Formally, ODDFUZZ sorts all the generated seeds in as-
cending order according to their distance and maintains a two-
level priority queue. The first seed (or seeds with same distance
but different coverage) will be put into the favored queue with
higher priority, and the rest of the seeds are put into the less
favored queue. Thus, ODDFUZZ has a greater chance to select
the next seed from the favored queue for mutation. As for
power scheduling, ODDFUZZ uses Equation (2) to consider

both seed distance and gadget coverage to assign a proper
energy to the selected seed input.

p(s, Tb) = ψ(s) · (1− d̃(s, Tb)) (2)

where ψ(s) denotes the proportion of the branches of gadgets
covered by a seed s (i.e., gadget coverage) to the total branches
of all gadgets in a given chain, and d̃(s, Tb) =

d(s,Tb)−minD
maxD−minD

is a normalized seed distance where minD (or maxD) is the
smallest (or largest) seed distance ever met. It is obvious that
p(s, Tb) ∈ [0, 1] since both the multipliers are in [0, 1].

With Equation (2), the fuzzer can determine the number
of mutation chances to be applied on the current seed and
evaluate whether the mutated seeds should be favored during
the seed prioritization, striking a balance between exploring
diverse execution paths and prioritizing a seed that is more
likely to reach the desired security-sensitive call site.
Step-Forward Seed Mutation. Previous fuzzing techniques
work by randomly mutating binary files via operations like bit
flips to produce new inputs. However, such bit-level mutations
may lead to invalid syntax when applied to structured inputs.
To address this issue, we leverage JQF [20], a parametric
fuzzing framework which maps the structured inputs to a
sequence of untyped bits (i.e., parameters), to mutate the
generated seeds at the bit-level. These bit-level mutations
on the parameters correspond to property-level mutations on
structured injection objects. Then, ODDFUZZ applies a step-
forward seed mutation strategy to efficiently guide the seeds
towards the desired security-sensitive call site of a target
gadget chain.

Specifically, the fuzzer first traverses the property tree of
an injection object to be mutated and checks each property’s
type. For primitive data types (e.g., boolean, int), the fuzzer
uses multiple pseudo-random methods proposed by JQF to
convert untyped bit parameters into random typed values.
For the reference data types, the fuzzer tailors targeted tem-
plates for specific types. When the property type is class,
the fuzzer will randomly select a class from the candidate
classes (i.e., sub-classes) of this property via the method
random.choose(). For an array property, the fuzzer uses the
method random.nextInt() to randomly set up the array size
and assigns random values based on the type of elements (i.e.,
instances that inherit the class type of the array) to the array.
For example, the parameter sequence for an injection object
generated from the property tree in Figure 7 is:

In order to mutate the value of property size, which is
a variable with int type in class PriorityQueue, the fuzzer
invokes the method random.nextInt() to generate a random
integer 1. To generate an Object array queue, the fuzzer
invokes the method random.choose() to assign it an instance
Object from the pre-defined dictionary, which is composed of
some specific property values (e.g., class object, string object)



involved in all classes or methods in the candidate gadget
chain. These pre-defined values have a higher probability to
satisfy certain hard dependencies during fuzzing.

Furthermore, to guide the seeds towards a desired sink
method, ODDFUZZ mutates the nested sub-objects of the
interesting injection object at the bit-level one by one. To
this end, we insert additional identifier bytes with the
method random.nextBool() into the parametric sequence of
an injection object. When the fuzzer meets a class object node
while traversing the property tree, the fuzzer adds a byte as
an identifier to mark whether to mutate the property values
of this nested sub-object. We leverage the gadget coverage
collected by the fuzzer to identify the class where the last
branch covered by the injected object is located. Once an
injection object is stuck in certain gadgets, the fuzzer will set
the corresponding identifier bytes to true and assign random
values to parameters, which correspond to structural mutations
on the properties of the class to which the stuck gadget
belongs, to produce new inputs.

To illustrate our step-forward mutation, considering the
following parameter sequence σ2:

Suppose that there is an injection object that stops in the
gadget TransformingComparator.compare(), the fuzzer will
flip its Identifier to true and mutates the parameter sequence
(e.g., assigning an instance ?T2 to the property transformer)
corresponding to class TransformingComparator. Based on
this step-forward mutation strategy, the fuzzer can effectively
generate semantics-aware inputs which are more likely to
reach the target sink.

Finally, when the mutated seed reaches the security-sensitive
call site, the fuzzer will report that the given gadget chain is
exploitable with the generated injection object.

V. IMPLEMENTATION

We implemented ODDFUZZ based on a popular Java
fuzzing platform JQF [20]. We customized its components to
make it suitable for gadget chain fuzzing while piggybacking
on the underlying functionalities of JQF, such as runtime
instrumentation.
Taint Analysis. ODDFUZZ uses Soot [48] to parse and
convert the Java bytecode to the intermediate language Jimple
[49]. Based on the basic class information (e.g., class modifier,
field, method and instructions) from Jimple, we implemented
the method summary-based taint analysis.
Structured Fuzzing. Instead of manually writing declar-
ative specifications of the input format such as context-
free grammars or protocol buffers, ODDFUZZ modifies the
junit-quickcheck generators [50] built in JQF to randomly
generate and mutate structured injection objects based on the

2Due to space constraints, we use ?T to represent an instance of any class
that implements Transformer.

candidate gadget chains. To enable and facilitate the structure-
aware seed generation, we employ the class sun.msic.Unsafe

[51] provided by JRE, allowing users to create an instance of a
class without invoking its constructor code, initialization code,
various JVM security checks and all other low level things.
Runtime Instrumentation. We use the ASM toolkit [52]
to instrument Java bytecode on-the-fly via a javaagent as
classes are loaded by the JVM. When the PUT starts, the
ODDFUZZ instrumentor injects a static method invocation
that is executed after each call or jump instruction to keep
track of the execution trace of an injection object. Note that
the instrumentation is limited to gadget chain-related bytecode
instead of the whole program for efficiency concerns.
Feedback Collection. For coverage information, we make
minimal modifications to JQF to collect branch coverage
through instrumenting each basic block based on jump in-
structions. For distance information, ODDFUZZ generates the
corresponding intraprocedural control flow graphs (CFGs) of
the gadget chain at the bytecode-level based on ASM. The
root node (i.e., gadget) of a CFG is identified by the method
signature while other CFG nodes are identified by the jump
instructions of the corresponding basic blocks. When a gadget
chain is fed to the fuzzer for validation, the ODDFUZZ
distance calculator computes the inter-procedural distance to-
wards the dangerous sink for each basic block based on the
invocation order of the gadget chain and generated CFGs. The
distance calculator is implemented with JGraphT library [53].

VI. EVALUATION

In this section, we evaluate ODDFUZZ from different
perspectives. First, we measure the effectiveness of ODDFUZZ
for gadget chain identification, and demonstrate how the
structure-aware seed generation and semantic-aware fuzzing
guidance of ODDFUZZ contribute to triggering exploitable
gadgets (Section VI-A). Then, we compare its performance
with state-of-the-art automated gadget chain identification
tools, including an open-source tool and a previous study
(Section VI-B). Finally, we show that ODDFUZZ can discover
previously unknown vulnerabilities in popular Java applica-
tions (Section VI-C).
Experiment Environment. All experiments were conducted
on a Linux workstation with an Intel(R) Core(TM) i9-12900k
@3.90GHz and 256 GB of RAM, running Ubuntu 18.04.4
LTS with JDK 1.8.0 152.
Benchmark. We performed the evaluation on various gadget
chains based on the ysoserial repository [8], a collection of 34
known gadget chains discovered in 22 common Java libraries
that can be exploited to perform unsafe object deserialization.
Exploitability Evaluation. To evaluate whether the gadget
chains reported by ODDFUZZ and baselines were truly ex-
ploitable, we employed two professional security analysts to
manually inspect each reported gadget chain. For 34 known
gadget chains in the benchmark (Section VI-A and VI-B),
security analysts compared the gadget chains reported by
each approach with the gadget chain attached to the payloads
(ground truth) in ysoserial (e.g., as explicitly marked in the



annotation of CommonsCollections1 [54]). Given that the
reported gadget chain may not be completely consistent with
the ground truth (e.g., the gadget chain CommonsCollections1

reported by GadgetInspector and ysoserial), the reported gad-
get chain would be confirmed as known if its core gadgets3

involved in the vulnerable application/library were the same to
those in ysoserial. For the remaining gadget chains (discov-
ered in ysoserial (Section VI-B) and real-world applications
(Section VI-C)), two security analysts manually inspect these
reported gadget chains. Once a gadget chain was suspected
to be exploitable, they would construct actual exploits for
confirmation.

A. Effectiveness

To evaluate the effectiveness of ODDFUZZ, we repeated
each experiment 10 times and reported their average statistical
performance [55]. We empirically set the threshold for each
gadget chain to 15 gadgets. For each statically identified
gadget chain, we limit the fuzzing campaign of ODDFUZZ
to 120 seconds. We performed additional sensitivity analysis
on these two hyperparameters for evaluation in Appendix C.

1) Overall Performance: Table II summarizes the statis-
tics about the evaluation results. The third to fifth columns
present the scale of the target applications, including the lines
of code (LoC), the number of classes, and the number of
methods. The sixth and seventh columns show the number of
source methods and sink methods covered on an application’s
classpath. The eighth column represents the number of known
gadget chains provided by ysoserial. The Identified Chains
and Confirmed Chains columns respectively mean the number
of gadget chains identified by ODDFUZZ’s taint analysis
module and the number of gadget chains reported by the
fuzzing module. Note here that the number in parentheses of
the Identified Chains columns represents the number of truly
exploitable gadget chains in the benchmark identified by the
static identifier module, i.e., true positives (TP). For example,
ODDFUZZ statically identified nine gadget chains in JDK, two
of which are known gadget chains. In the dynamic validation
process, these two chains were confirmed by ODDFUZZ with
generated injection objects. The last two columns, Analysis
Time and Fuzzing Time, show the total time overhead of taint
analysis and fuzzing campaigns in each application.

Overall, in 22 Java libraries, ODDFUZZ statically identified
a total of 20 out of 34 known gadget chains, and dynamically
generated sink-reachable injection objects for 16 out of these
chains without false positives. The results demonstrate the
effectiveness of ODDFUZZ in discovering Java ODD gadget
chains.
False Positives. In the static analysis stage, we find that among
the 583 identified gadget chains, ODDFUZZ correctly discov-
ers 20 known gadget chains with a recall of 58.8% (20/34).
In other words, the false-positive rate (FPR) of ODDFUZZ in
static analysis is 96.6% (563/583). The root cause is mainly

3In GadgetInspector, these application-specific continuous gadgets are also
called the building block of the full gadget chain.

due to our simple static taint analysis logic. For example,
given that some applications implement their own deserial-
ization libraries/protocols (e.g., XStream [56] and Hessian

[57]) instead of using Java native deserialization interfaces
(e.g., Serializable and Externalizable), ODDFUZZ takes
all available methods (no matter whether the classes to which
they belong inherit the Serializable or Externalizable

interface) on the application’s classpath into consideration
for gadget chain construction, resulting in a large number
of infeasible candidate gadget chains in practice. We discuss
this limitation in Section VII and leave the enhancement of
static analysis as future effort. Considering that ODDFUZZ
has validated these candidate gadget chains through structure-
aware directed greybox fuzzing and confirmed 16 known
gadget chains from 583 candidates with zero false positives,
such a FPR is acceptable.
False Negatives. As shown in Table II, we also find that 14
out of 34 (with a false-negative rate of 41.2%) known gadget
chains in ysoserial are missed by ODDFUZZ in static identi-
fication stage, mainly due to the limited support for certain
dynamic features of Java language such as reflective calls
[3] and dynamic proxy [58]. For example, in Groovy1 [59],
the attacker could exploit the class ConvertedClosure, whose
constructor receives a proxy MethodClosure as its parameters,
to pass tainted arguments to the gadget MethodClosure.call()
to execute the malicious commands. Due to the unawareness to
which classes can be proxied, gadget chains involving dynamic
proxy during their construction are difficult to be identified by
ODDFUZZ, resulting in false negatives.

In the dynamic verification stage, as shown in Table IV
in Appendix, there are four statically identified gadget chains
(including AspectJWeaver [60], CommonsCollections1 [54],
CommonsCollections3 [61], and Jython1 [62]) cannot be
dynamically validated by ODDFUZZ. For AspectJWeaver,
ODDFUZZ fails to generate sink-reachable injection objects
because its sink method writeToPath() receives a file as input,
which cannot be generated by traversing the property tree. For
the remaining three gadget chains, their construction involves
dynamic proxy4, which is not supported by our injection object
generation and mutation strategy.

2) Impact of Structure-Aware Seed Generation: To con-
struct valid seed objects for gadget chain fuzzing, we proposed
a structure-aware seed approach, which leverages the class hi-
erarchy relations between gadgets, to ensure both syntactic and
semantic validity of inputs. To evaluate how structure-aware
seed contributes to the gadget chain fuzzing of ODDFUZZ,
we set up a naive variant of ODDFUZZ, ODDFUZZ-SU (SU:
Structure-Unaware), which disables the structure-aware seed.
We then reran the experiments 10 times.

The experimental results (the original gadget coverage is
reported in Figure 11 in Appendix) are shown in Figure 8,
where we can observe that our structure-aware input generator

4Although ODDFUZZ does not support for dynamic proxy, following
GadgetInspector, we regard these known proxy classes as sources to start the
gadget chain identification. Hence, these three dynamic proxy-related gadget
chains can be statically identified by both ODDFUZZ and GadgetInspector.



TABLE II: Evaluation results of ODDFUZZ on known gadget chains from ysoserial.

Application Version LoC Classes Methods Covered
Sources

Covered
Sinks

Known
Chains

Identified
Chains

Confirmed
Chains

Analysis
Time

Fuzzing
Time

JDK 1.7 4.4M 38.5K 324.6K 7 4 4 9 (1) 1 1m51s 16m32s
AspectJWeaver 1.9.2 692.4K 7.1K 19.8K 4 2 1 9 (1) 0 1m56s 18m
BeanShell 2.0b5 44.8K 1.1K 17K 3 1 1 8 (0) 0 1m53s 16m
C3P0 0.9.5.2 30.3K 644 10.1K 6 3 1 13 (1) 1 1m50s 25m53s
Click 2.3.0 10.8K 73 8.5K 4 1 1 8 (1) 1 1m48s 15m26s
Clojure 1.8.0 58.4K 3.8K 25.7K 5 4 1 184 (1) 1 3m30s 6h7m34s
CommonsBeanutils 1.9.2 71.4K 504 7.8K 3 1 1 8 (1) 1 1m52s 14m25s
CommonsCollections 3.1 101K 798 9.7K 7 4 5 97 (5) 3 1m58s 3h10m53s
CommonsCollections4 4.0 101K 630 7.4K 5 2 2 112 (2) 2 1m55s 3h41m9s
FileUpload 1.3.1 10.5K 56 3.1K 3 1 1 8 (0) 0 1m55s 16m
Groovy 2.3.9 252.4K 4.2K 45.6K 4 1 1 13 (0) 0 2m8s 26m
Hibernate 4.3.11 855.7K 7.4K 42.7K 3 1 2 8 (2) 2 2m8s 14m7s
JBossInterceptors 2.0.0 24.2K 166 2.3K 2 1 1 8 (0) 0 1m51s 16m
JSON 2.4 28K 172 5.9K 3 2 1 9 (0) 0 1m52s 18m
JavassistWeld 3.12.1 60.4K 813 11.3K 2 1 1 8 (0) 0 1m58s 16m
Jython 2.5.2 271.9K 6.7K 66.4K 4 1 1 32 (1) 0 2m54s 1h4m
MozillaRhino 1.7R2 118.7K 329 8.2K 4 2 2 7 (2) 2 1m56s 12m10s
Myfaces 2.2.9 330.1K 1.8K 22.8K 2 1 2 7 (0) 0 2m1s 14m
ROME 1.0 94.5K 423 6.9K 2 1 1 5 (1) 1 1m48s 8m53s
Spring 4.1.4 904.3K 1.3K 14.5K 3 2 2 10 (0) 0 1m59s 20m
Vaadin 7.7.14 572.1K 4.5K 17.5K 4 1 1 13 (1) 1 1m54s 24m37s
Wicket 6.23.0 420.7K 3.2K 11.1K 2 1 1 7 (0) 0 1m50s 14m

Total - - - - - 34 583 (20) 16 - -

Fig. 8: Comparison of ODDFUZZ and ODDFUZZ-SU. The
x-axis is 34 known gadget chains listed in Table IV. The
y-axes are the fuzzing time and relative coverage (i.e., the
ratio of gadget coverage that obtained by ODDFUZZ-SU and
ODDFUZZ), respectively.

can effectively construct syntactically and semantically valid
seed objects, successfully validating the target chain within the
given time budget. In some cases (e.g., CommonsCollections2
in Apache Commons Collections4 library), ODDFUZZ takes
only a dozen seconds to validate the target gadget chain. By
contrast, ODDFUZZ-SU is unable to validate any reported
gadget chain. That is because structure-unaware fuzzing has no
prior knowledge of object structure provided by target gadget
chains, thus stuck in the initial fuzzing stage. As shown in
Figure 8, the lack of structured injection objects makes the
fuzzer only trigger a few gadgets. This result demonstrates the
effectiveness of structure-awareness in gadget chain fuzzing,
which allows us to achieve performance improvement in

Fig. 9: Coverage comparison of ODDFUZZ, ODDFUZZ-RM,
ODDFUZZ-CG and ODDFUZZ-DG. We use the results of
ODDFUZZ as the baseline. The x-axis is 34 known gadget
chains from ysoserial. The y-axis is the relative coverage of
each variant against ODDFUZZ.

dynamic validation.
3) Impact of Feedback-Driven Fuzzing Guidance: To ef-

fectively guide the injection objects to evolve towards desired
gadgets, we proposed a feedback-driven fuzzing guidance that
is armed with two key strategies, i.e., step-forward mutation
and hybrid feedback-based seed prioritization. To evaluate
how step-forward mutation and hybrid feedback contribute
to the gadget chain fuzzing of ODDFUZZ, we also set up
the variants of ODDFUZZ, ODDFUZZ-RM (RM: Random
Mutation), ODDFUZZ-DG (DG: Distance-Guided) and ODD-
FUZZ-CG (CG: Coverage-Guided), which disables the step-
forward mutation and decouples the distance feedback and
coverage feedback, respectively. We then reran the experi-
ments 10 times again.

The experimental results (the original gadget coverage is
reported in Figure 12 in Appendix) are shown in Figure 9,
where we can observe that ODDFUZZ discovers more valid
branches than ODDFUZZ-RM, ODDFUZZ-DG and ODD-
FUZZ-CG in almost every gadget chain, guiding the fuzzer



to evolve towards desired gadgets. For instance, in 25 of
34 gadget chains (73.5%), the random mutation-based fuzzer
ODDFUZZ-RM only discovers branches that are less than half
of ODDFUZZ. According to our analysis, it is mainly because
blind mutation to object properties makes the fuzzer continue
to explore shallow gadgets or infeasible paths, limiting the
capability of the fuzzer to preserve critical waypoints dur-
ing fuzzing. In addition, we also observe that compared to
coverage-guided fuzzing, distance-guided fuzzing significantly
increases the valid branches triggered by the fuzzer (the
improvement is more than 40% in certain cases). This result
demonstrates the effectiveness of both strategies, step-forward
mutation and hybrid feedback, as both of them contribute to
the directedness of gadget chain fuzzing, and their combination
allows ODDFUZZ to carry the fuzzing exploration towards the
desired sinks.

B. Comparison with State-of-the-Art Work

We compared ODDFUZZ with two state-of-the-art auto-
mated gadget chain discovery tools, GadgetInspector [12] and
SerHybrid [13]. As shown in Table III (detailed results5 are
reported in Table IV in Appendix). The Identified Chains col-
umn represents the number of potential gadget chains statically
identified by each approach, and the Confirmed Chains column
indicates how many of them are disclosed as exploitable in
ysoserial. Considering that GadgetInspector is purely static,
its Confirmed Chains column denotes the static results, while
in SerHybrid and ODDFUZZ, the Confirmed Chains column
shows the results after dynamic validation. Similar to Table
II, the Analysis Time and Fuzzing Time columns respectively
represent the total time cost of static analysis and fuzzing
campaigns in each approach. Note that, as reported in [13], 13
out of 22 applications (involving 19 exploitable gadget chains)
are not evaluated by SerHybrid because it specifically focuses
on reflection-enabled Java ODD vulnerabilities (labeled as
“N/A”), and two applications (Clojure and Jython) cannot
be analyzed statically within given time budgets (labeled as
“Timeout”).

Overall, ODDFUZZ achieves significant performance im-
provement in all applications. In particular, ODDFUZZ re-
ported 16 out of 34 exploitable gadget chains without false
positives, including 13 unique gadget chains that cannot
be found by baselines. By contrast, the number of truly
exploitable gadget chains reported by GadgetInspector and
SerHybrid is three and two, respectively.
ODDFUZZ vs. GadgetInspector. As shown in Table III,
GadgetInspector takes an average of 41 seconds to analyze
each application and reports 116 suspicious gadget chains.
However, only three of them are exploitable, meaning that
97.4% of them are false positives. Such a significant per-
formance gap mainly results from two aspects. On the one

5Unfortunately, despite our best effort, the implementation of SerHybrid
was not reproducible. We made unsuccessful attempts to contact the authors
for suggestions. Hence, we compare them against the results published in
their paper. To ensure fairness, we carefully make the experimental settings
and only compare them with the same libraries they tested.

hand, constrained by a few simplifying assumptions (e.g., all
members of a tainted object are also tainted) and requiring
manual inspection of the reports, GadgetInspector is prone to
precision issues and cannot guarantee that identified gadget
chains are truly exploitable. On the other hand, due to the
lack of consideration of Java runtime polymorphism when
computing intraprocedural data flows, GadgetInspector suffers
from unsound analysis results, resulting in missed available
gadgets, i.e., false negatives. By contrast, as reported in
Table IV, benefiting from our lightweight summary-based taint
analysis, ODDFUZZ statically identifies 17 more exploitable
gadget chains (covering all three chains reported by Gad-
getInspector) and dynamically validated 15 out of them with
no false positives. It is noteworthy that CommonsCollections1
[54], which can be identified by GadgetInspector, fails to be
validated by our approach because of certain specific cases
(e.g., dynamic proxy discussed in Section VI-A) in injection
object construction. Nevertheless, the detection capability of
ODDFUZZ is still promising (significantly improving the
recall rate of static analysis with acceptable time overhead) and
these limitations can be solved to some extent (as discussed
in Section VII).
ODDFUZZ vs. SerHybrid. As reported in Table III, SerHy-
brid successfully confirms two exploitable gadget chains in
under two minutes on average. Despite its promising perfor-
mance, a major drawback of SerHybrid lies in that most (32
out of 34) exploitable gadget chains are missed.For instance,
although SerHybrid statically identifies three potential gadget
chains in Hibernate in under one hour, it cannot generate
an injection object for any of them for validation within 30
minutes (the time budget set by [13]). According to our manual
analysis, it is mainly because an execution path from a source
object to the sink object with a tainted flow cannot provide the
fuzzer with class hierarchy information required for injection
object generation. By contrast, owing to our structure-aware
directed greybox fuzzing, ODDFUZZ efficiently generates
both syntactically and semantically valid injection objects
for 16 exploitable gadget chains (including two chains in
Hibernate) within two minutes on average.

C. Vulnerability Discovery

We chose target applications that satisfied the following
criteria. First, they are Java projects since ODDFUZZ is de-
signed to search deserialization vulnerabilities in Java. Second,
as discussed in our threat model, these applications should
contain known deserialization entries because we prefer to
actually exploit the Java deserialization vulnerabilities with
found gadget chains rather than just discover potential chains.
Third, they cover diverse application domains so that the
generality of our approach can be evaluated. Using the three
criteria, we selected four target Java applications, including
Oracle WebLogic Server (a commercial application server),
Sonatype Nexus (a repository manager), Apache Dubbo (a
high-performance Remote Procedure Call (RPC) framework),
and protostuff (a Java serialization library), to demonstrate



TABLE III: Comparison with GadgetInspector and SerHybrid.

Application Known
Chains

GadgetInspector SerHybrid ODDFUZZ
Identified

Chains
Confirmed

Chains
Analysis

Time
Identified

Chains
Confirmed

Chains
Analysis

Time
Identified

Chains
Confirmed

Chains
Analysis

Time
Fuzzing

Time

JDK 4 5 0 53s N/A N/A N/A 9 (1) 1 1m51s 16m32s
AspectJWeaver 1 6 0 41s N/A N/A N/A 9 (1) 0 1m56s 18m
BeanShell 1 2 0 49s 1 0 10m55s 8 (0) 0 1m53s 16m
C3P0 1 2 0 48s N/A N/A N/A 13 (1) 1 1m50s 25m53s
Click 1 4 0 39s N/A N/A N/A 8 (1) 1 1m48s 15m26s
Clojure 1 12 1 40s N/A N/A Timeout 184 (1) 1 3m30s 6h7m34s
CommonsBeanutils 1 2 0 37s 0 0 13m6s 8 (1) 1 1m52s 14m25s
CommonsCollections 5 4 1 39s 1 1 26m51s 97 (5) 3 1m58s 3h10m53s
CommonsCollections4 2 4 0 38s 1 1 11m21s 112 (2) 2 1m55s 3h41m9s
FileUpload 1 3 0 38s N/A N/A N/A 8 (0) 0 1m55s 16m
Groovy 1 4 0 47s 3 0 1h26m 13 (0) 0 2m8s 26m
Hibernate 2 3 0 41s 3 0 56m37s 8 (2) 2 2m8s 14m7s
JBossInterceptors 1 2 0 38s N/A N/A N/A 8 (0) 0 1m51s 16m
JSON 1 2 0 39s N/A N/A N/A 9 (0) 0 1m52s 18m
JavassistWeld 1 2 0 39s N/A N/A N/A 8 (0) 0 1m58s 16m
Jython 1 42 1 50s N/A N/A Timeout 32 (1) 0 2m54s 1h4m
MozillaRhino 2 3 0 40s N/A N/A N/A 7 (2) 2 1m56s 12m10s
Myfaces 2 2 0 37s N/A N/A N/A 7 (0) 0 2m1s 14m
ROME 1 2 0 36s 0 0 6m30s 5 (1) 1 1m48s 8m53s
Spring 2 2 0 38s N/A N/A N/A 10 (0) 0 1m59s 20m
Vaadin 1 5 0 37s N/A N/A N/A 13 (1) 1 1m54s 24m37s
Wicket 1 3 0 36s N/A N/A N/A 7 (0) 0 1m50s 14m

Total 34 116 3 - 9 2 - 583 (20) 16 - -

the vulnerability discovery capability of ODDFUZZ in practi-
cal scenarios.

1) Unknown Vulnerability Discovery: An overview of the
vulnerabilities found by ODDFUZZ is shown in Table V in
Appendix. In total, ODDFUZZ has successfully detected six
previously unknown Java ODD vulnerabilities. While three
of them were found within Oracle WebLogic Server, the re-
maining three vulnerabilities respectively arose from Sonatype

Nexus, Apache Dubbo, and protostuff. These vulnerabilities
can be exploited to perform RCE attacks by building our newly
discovered gadget chains. We have responsibly reported all
the vulnerabilities to corresponding vendors and have received
their positive feedback. At the time of paper writing, five of the
vulnerabilities have been patched and assigned CVE numbers
due to their severe security consequences.

2) Case Study: ODDFUZZ uncovered a RCE vulnerability
(CVE-2020-14756 [63]) in the Oracle Coherence product of
Oracle WebLogic Server. Successful attack of this vulnera-
bility can result in takeover of Oracle Coherence. As shown
in Figure 13a, the flow of triggering the vulnerability is as fol-
lows: ¶ The attacker first instantiates PriorityQueue to reuse
the known entry gadget (magic method) readObject() which
unconditionally invokes the second to fourth gadget (line 5-7).
· To connect the fifth gadget ExtractComparator.compare(),
the field comparator of class PriorityQueue should be set
to the ExtractorComparator’s instance through POP. ¸ Fol-
lowing the above steps to recursively modify the injection
object’s properties to trigger the security-sensitive call site
Method.invoke() (line 32). The complete gadget chain of
CVE-2020-14756 is shown in Figure 13b in Appendix.

It is difficult to validate this exploitable gadget chain by
traditional fuzzing, as it requires prior knowledge about the
layout of the multilevel sub-objects to avoid the fuzzing
campaign stuck in the initial stage due to randomly generated

property values. However, ODDFUZZ is able to produce a
syntactically valid injection object to facilitate gadget chain
execution by supplying the fuzzed structure extracted from
the nested hierarchy of multiple gadget classes to the input
generator. In this way, the injection object can be fuzzed to
reach the sink. Moreover, in the fuzzing campaign, ODDFUZZ
mutated the fuzzed object step by step towards the sink and
finally triggered the vulnerability.

VII. DISCUSSION

Better Static Analysis. As discussed before, our static anal-
ysis suffers from precision and soundness problems. Specif-
ically, false positives can be introduced by our simple taint
analysis logic. For example, ODDFUZZ does not restrict the
candidate space of available gadgets according to application-
specific deserialization libraries/interfaces and not handle sev-
eral special cases (e.g., an untrusted variable modified by
the keyword transient cannot be deserialized). These false
positives can be reduced by improving taint analysis rules. By
contrast, false negatives can be introduced by missing indirect
call targets caused by certain dynamic features (reflective
calls, dynamic proxy, etc.). Fortunately, benefiting from recent
solutions [3], [58] which can (partially) solve these advanced
language features, the unsoundness of our approach can be
well mitigated. In addition, similar to existing works [12], [13],
[18], [24], the effectiveness (recall) of our static gadget chain
identification also relies heavily on the prior expert knowledge
of available sources and sinks, which is the main manual
effort required in ODDFUZZ. Considering that there are a few
orthogonal tools/approaches [11], [64] have been proposed to
automatically identify untrusted deserialization entry points,
and our knowledge base is configurable, i.e., newly disclosed
sources and sinks can be dynamically added, the capability to



detect unknown Java ODD vulnerabilities in the wild can be
improved.
Diverse Generation Strategy. As evaluated in Section VI-A,
the awareness of object structure can help improve the perfor-
mance in gadget chain fuzzing. However, the optimal gener-
ation strategy needs to be suitable for diverse deserialization
scenarios and might be changed depending on the construction
of a gadget chain. For example, the exploitation of certain
available gadgets relies on some specific techniques (e.g., the
dynamic proxy used in Groovy1 [59]) or constraints (e.g.,
the file input required by AspectJWeaver [60]), which blocks
the injection object generation with the property tree. A
possible solution is to design some general templates for these
specifications. We leave such exploration for our future work.
Exploit Construction. ODDFUZZ also requires some human
efforts to help construct practical exploits because the injection
objects constructed by our structure-aware generator represent
the minimum effort required to trigger the gadget chains.
In order to construct actual exploits, security analysts need
to further ¶ check whether the tainted properties flowing
into the security-sensitive call site are attacker-controllable.
If it is truly attacker-controllable, security analysts should
· manually replace the non-harmful command (e.g., open
calculator) with a malicious one (e.g., reverse shell) based
on the injection objects generated by ODDFUZZ. We intend
to find a more automatic way as future work, while in this
work, the core goal of ODDFUZZ is to efficiently discover
exploitable Java ODD gadget chains from a large number of
static analysis reports.

VIII. RELATED WORK

A. Deserialization Vulnerabilities in Java

Vulnerability Mitigation. Most existing works focus on un-
derstanding and protecting applications against known deseri-
alization vulnerabilities [65]. Muñoz et al. [66] conducted a
comprehensive analysis on JSON deserialization libraries and
presented several mitigation measures as takeaways. Carettoni
[29] presented a configurable Java deserialization library,
which supports multiple optional settings such as blacklist and
whitelist, to secure application from untrusted input. Cristalli
et al. [67] designed a novel sandbox system, which collects
the behavior information of benign deserialization process and
constructs the precise execution path, to mitigate the problems
of deserialization of untrusted data in Java.
Vulnerability Detection. Despite the existing efforts, these
defense solutions will be bypassed once a new gadget or
fundamental vector is found [31]. Hence, some works focus
on detecting potential vulnerabilities in applications [68]–[70].
Koutroumpouchos et al. [64] proposed an extendable tool
ObjectMap which generates a series of requests to detect
whether the payload can be directly passed to the target
application. Similarly, Marshalsec [9] and Java Deserialization
Scanner [11] are two tools that dynamically scan and exploit
know gadget chains from the ysoserial project [8].
Automated Gadget Chain Discovery. In order to automati-
cally identify new gadget chains, Haken [12] presented Gad-

getInspector, which leverages static taint analysis and simple
symbolic execution to mine the propagation paths of parame-
ters within/between methods of a target application, and then
performs a breadth-first search (BFS) to search for attacker-
controllable gadget chains. Chen et al. [71] developed Tabby,
a graph-based static analysis tool, to support gadget chain
discovery. Rasheed et al. [13] proposed SerHybrid, a hybrid
analysis-based approach which constructs a heap abstraction
to produce actual injection objects to automatically validate
exploitable gadget chains. Cao et al. [72] proposed GCMiner,
which captures both explicit and implicit method calls to
identify candidate gadget chains, and adopts an overriding-
guided object generation approach to guarantee the validity of
injection objects during fuzzing. By contrast, ODDFUZZ aims
to improve the effectiveness and efficiency of gadget chain
validation via structure-aware directed greybox fuzzing.

B. Deserialization Vulnerabilities in Other Languages

Security threats of insecure deserialization also exist in
other mainstream programming languages [23]–[25]. Dahse et
al. [24], [73] conducted static taint analysis to detect gadget
chains in common PHP applications. FUGIO [18] combined
coarse-grained program analysis and fuzzing to automatically
produce exploit objects for PHP Object Injection (POI) vul-
nerabilities. Shahriar and Haddad [74] proposed a lightweight
approach based on latent semantic indexing to identify Object
Injection Vulnerabilities (OIVs) in web application. They iden-
tified multiple keywords that are likely responsible for OIVs
and defined customized queries to identify relevant source files
to discover new vulnerabilities. SerialDetector [25] studied
the root cause of OIVs in .NET applications and presented a
scalable taint-based data flow analysis to discover and leverage
publicly available gadgets.

IX. CONCLUSION

In this paper, we propose a novel hybrid solution ODD-
FUZZ to efficiently discover Java deserialization vulnerabili-
ties. ODDFUZZ performs lightweight static taint analysis to
identify candidate gadget chains and applies a structure-aware
directed fuzzing to mitigate false positives. Results show that,
ODDFUZZ could discover 16 out of 34 known gadget chains,
while two state-of-the-art baselines only identify three of
them. Moreover, we have discovered six previously unreported
exploitable gadget chains and five of them have been assigned
with CVE-IDs.
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APPENDIX A
TARGET SOURCES AND SINKS

Magic methods (sources) and security-sensitive call sites
(sinks) covered by ODDFUZZ are listed below, among which

six sources and 16 sinks are considered by GadgetInspec-
tor (highlighted in gray). These sensitive call sites can be
exploited to perform Remote Code Execution (RCE), JNDI
injection (JNDIi), System Resource Access (SRA), and Server-
Side Request Forgery (SSRF) attacks. It is noteworthy that,
similar to GadgetInspector, we explicitly maintain a set
of magic methods (security-sensitive call sites) of specific
classes as sources (or sinks) for gadget chain identifica-
tion because not all of them can be exploited (e.g., in
Clojure, only clojure.main$eval_opt.invoke() instead of
clojure.core$comp$fn_4727.invoke() is vulnerable).
• Magic Methods: readObject, hashCode, get, put, compare,
readExternal, readResolve, finalize, equals, compareTo,
toString, validateObject, readObjectNoData, <clinit>,
call, doCall

• Security-Sensitive Call Sites:
- Remote Code Execution (RCE): getDeclaredMethod,
getConstructor, findClass, getMethod, loadClass, start,
exec, invoke, forName, newInstance, exit, defineClass,
call, invokeMethod, invokeStaticMethod, invokeConstruc
tor

- JNDI Injection (JNDIi): getConnection, do_lookup,
lookup, c_lookup, getObjectInstance, connect
- System Resource Access (SRA): newBufferedReader,
newBufferedWriter, delete, newInputStream, newOutput

Stream, <init>
- Server-Side Request Forgery (SSRF): openConnection,
openStream

APPENDIX B
MAIN FUZZING LOOP OF ODDFUZZ

Algorithm 1 Gadget Chain Fuzzing
Input: the chain to be validated c
Output: sink-triggering seed set S
1: S ← ∅
2: S ← GENERATEINITIALSEED(c)
3: minDistance ←∞
4: gadgetCoverage ← ∅
5: repeat
6: s ← SELECTSEED(S)
7: p ← ASSIGNENERGY(s)
8: for i from 1 to p do
9: s′ ← MUTATESEED(s)

10: result ← EXECUTEPROGRAM(s′)
11: if REACHSINK(result) == true then
12: S ← S ∪ s′
13: EMITSIGNAL(c, “Reachable”)
14: else if s′.distance < minDistance then
15: S ← S ∪ s′
16: minDistance ← s′.distance
17: else if s′.coverage * gadgetCoverage then
18: S ← S ∪ s′
19: gadgetCoverage ← s′.coverage
20: end if
21: end for
22: until timeout or sink-triggering signal received

Algorithm 1 describes the overall process of our gadget
chain fuzzing. Given a target Java application and an identified
gadget chain, the fuzzer initiates a fuzzing campaign during a
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given time budget. The fuzzing process starts by adding the
initial injection object generated from the candidate gadget
chain c to the prepared seed pool S (line 1-2) and initializing
feedback information (line 3-4). It then repeats the following
fuzzing loops until finding an injection object that can reach
the security-sensitive call site in the gadget chain. To schedule
favored seeds for fuzzing in each round, the fuzzer selects
a set of seeds s with higher priority from the seed pool S
based on their previous execution feedback (line 6). Each
chosen seed is assigned to a certain amount of power that
determines how many new seed inputs can be derived in this
round (line 7). Next, the fuzzer mutates the scheduled seed to
generate a new injection object s′ to execute the instrumented
program (line 9-10). When this mutated seed s′ reaches the
security-sensitive call site, the fuzzer adds this seed to the sink-
triggering seed set S and emits a signal to ODDFUZZ to stop
the fuzzing campaign of the target gadget chain (line 11-13).
If this mutated seed does not reach the sink but contributes
to reducing the seed distance towards the target sink, the
fuzzer derives new seeds and updates the current minimal
seed distance minDistance (line 14-16). Furthermore, if this
mutated seed executes more branches within gadgets on the
execution path of the target chain, the fuzzer also adds this
seed to the seed pool and updates the current gadget coverage
gadgetCoverage (line 17-19). The fuzzing loop will not stop
until the given time budget expires or sink-triggering signal
is received by ODDFUZZ (line 22). The remaining section
details each step in the fuzzing process.

APPENDIX C
HYPERPARAMETER EVALUATION

To evaluate the optimal setting of two hyperparameters,
including the maximum length of gadget chains (Gadget Chain
Length) that ODDFUZZ analyzes and the time budget assigned
to fuzzing each candidate gadget chain (Fuzzing Time Budget),
we conducted the following experiments.
Gadget Chain Length. Gadget chain length denotes the max-
imum quantity of gadgets that ODDFUZZ could chain in our
static taint analysis. It is one of the critical hyperparameters in
our approach because it determines the recall of gadget chain
identification. For evaluation, we singly run the static identifier
module of ODDFUZZ on ysoserial and counted the number of
identified gadget chains within a specified maximum length,
from 1 to 20 in increment of 1. For example, if the maximum
threshold was set to 2, we would count the number of gadget
chains with length of 1 and 2. According to the assessment of
our employed security experts, it is reasonable to set the value
range as [1, 20] because the length of most publicly disclosed
gadget chains is less than 20.

The evaluation results are shown in Figure 10a. We can
find that the growth rate of the number of newly discovered
gadget chains slows down (less than 10 chains for the first
time) when the maximum gadget chain length is raised from
15 to 16. Therefore, we set the maximum gadget chain length
to be 15 in Section VI.

(a) Gadget chain length.

(b) Fuzzing time budget.

Fig. 10: Sensitivity analysis on gadget chain length and fuzzing
time budget.

Fuzzing Time Budget. Fuzzing time budget represents the
maximum time budget assigned to the fuzzer for validating a
candidate gadget chain. It is another critical hyperparameter
in our approach because assigning too much time to fuzz a
gadget chain unable to be exploited will waste computation
resources. Similar to the aforementioned experiment involving
maximum gadget chain length, we used the 34 known gadget
chains in ysoserial for evaluation. For each gadget chain, we
ran the fuzzer 10 times and counted the number of validated
gadget chains within a specified maximum length, from 0 to
300 seconds in increments of 10 seconds [18]. As reported
in Figure 10b, ODDFUZZ cannot successfully validate more
gadgets after 120 seconds (2 minutes). Hence, we set the
fuzzing time budget to be 120 seconds in all experiments in
Section VI.

Fig. 11: Gadget coverage comparison of ODDFUZZ and
ODDFUZZ-RM. The x-axis is 34 known gadget chains listed
in Table IV and the y-axis is the gadget coverage.



Fig. 12: Gadget coverage comparison of ODDFUZZ, ODD-
FUZZ-RM, ODDFUZZ-CG, and ODDFUZZ-DG. The x-axis
is 34 known gadget chains listed in Table IV. The y-axis is
the gadget coverage.

(a) A simplified code snippet of the gadget chain for CVE-2020-
14756 in WebLogic.

(b) An exploitable gadget chain for 13a.

Fig. 13: A previously unknown vulnerability found by ODD-
FUZZ.



TABLE IV: Evaluation results of ODDFUZZ on each gadget chain from ysoserial. # Gadgets denotes the number of gadgets
in each gadget chain. Identified and Validated respectively represents whether the gadget chain can be statically identified
and dynamically validated.

ID Gadget Chain Affected Version # Gadgets ODDFUZZ GadgetInspector SerHybrid
Identified Validated

1 AspectJWeaver aspectjweaver-1.9.2 9 ! - -
2 BeanShell1 bsh-2.0b5 6 - - - -
3 C3P0 c3p0-0.9.5.2 6 ! ! - -
4 Click1 click-nodeps-2.3.0 10 ! ! - -
5 Clojure clojure-1.8.0 10 ! ! ! -
6 CommonsBeanutils1 commons-beanutils-1.9.2 5 ! ! - -
7 CommonsCollections1 commons-collections-3.1 7 ! ! -
8 CommonsCollections2 commons-collections4-4.0 13 ! ! - !

9 CommonsCollections3 commons-collections-3.1 13 ! - -
10 CommonsCollections4 commons-collections4-4.0 15 ! ! - -
11 CommonsCollections5 commons-collections-3.1 8 ! ! - -
12 CommonsCollections6 commons-collections-3.1 10 ! ! - !

13 CommonsCollections7 commons-collections-3.1 9 ! ! - -
14 FileUpload1 commons-fileupload-1.3.1 3 - - - -
15 Groovy1 groovy-2.3.9 10 - - - -
16 Hibernate1 hibernate-core-4.3.11.Final 7 ! ! - -
17 Hibernate2 hibernate-core-4.3.11.Final 9 ! ! - -
18 JBossInterceptors1 jboss-interceptor-core:2.0.0.Final 5 - - - -
19 JRMPClient JDK-1.7 13 - - - -
20 JRMPListener JDK-1.7 9 - - - -
21 JSON1 json-lib:jar-jdk15:2.4 22 - - - -
22 JavassistWeld1 javassist-3.12.1.GA 5 - - - -
23 Jdk7u21 JDK-1.7 11 - - - -
24 Jython1 jython-standalone-2.5.2 5 ! ! -
25 MozillaRhino1 js-1.7R2 8 ! ! - -
26 MozillaRhino2 js-1.7R2 12 ! ! - -
27 Myfaces1 myfaces-impl-2.2.9 4 - - - -
28 Myfaces2 myfaces-impl-2.2.9 6 - - - -
29 ROME rome-1.0 15 ! ! - -
30 Spring1 spring-core:4.1.4.RELEASE 11 - - - -
31 Spring2 spring-core:4.1.4.RELEASE 12 - - - -
32 URLDNS JDK 7 ! ! - -
33 Vaadin1 vaadin-server-7.7.14 10 ! ! - -
34 Wicket1 wicket-util-6.23.0 3 - - - -

TABLE V: List of previously unknown deserialization vulner-
abilities discovered by ODDFUZZ.

No. Application Version Impact Status CVE-ID

1 WebLogic 12.2.1.4.0 RCE Patched CVE-2020-14756
2 WebLogic 12.2.1.4.0 RCE Patched CVE-2020-14825
3 WebLogic 12.2.1.4.0 RCE Patched CVE-2021-2135
4 Sonatype Nexus 3.25.0 RCE Patched CVE-2020-15871
5 Apache Dubbo 2.7.7 RCE Patched CVE-2020-11995
6 ProtoStuff 1.8.0 RCE Reported
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