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Abstract. We design and build ObliviStore, a high performance,
distributed ORAM-based cloud data store secure in the malicious
model. To the best of our knowledge, ObliviStore is the fastest
ORAM implementation known to date, and is faster by 10X or
more in comparison with the best known ORAM implementation.
ObliviStore achieves high throughput by making I/O operations
asynchronous. Asynchrony introduces security challenges, i.e., we
must prevent information leakage not only through access patterns,
but also through timing of I/O events. We propose various practical
optimizations which are key to achieving high performance, as well
as techniques for a data center to dynamically scale up a distributed
ORAM. We show that with 11 trusted machines (each with a
modern CPU), and 20 Solid State Drives, ObliviStore achieves a
throughput of 31.5MB/s with a block size of 4KB.

I. INTRODUCTION

Cloud computing provides economies of scale for im-

plementing a broad range of online services. However, due

to concerns over data privacy, “many potential cloud users

have yet to join the cloud, and many are for the most part

only putting only their less sensitive data in the cloud” [10].

It is well-known that encryption alone is not sufficient for

ensuring data privacy, since data access patterns can also

leak a considerable amount of sensitive information. For

example, Islam et. al. demonstrate that access patterns can

leak (through statistical inference) up to 80% of the search

queries made to an encrypted email repository [21].

Oblivious RAM (or ORAM for short) [9, 11, 13–16, 18,

23, 28, 29, 31, 43, 46], originally proposed by Goldreich

and Ostrovsky [14], is a cryptographic construction that

allows a client to access encrypted data residing on an

untrusted storage server, while completely hiding the access

patterns to storage. Particularly, the sequence of physical

addresses accessed is independent of the actual data that

the user is accessing. To achieve this, existing ORAM

constructions [9, 11, 13–16, 18, 23, 28, 29, 31, 43, 46]

continuously re-encrypt and and reshuffle data blocks on

the storage server, to cryptographically conceal the logical

access pattern.

Aside from storage outsourcing applications, ORAM (in

combination with trusted hardware in the cloud) has also

been proposed to protect user privacy in a broad range of

online services such as behavioral advertising, location and

map services, web search, and so on [8, 25].

While the idea of relying on trusted hardware and obliv-

ious RAM to enable access privacy in cloud services is

promising, for such an approach to become practical, a

key challenge is the practical efficiency of ORAM. ORAM

was initially proposed and studied mostly as a theoretic

concept. However, several recent works demonstrated the

potential of making ORAM practical in real-world scenar-

ios [25, 40, 46, 47].

A. Our Contributions

We design and build ObliviStore, an efficient ORAM-

based cloud data store, securing data and access patterns

against adversaries in the malicious model. To the best of our

knowledge, ObliviStore is the fastest ORAM implementation

that has ever been built.

Our evaluation suggests that in a single client/server set-

ting with 7 rotational hard disk drives (HDDs), ObliviStore

is an order of magnitude faster than the independent work

PrivateFS by Williams et. al. [47] – with parameters chosen

to best replicate their experimental setup (Section VII-E).

As solid-state drive (SSD) prices drop faster than

HDDs [30], cloud providers and data centers embrace SSD

adoption [4]. In addition to HDDs, we also evaluate Oblivi-

Store with SSDs in a distributed setting on Amazon EC2.

With 11 trusted nodes (each with a modern CPU), we

achieve a throughput of 31.5MB/s with a block size of 4KB.

Our technical contributions include the following:

Making ORAM operations asynchronous. We propose

novel techniques for making the SSS ORAM [40] asyn-

chronous and parallel. We chose the SSS ORAM since it

is one of the most bandwidth efficient ORAM constructions

known to date. Due to ORAM’s stringent security re-

quirements, making ORAM operations asynchronous poses

unique challenges. We must prevent information leakage not

only through access patterns as in traditional synchronous

ORAM, but also through the timing of I/O events. To address

this issue, we are the first to formally define the notion of

oblivious scheduling. We prove that our construction satis-

fies the oblivious scheduling requirement. Particularly, our

ORAM scheduler relies on semaphores for scheduling. To

satisfy the oblivious scheduling requirement, operations on

semaphores (e.g., incrementing, decrementing) must depend

only on information observable by an adversary who is not

aware of the data request sequence.

Distributed ORAM. Typical cloud service providers have

a distributed storage backend. We show how to adapt our

ORAM construction for a distributed setting.

Note that naive methods of partitioning and distributing

an ORAM may violate security. For example, as pointed

out in [40], even if each block is assigned to a random
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Figure 1: Architecture and deployment scenarios.

partition when written, accessing the same block twice in

a row (read after write) can leak sensitive information. Our

distributed ORAM construction applies the SSS partitioning

framework [40] twice to achieve secure partitioning of an

ORAM across multiple servers.

We also propose a novel algorithm for securely scaling

up a distributed ORAM at run-time. Our techniques allow

additions of new processors and storage to an existing

distributed ORAM without causing service interruption. As

mentioned in Section VI, naive techniques for supporting

dynamic node joins can easily break security. Non-trivial

techniques are therefore required to securely handle dynamic

node joins.

Practical optimizations. ObliviStore is designed to take

into account many practical considerations (see full ver-

sion [39]). For example, we use batch shuffling to boost the

parallelism of the construction (Section V-C). We reorder

and coalesce asynchronous I/O requests to storage to opti-

mize the number of seeks on rotational drives.). We achieve

parallelism through asynchronous operations with callbacks

(rather than using more threads) to reduce thread scheduling

contention. Read accesses have higher scheduling priority

to minimize blocking on shuffling I/O’s, and hence result

in a lower overall response time, yet we make sure that the

shuffling always keeps up with the accesses (Section V-D).

In ObliviStore, our oblivious load balancer stores about 4

bytes of metadata per data block. While the metadata size is

linear in theory, its practice size is typically comparable to or

smaller than storing O(
√
N) data blocks. For theoretic inter-

est, with suitable modifications to the scheme, it is possible

to achieve sublinear client storage by recursively outsourcing

the metadata to the untrusted storage as well [25, 35, 40].

In practice, however, the recursion depth is typically 1 to 3

(see [25, 35]) — we use a value of 1, i.e., no recursion.

II. ARCHITECTURE AND TRUST MODEL

Abstractly, all ORAM schemes assume a trusted client,

and an untrusted storage provider. In our distributed ORAM,

the trusted client consists of an oblivious load balancer and

multiple ORAM nodes – we will explain the role of each in

detail in Section VI. In practice, this means that we need

to trust the part of the software implementing the oblivious

load balancer and ORAM nodes. However, the rest of the

system need not be trusted – specifically, we do not trust the

network, the storage arrays, or the remainder of the software

stack (other than the part that implements the oblivious load

balancer and ORAM node algorithms).

ObliviStore is designed with two primary deployment

scenarios in mind (Figure 1). The 1st scenario (hybrid cloud)

is immediately deployable today, and PrivateFS [47] also

considers a similar scenario. While the 2nd scenario (trusted

hardware in the cloud) may not be immediately practical

today, we envision it as a promising direction for building

future privacy-preserving cloud services.

Hybrid cloud. One deployment scenario is corporate storage

outsourcing. Suppose a company or government agency

would like to outsource or backup its databases or file

systems to untrusted cloud storage providers. In these cases,

they may wish to separate the trusted components from the

untrusted components, and host the trusted components in

a private cloud in house, while outsourcing the untrusted

storage to remote cloud providers. For example, Zhang et.
al. [48] and others [41] describe such a hybrid cloud

scenario in their paper. With ObliviStore, the oblivious load

balancer and the ORAM nodes would reside in house, while

the storage is provided by untrusted cloud providers. This

scenario is also similar to that considered by Williams et.
al. in their PrivateFS system [47].

Trusted hardware in the cloud. We envision a sec-

ond deployment strategy as a promising direction to build

a next generation of privacy-preserving cloud services.
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ObliviAd [8] and Shroud [25] consider a similar scenario.

In various online services such as behavioral advertising

and web search, access patterns reveal a great deal of

sensitive information. For example, retrieving information

about a certain drug can reveal a users medical condition;

and retrieving information about a restaurant in New York

can reveal the user’s current location.

Several prior works [7, 8, 20, 25, 37, 43] have outlined

the vision using trusted hardware [2, 5] to establish a

“trust anchor” [34] in the cloud, which in turn relies on

Oblivious RAM to retrieve data from untrusted storage while

providing access privacy. For example, in S & P’12, Backes

et. al. [8], propose to use Oblivious RAM in combination

with trusted hardware, to ensure access privacy in online

behavioral advertising. We can rely on Trusted Platform

Modules (TPMs) [5, 26, 27] or secure co-processors [36, 38]

to establish a Trusted Computing Base (TCB) at the cloud

service provider. To achieve scalability, a distributed TCB is

needed, and can be established through techniques such as

in Excalibur [33].

In this scenario, our ORAM load balancer and ORAM

node algorithms will be implemented as part of the dis-

tributed TCB, and will be in charge of encryption and pri-

vatizing access patterns. Other than the TCB, the remainder

of the software stack on the cloud is untrusted. Existing

work has also discussed how minimize the TCB to reduce

the attack surface, and in some cases make it amenable to

formal verification [22, 24, 42].

Using TPMs and Trusted Computing, we expect the dis-

tributed ORAM performance to be similar to the evaluations

shown in this paper, since Trusted Execution imposes rela-

tively small computational overhead. Moreover, this work

shows that computation is not the bottleneck for ObliviStore

when implemented on modern processors. On the other

hand, off-the-shelf secure co-processors such as IBM 4768

may offer the additional benefit of physical security – but

they are constrained (e.g., in terms of chip I/O, computation

power, and memory) and would thus pose a bottleneck for

an ORAM implementation, as demonstrated by Lorch et.
al. [25]. However, it is conceivable that high performance

secure co-processors suitable for ORAM can be built [12].

III. PRELIMINARIES

A. Partitioning Framework

Stefanov, Shi, and Song propose a new paradigm for

constructing practical ORAM schemes [40], consisting of

two main techniques, partitioning and eviction. Through

partitioning, they divide a bigger ORAM instance into

multiple smaller ORAM instances. Let N denote the total

ORAM capacity. The ORAM server storage is divided into

O(
√
N) partitions, each with capacity O(

√
N).

At any point of time, a block resides in a random partition.

The client stores a local position map to keep track of

which partition each block resides in. To access a block

The partitioning framework [40]
// Divide the ORAM into

√
N partitions each of capacity

√
N .

Read(blockid):
• Look up position map and determine that blockid is assigned

to partition p.

• If blockid is not found in eviction caches:
– ReadPartition(p, blockid)

Else if blockid is found in local eviction caches:
– ReadPartition(p,⊥) //read dummy

• Pick a random partition p′, add the block identified by blockid
to the eviction caches, and logically assign blockid to partition
p′.

• Call Evict ν times where ν > 1 is the eviction rate.

Evict:
• Pick a random partition p.

• If a block exists in the eviction cache assigned to partition p,
write it back to partition p of the server.

• Else, write a dummy block to partition p of the server.

Figure 2: The partitioning framework [40]. The
Write(blockid, block) operation is omitted, since it is similar
to Read(blockid), except that the block written to the eviction
cache is replaced with the new block.

B, the client first looks up this position map to determine

the partition id p; then the client makes an ORAM call to

partition p and looks up block B. On fetching the block

from the server, the client logically assigns it to a freshly

chosen random partition – without writing the block to the

server immediately. Instead, this block is temporarily cached

in the client’s local eviction cache.

A background eviction process evicts blocks from the

eviction cache back to the server in an oblivious manner.

One possible eviction strategy is random eviction: with every

data access, randomly select 2 partitions for eviction. If

there exists a block in the eviction cache that is assigned

to the chosen partition, evict a real block; otherwise, evict a

dummy block to prevent information leakage.

The basic SSS ORAM algorithm is described in Figure 2.

Stefanov et. al. prove that the client’s eviction cache load

is bounded by O(
√
N) with high probability. While the

position map takes asymptotically O(N) space to store, in

real-world deployments, the position map is typically small

(e.g., less than 2.3 GB as shown in Table IV) and smaller

than or comparable to the size of the eviction cache. For

theoretic interest, it is possible to store the position map

recursively in a smaller ORAM on the server, to reduce the

client’s local storage to sub-linear – although this is rarely

necessary in practice.

B. Synchronous Amortized Shuffling Algorithm

The basic SSS construction as shown in Figure 2 employs

for each partition an ORAM scheme (referred to as the

partition ORAM) based on the original hierarchical construc-

tion by Goldreich and Ostrovsky [14], and geared towards

optimal practical performance.

Such a partition ORAM requires periodic shuffling oper-
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ations: every 2i accesses to a partition ORAM, 2i blocks

need to be reshuffled for this partition ORAM. Reshuffling

can take O(
√
N) time in the worst case, and all subsequent

data access requests are blocked waiting for the reshuffling

to complete.

Therefore, although the basic SSS construction has

O(logN) amortized cost (non-recursive version), the worst-

case cost of O(
√
N) makes it undesirable in practice. To

address this issue, Stefanov et. al. propose a technique that

spreads the shuffling work across multiple data accesses, to

avoid the poor worst-case performance.

On a high level, the idea is for the client to maintain

a shuffling job queue which keeps track of partitions that

need to be reshuffled, and the respective levels that need to

be reshuffled. A scheduler schedules O(logN) amount of

shuffling work to be performed with every data access.

Stefanov et. al. devise a method for data accesses to

nonetheless proceed while a partition is being shuffled, or

pending to be reshuffled. Suppose that the client needs to

read a block from a partition that is currently being shuffled

or pending to be shuffled. There are two cases:

Case 1. The block has been fetched from the server
earlier, and exists in one of the local data structures: the

eviction cache, the shuffling buffer, or the storage cache. In

this case, the client looks up this block locally. To prevent

information leakage, the client still needs to read a fake

block from every non-empty level in the server’s partition.

Specifically,
• For levels currently marked for shuffling, the client

prefetches a previously unread block which needs to be

read in for reshuffling (referred to as an early cache-in)

– unless all blocks in that level have been cached in.

• For levels currently not marked for shuffling, the client

requests a dummy block, referred to as a dummy cache-
in.

Case 2. The block has not been fetched earlier, and resides

in the server partition. In this case, the client reads the real

block from the level where the block resides in, and for

every other non-empty level, the client makes a fake read

(i.e., early cache-in or dummy cache-in), using the same fake

read algorithm described above.

IV. FORMAL DEFINITIONS

Traditional ORAMs assume synchronous I/O operations,

i.e., I/O operations are blocking, and a data request needs

to wait for a previous data request to end. To increase

the amount of I/O parallelism, we propose to make I/O

operations asynchrnous in ORAMs, namely, there can be

multiple outstanding I/O requests, and completion of I/O

requests are handled through callback functions.

Making ORAM operations asynchronous poses a security

challenge. Traditional synchronous ORAM requires that the

physical addresses accessed on the untrusted storage server

must be independent of the data access sequence.

In asynchronous ORAM, the security requirement is com-

plicated by the fact that the scheduling of operations is no

longer sequential or blocking. There can be many ways to

schedule these operations, resulting in variable sequences of

server-observable events (e.g., I/O requests). Not only must

the sequence of addresses accessed be independent of the

data access sequence, so must the timing of these events.

We now formally define asynchronous (distributed) Obliv-

ious RAM. For both the non-distributed and distributed

case, we first define the set of all network or disk I/O

events (including the timing of the events) observable by

an adversary. The security definition or an asynchronous

(distributed) ORAM intuitively says that the set of events
observable by the adversary should not allow the adversary
to distinguish two different data request sequences of the
same length and timing.

Asynchronous ORAM. An asynchronous ORAM consists

of a client, a server, and a network intermediary. Let seq
denote a data access sequence:

seq := [(blockid1, t1), (blockid2, t2), . . . , (blockidm, tm)]

where each blockidi denotes a logical block identifier, and

each ti denotes the time of arrival for this request. Given

any data access sequence seq, the ORAM client interacts

with the server to fetch these blocks. Let

events := [(addr1, τ1), (addr2, τ2), . . . , (addrc, τc)] (1)

denote the event sequence resulting from a data access

sequence, where each addri denotes a requested physical
address on the server storage, and τi denotes the time at

which the request is sent from the client.

We assume that the network and the storage are both under

the control of the adversary, who can introduce arbitrary

delays of its choice in packet transmissions and responses

to requests.

Distributed asynchronous ORAM. A distributed asyn-

chronous ORAM consists of multiple distributed trusted

components which can communicate with each other, and

communicate with untrusted storage servers. The adversary

is in control of the storage servers, as well as all network

communication. Although in practice, the storage servers

are typically also distributed, for the security definitions

below, we consider all untrusted storage servers as a unity

– since they are all controlled by the adversary. In this

section, we consider the abstract model of distributed asyn-

chronous ORAM, while possible real-world instantiations

are described in Section VI.

For a distributed asynchronous ORAM, We can define

the sequence of all events to be composed of 1) all I/O

requests (and their timings) between a trusted component to

the untrusted storage; and 2) all (encrypted) messages (and
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Figure 3: Overview of asynchronous ORAM algorithm. Solid
arrows: synchronous calls. Dotted arrows: asynchronous calls.

their timings) between two trusted components:

events :=

[
(addr1, τ1, κ1), (addr2, τ2, κ2), . . . , (addrc, τc, κc),
(m1, τ̃1, κ1, κ

′
1), (m2, τ̃2, κ2, κ

′
2), . . . , (md, τ̃d, κd, κ

′
d)

]
(2)

where (addri, τi, κi) denotes that trusted component κi

requests physical address addri from untrusted storage at

time τi; and (mi, τ̃i, κi, κ
′
i) denotes that trusted component

κi sends an encrypted message m to trusted component κ′i
at time τ̃i.

Similarly to the non-distributed case, we say that a dis-

tributed asynchronous ORAM is secure, if an adversary (in

control of the network and the storage) cannot distinguish

any two access sequences of the same length and timing

from the sequence of observable events.

Definition 1 (Oblivious accesses and scheduling). Let seq0
and seq1 denote two data access sequences of the same
length and with the same timing:

seq0 := [(blockid1, t1), (blockid2, t2), . . . , (blockidm, tm)] ,
seq1 :=

[
(blockid′1, t1), (blockid

′
2, t2), . . . , (blockid

′
m, tm)

]
Define the following game with an adversary who is in
control of the network and the storage server:
• The client flips a random coin b.
• Now the client runs distributed asynchronous ORAM

algorithm and plays access sequence seqb with the
adversary.

• The adversary observes the resulting event sequence and
outputs a guess b′ of b.

We say that a (distributed) asynchronous ORAM is se-
cure, if for any polynomial-time adversary, for any two
sequences seq0 and seq1 of the same length and timing,∣∣Pr[b′ = b]− 1

2

∣∣ ≤ negl(λ). where λ is a security parameter,
and negl is a negligible function. Note that the set of
events observed by the adversary in the non-distributed and
distributed case are given in Equations 1 and 2 respectively.

V. ASYNCHRONOUS ORAM CONSTRUCTION

We now describe how to make the SSS ORAM asyn-

chronous. This section focuses on the non-distributed case

first. The distributed case is described in the next section.

Table II: Data structures used in ObliviStore

Data structure Purpose
eviction cache Temporarily caches real reads before eviction.
position map Stores the address for each block, including

which partition and level each block resides
in.

storage cache Temporarily stores blocks read in from server
for shuffling, including early cache-ins and
shuffling cache-ins. Also temporarily stores
blocks after shuffling intended to be written
back to the server.

shuffling buffer Used for locally permuting data blocks for
shuffling.

partition states stores the state of each partition, including
which levels are filled, information related to
shuffling, and cryptographic keys.

A. Overview of Components and Interfaces

As shown in Figure 3, our basic asynchronous ORAM

has three major functional components, the ORAM main

algorithm, the partition reader, and the background shuffler.

ORAM main. ORAM main is the entry point to the ORAM

algorithm, and takes in asynchronous calls of the form

Read(blockid) and Write(blockid, block). Response to

these calls are passed through callback functions.

The ORAM main handler looks up the position map to de-

termine which partition the requested block resides in, calls

the partition reader to obtain the block asynchronously, and

places the block in a freshly chosen random eviction cache.

If the request is a write request, the block is overwritten

with the new data before being placed in the eviction cache.

The ORAM main handler then updates the position map

accordingly.

Partition reader. The partition reader is chiefly in

charge of reading a requested block from a chosen

partition. It takes in asynchronous calls of the form

ReadPartition(partition, blockid), where responses are

passed through callback functions.

Background shuffler. The background shuffler is in charge

of scheduling and performing the shuffling jobs. Details of

the background shuffler will be presented in Section V-E.

B. Data Structures and Data Flow

Table II summarizes the data structures in our ORAM

construction, including the eviction cache, position map,

storage cache, shuffling buffer, and partition states.

Informally, when a block is read from the server, it is

first cached by the storage cache. Then, this block is either

directly fetched into the shuffling buffer to be reshuffled; or

it is passed along through the partition reader to the ORAM

main handler, as the response to a data access request. The

ORAM main handler then adds the block to an eviction

cache, where the block will reside for a while before being

fetched into the shuffling buffer to be reshuffled. Reshuffled

blocks are then written back to the server asynchronously

(unless they are requested again before being written back).
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Table I: Types of cache-ins: when and for what purposes blocks are being read from the server.

Type of cache-in Explanation
Early cache-in [Partition reader] Early cache-in is when the client reads a block needed for shuffling over a normal data

access. Specifically, when the partition reader tries to read a block from a partition that is currently being
shuffled: if a level being shuffled does not contain the requested block, or contains the requested block but the
requested block has already been cached in earlier, the client caches in a previously unread block that needs
to be read for shuffling. The block read could be real or dummy.

Shuffling cache-in [Background shuffler] Shuffling cache-in is when a block is read in during a shuffling job.
Dummy cache-in [Partition reader] During a normal data access , if a level is currently not being shuffled, and the requested

block does not reside in this level, read the next dummy block from a pseudo-random location in this level.
Real cache-in [Partition reader] During a normal data access, if the intended block resides in a certain level, and this block

has not been cached in earlier, read the real block.

Below we explain the storage cache in more detail.

The partition states will be explained in more detail in

Section V-C. The remaining data structures in Table II have

appeared in the original SSS ORAM.

Storage cache. Blocks fetched from the server are temporar-

ily stored in the storage cache, until they are written back to

the server. The storage cache supports two asynchronous

operations, i.e., CacheIn(addr) and CacheOut(addr).
Upon a CacheIn request, the storage cache reads from the

server a block from address addr, and temporarily stores this

block till it is cached out. Upon a CacheOut request, the

storage cache writes back to the server a block at address

addr, and erases the block from the cache.

Blocks are re-encrypted before being written back to

the storage server, such that the server cannot link blocks

based on their contents. The client also attaches appropriate

authentication information to each block so it can later

verify its integrity, and prevent malicious tampering by the

untrusted storage (see full version [39]).

Additionally, the storage cache also supports

two synchronous operations, i.e., Fetch(addr) and

Store(addr, block), allowing the caller to synchronously

fetch a block that already exists in the cache, or to

synchronously store a block to the local cache.

There are 4 types of cache-ins, as described in Table I.

C. ORAM Partitions

Each partition is a smaller ORAM instance by itself. We

employ a partition ORAM based on the hierarchical con-

struction initially proposed by Goldreich and Ostrovsky [14],

and specially geared towards optimal practical performance.

Each partition consists of 1
2 logN + 1 levels, where level

i can store up to 2i real blocks, and 2i or more dummy

blocks.

For each ORAM partition, the client maintains a set of

partition states as described below.

Partition states. Each partition has the following states:
• A counter Cp. The value of Cp ∈ [0, partition capacity)

signifies the state of partition p. Specifically, let Cp :=∑
i bi ·2i denote the binary representation of the counter

Cp corresponding to partition p. This means that the state

of the partition p should be as below: 1) for every non-

zero bit bi, level i of the partition is filled on the server;

and 2) for every bit bi = 0, level i is empty.

• Job size Jp, which represents how many blocks (real or

dummy) are scheduled to be written to this partition in

the next shuffle. Jp is incremented every time a partition

p is scheduled for an eviction. Notice that the actual

eviction and the associated shuffling work may not take

place immediately after being scheduled.

• A bit bShuffle, indicating whether this partition is cur-

rently being shuffled.

• Dummy counters. Each partition also stores a dummy

block counter for each level, allowing a client to read

the next a previously unread dummy block (at a pseudo-

random address).

• Read/unread flags. For every non-empty level, we store

which blocks remain to be read for shuffling.

Batch shuffling. In the SSS ORAM algorithm [40], a new

shuffling job is created whenever a block is being written to

a partition – as shown in Figure 4 (left). The SSS algorithm

performs these shuffling jobs sequentially, one after another.

Notice that a new shuffling job can be created while the

corresponding partition is still being shuffled. Therefore, the

SSS algorithm relies on a shuffling job queue to keep track

of the list of pending shuffling jobs.

As a practical optimization, we propose a method to batch

multiple shuffling jobs together (Figure 4 – right). When

a shuffling job is being started for a partition p, let Cp

denote the current partition counter. Recall that the binary

representation of Cp determines which levels are filled for

partition p. Let Jp denote the current job size for partition

p. This means that upon completion of this shuffling, the

partition counter will be set to Cp + Jp. Furthermore, the

binary representation of Cp+Jp determines which levels are

filled after the shuffling is completed. The values of Cp and

Jp at the start of the shuffling job jointly determine which

levels need to be read and shuffled, and which levels to be

written to after the shuffling. Figure 4 (right) shows the idea

behind batch shuffling.

New blocks can get scheduled to be evicted to partition

p before its current shuffling is completed. ObliviStore does
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Figure 4: Batch shuffling – a new optimization technique for
grouping multiple shufflings into one.

not try to cancel the current shuffling of partition p to

accommodate the newly scheduled eviction. Instead, we

continue to finish the current shuffling, and effectively queue

the newly scheduled evictions for later shuffling. To do this,

at the start of each shuffling, we i) take a snapshot of the job

size: Ĵp ← Jp; and ii) set Jp ← 0. This way, we can still

use Jp to keep track of how many new blocks are scheduled

to be evicted to partition p, even before the current shuffling

is completed.

D. Satisfying Scheduling Constraints with Semaphores

Our asynchronous ORAM construction must decide how

to schedule various operations, including when to serve data

access requests, how to schedule shufflings of partitions, and

when to start shuffling jobs.

Constraints. We wish to satisfy the following constraints

when scheduling various operations of the ORAM algorithm.
• Client storage constraint. The client’s local storage

should not exceed the maximum available amount. Par-

ticularly, there should not be too many early reads,

shuffling reads, or real reads.

• Latency constraint. Data requests should be serviced

within bounded time. If too many shuffling jobs are in

progress, there may not be enough client local storage to

serve a data access request, causing it to be delayed.

Semaphores. To satisfy the aforementioned scheduling con-

straints different components rely on semaphores to coordi-

nate with each other. In our ORAM implementation, we use

four different types of semaphores, where each type indicates

the availability of a certain type of resource.
1) early cache-ins semaphore, indicating how many remain-

ing early cache-ins are allowed,

2) shuffling buffer semaphore, indicating how many more

blocks the shuffling buffer can store,

3) eviction semaphore, indicating how much data access is

allowed to stay ahead of shuffling. This semaphore is

decremented to reserve “evictions” as a resource before

serving a data access request; and is incremented upon

the eviction of a block (real or dummy) from the eviction

cache.

4) shuffling I/O semaphore, indicating how much more I/O

work the background shuffler is allowed to perform. This

semaphore defines how much the shuffler is allowed to

stay ahead of the normal data accesses, and prevents too

much shuffling work from starving the data accesses.

Among the above semaphores, the early cache-in, shuf-

fling buffer, and eviction semaphores are meant to bound the

amount of client-side storage, thereby satisfying the client
storage constraint. For early cache-ins and shuffling cache-

ins, we bound them by directly setting a limit on the cache

size, i.e., how many of them are allowed to be concurrently

in the cache. The eviction semaphore mandates how much

data accesses are allowed to stay ahead of shuffling – this

in some sense is bounding the number of real blocks in the

eviction cache. As explained later, due to security reasons,

we cannot directly set an upper bound on the eviction

cache size as in the early cache-in and shuffling buffer

semaphores. Instead, we bound the number of real blocks

indirectly by pacing the data accesses to not stay too much

ahead of shuffling work. Finally, the shuffling I/O semaphore

constrains how much shuffling I/O work can be performed

before serving the next data access request. This is intended

to bound the latency of data requests.

Preventing information leakage through semaphores.
One challenge is how to prevent information leakage through

semaphores. If not careful, the use of semaphores can

potentially leak information. For example, when reading

blocks from the server, some blocks read are dummy, and

should not take space on the client-side to store. In this

sense, it may seem that we need to decrement a semaphore

only when a real block is read from the server. However,

doing this can potentially leak information, since the value

of the semaphore influences the sequence of events, which

the server can observe.

Invariant 1 (Enforcing oblivious scheduling). To satisfy
the oblivious scheduling requirement, we require that the
values of semaphores must be independent of the data
access sequence. To achieve this, operations on semaphores,
including incrementing and decrementing, must depend only
on information observable by an outside adversary who does
not now the data request sequence.

For example, this explains why the eviction semaphore

does not directly bound the eviction cache size as the early

cache-in and shuffling buffer semaphores do – since other-

wise the storage server can potentially infer the current load

of the eviction cache, thereby leaking sensitive information.

To address this issue, we design the eviction semaphore

not to directly bound the amount of eviction cache space

available, but to pace data accesses not to stay too much

ahead of shuffling. The SSS paper theoretically proves that

if we pace the data accesses and shuffling appropriately,

the eviction cache load is bounded by O(
√
N) with high

probability.

E. Detailed Algorithms
The ORAM main, partition reader, and background shuf-

fler algorithms are detailed in Figures 5, 6, and 7 re-
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spectively. We highlighted the use of semaphores in bold.

Notice that all semaphore operations rely only on publicly

available information, but not on the data request sequence –

both directly or indirectly. This is crucial for satisfying the

oblivious scheduling requirement, and will also be crucial

for the security proof in the full version [39].

F. Security Analysis: Oblivious Scheduling

We now formally show that both the physical addresses

accessed and the sequence of events observed by the server

are independent of the data access sequence.

Theorem 1. Our asynchronous ORAM construction satisfies
the security notion described in Definition 1.

In the full version [39], we formally show that an adver-

sary can perform a perfect simulation of the scheduler with-

out knowledge of the data request sequence. Specifically,

both the timing of I/O events and the physical addresses

accessed in the simulation are indistinguishable from those

in the real world.

VI. DISTRIBUTED ORAM

One naive way to distribute an ORAM is to have a

single trusted compute node with multiple storage partitions.

However, in this case, the computation and bandwidth

available at the trusted node can become a bottleneck as

the ORAM scales up. We propose a distributed ORAM that

distributes not only distributes storage, but also computation

and bandwidth.

Our distributed ORAM consists of an oblivious load
balancer and multiple ORAM nodes. The key idea is to

apply the partitioning framework (Section III) twice. The

partitioning framework was initially proposed to reduce the

worst-case shuffling cost in ORAMs [35, 40], but we observe

that we can leverage it to securely perform load balancing

in a distributed ORAM. Specifically, each ORAM node is a

“partition” to the oblivious load balancer, which relies on the

partitioning framework to achieve load balancing amongst

multiple ORAM nodes. Each ORAM node has several stor-

age partitions, and relies on the partitioning framework again

to store data blocks in a random storage partition with every

data access. One benefit of the distributed architecture is that

multiple ORAM nodes can perform shuffling in parallel.

A. Detailed Distributed ORAM Construction

To access a block, the oblivious load balancer first looks

up its position map, and determines which ORAM node is

responsible for this block. The load balancer than passes the

request to this corresponding ORAM node. Each ORAM

node implements a smaller ORAM consisting of multiple

storage partitions. Upon obtaining the requested block, the

ORAM node passes the result back to the oblivious load bal-

ancer. The oblivious load balancer now temporarily places

the block in its eviction caches. With every data access, the

oblivious load balancer chooses ν random ORAM nodes and

evicts one block (possibly real or dummy) to each of them,

through an ORAM write operation.

Each ORAM node also implements the shuffling function-

alities as described in Section V. In particular, the ORAM

nodes can be regarded as a parallel processors capable

of performing reshuffling in parallel. The oblivious load

balancer need not implement any shuffling functionalities,

since it does not directly manage storage partitions. Hence,

even though the load balancer is a central point, its function-

ality is very light-weight in comparison with ORAM nodes

which are in charge of performing actual cryptographic and

shuffling work.

Notice that each ORAM node may not be assigned an

equal amount of storage capacity. In this case, the probability

of accessing or evicting to an ORAM node is proportional to

the amount of its storage capacity. For ease of explanation,

we assume that each storage partition is of equal size,

and that each ORAM node may have different number of

partitions – although in reality, we can also support partitions

of uneven sizes in a similar fashion.

Theorem 2. Our distributed asynchronous ORAM construc-
tion satisfies the security notion described in Definition 1.

Proof: (sketch.) Similar to that of Theorem 1. Both the

oblivious load balancer and the ORAM node algorithms are

perfectly simulatable by the adversary, without having to

observe the physical addresses accessed. The detailed proof

is in the full version [39].

B. Dynamic Scaling Up

Adding compute nodes. When a new ORAM node proces-

sor is being added to the system (without additional storage),

the new ORAM node processor registers itself with the load

balancer. The load balancer now requests existing ORAM

nodes to hand over some of their existing their partitions

to be handled by the new processor. To do this, the ORAM

nodes also need to hand over part of their local metadata

to the new processor, including part of the position maps,

eviction caches, and partition states. The load balancer also

needs to update its local metadata accordingly to reflect the

fact that the new processor is now handling the reassigned

partitions.

Adding compute nodes and storage. The more difficult

case is when both new processor and storage are being added

to the system. One naive idea is for the ORAM system

to immediately start using the new storage as one or more

additional partitions, and allow evictions to go to the new

partitions with some probability. However, doing so would

result in information leakage. Particularly, when the client is

reading the new partition for data, it is likely reading a block

that has been recently accessed and evicted to this partition.

We propose a new algorithm for handling addition of

new ORAM nodes, including processor and storage. When a

new ORAM node joins, the oblivious load balancer and the
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ORAM main loop:
• Decrement the early cache-in semaphore by the number of levels. // Reserve space for early cache-ins.
• Decrement the eviction semaphore by eviction rate. // Evictions must be performed later to release the ”eviction resource”.
• Fetch the next data access request for blockid, look up the position map to determine that blockid is assigned to partition p.

• Call ReadPartition(p, blockid).
• On callback:

– Store the block to the eviction cache (overwrite block if this is an ORAM write request).

– Let ν denote the eviction rate. Choose ν partitions at random for eviction, by incrementing their respective job sizes: Jp ← Jp+1
// If ν is a floating number, choose at least ν partitions on average.

Figure 5: ORAM main algorithm.

ReadPartition(p∗, blockid):
1) Looks up the position map to determine the level �∗ where blockid resides. If the requested block is a dummy or blockid is not

found in partition p∗, then set �∗ ← ⊥.

2) For each level in partition p∗ that satisfies one of the following conditions: increment early cache-in semaphore by 1:
• the level is empty;

• the level is not marked for shuffling; or

• the level is marked for shuffling but all blocks have been cached in.

3) For each filled level � in partition p∗:
• If � = �∗, ReadReal(�, blockid). Else, ReadFake(�).

ReadReal(�, blockid):
• If blockid has been cached in:

– Call ReadFake(�)
– On completion of the fake (i.e., dummy or early) cache-in: return contents

of blockid through callback. /* To prevent timing channel leakage, must
wait for fake cache-in to complete before returning the block to ORAM
main. */

• Else:
– Cache in block blockid from server.

– On completion of cache-in, return contents of blockid through callback.

ReadFake(�):
• If level � is not being shuffled:

– Get address addr of next random dummy
block.

– Cache in the dummy block at addr.

• If level � is being shuffled, and level � has unread
blocks,
– Perform an early cache-in.

• Else return with ⊥.

Figure 6: Partition reader algorithm.

new ORAM node jointly build up new storage partitions. At

any point of time, only one storage partition is being built.

Building up a new storage partition involves:

• Random block migration phase. The load balancer

selects random blocks from existing partitions, and

migrates them to the new partition. The new partition

being built is first cached in the load balancer’s local

trusted memory, and it will be sequentially written out

to disk when it is ready. This requires about O(
√

N/D)
amount of local memory, where N is the total storage

capacity, and D is the number of ORAM nodes.

During the block migration phase, if a requested block

resides within the new partition, the load balancer

fetches the block locally, and issues a dummy read

to a random existing partition (by contacting the cor-

responding ORAM node). Blocks are only evicted to

existing partitions until the new partition is fully ready.

• Marking partition as ready. At some point, enough

blocks would have been migrated to the new partition.

Now the load balances sequentially writes the new

partition out to disk, and marks this partition as ready.

• Expanding the address space. The above two steps mi-

grate existing blocks to the newly introduced partition,

but do not expand the capacity of the ORAM. We need

to perform an extra step to expand ORAM’s address

space.

Similarly, the challenge is how to do this securely.

Suppose the old address space is [1, N ], and the new

address space after adding a partition is [1, N ′], where

N ′ > N . One naive idea is to randomly add each block

in the delta address space [N + 1, N ′] to a random

partition. However, if the above is not an atomic opera-

tion, and added blocks become immediately accessible,

this can create an information leakage. For example,

after the first block from address space [N + 1, N ′]
has been added, at this time, if a data access request

wishes to fetch the block added, it would definitely visit

the partition where the block was added. To address

this issue, our algorithm first assigns each block from

address space [N + 1, N ′] to a random partition –

however, at this point, these blocks are not accessible

yet. Once all blocks from address space [N + 1, N ′]
have been assigned, the load balancer notifiers all

ORAM nodes, and at this point, these additional blocks

become fully accessible.

Initially, a new ORAM node will have 0 active partitions.

Then, as new storage partitions get built, its number of active

partitions gradually increases. Suppose that at some point
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Background shuffler loop:
1) Start shuffling.

• Find a partition p whose bShuffle indicator is 0 and job size Jp > 0. Start the shuffling of partition p.

• Set bShuffle← 1 for partition p. // Each partition can only have one active shuffling job at a time.
• Mark levels for shuffling.

• Take a snapshot of the partition job size ̂Jp ← Jp.

2) Cache-in and reserve space.
• For each unread block B in each level marked for shuffling:

– Decrement: 1) shuffling buffer semaphore, and 2) shuffling I/O semaphore;
– Issue a CacheIn request for B.

• Let r denote the number of reserved slots in shuffling buffer so far. Let w denote the number of cache-outs that will be performed
after this partition is shuffled. Note that r ≤ w.
Decrement the shuffling buffer semaphore by w − r.
// Reserve space in shuffling buffer for early cache-ins, unevicted blocks, and dummy blocks.

3) Upon completion of all cache-ins, perform atomic shuffle.
/* Since computation is much cheaper than bandwidth or latency, we assume that the local shuffle is done atomically. */
• Fetch.

– Fetch from the storage cache all cached-in blocks for levels marked for shuffling. For each cache-in fetched that is an early
cache-in, increment the early cache-in semaphore.
// These early cache-ins are now accounted for by the shuffling buffer semaphore.

– Let ̂Jp denote the job size at the start of this shuffling. Fetch ̂Jp blocks from the eviction cache corresponding to the

partition. Increment eviction cache semaphore by ̂Jp.

/* If fewer than ̂Jp blocks for this partition exists in the eviction cache, the eviction cache returns dummy blocks to pad.
These unevicted cache blocks are now accounted for by the shuffling buffer semaphore. */

• Shuffle.
– Add dummies to the shuffling buffer to pad its size to w.

– Permute the shuffling buffer.

• Store.
– Store shuffled blocks into storage cache: for each level �, store exactly 2 · 2� blocks from the shuffling buffer (at least half

of which are dummy). Mark destination levels as filled.

• Unmark levels for shuffling. Set partition counter Cp ← (Cp + ̂Jp) mod partition capacity. Clear bShuffle← 0.

4) Cache-out.
• For each block B to be cached out:

– Decrement the shuffling I/O semaphore.
– Issue a CacheOut call for block B.

• On each cache-out completion: increment the shuffling buffer semaphore.

Figure 7: Background shuffler algorithm.

of time, each existing ORAM node has c1, c2, . . . , cm−1

partitions respectively, and the newly joined ORAM node

has cm active partitions, while one more partition is being

built. Suppose all partitions are of equal capacity, then the

probability of evicting to each active partition should be

equal. In other words, the probability of evicting to the i’th
ORAM node (where i ∈ [m]) is proportional to ci.

The remaining question is when to stop the migration

and mark the new partition as active. This can be done

as follows. Before starting to build a new partition, the

oblivious load balancer samples a random integer from the

binomial distribution k
$← B(N, ρ), where N is the total

capacity of the ORAM, and ρ = 1
P+1 , where P denotes

the total number of active partitions across all ORAM

nodes. The goal is now to migrate k blocks to the new

partition before marking it as active. However, during the

block migration phase, blocks can be fetched from the new

partition but not evicted back to it. These blocks fetched

from the new partition during normal data accesses are

discounted from the total number of blocks migrated.

The full node join algorithm in the full version [39].

VII. EXPERIMENTAL RESULTS

We implemented ObliviStore in C#. The code base has a

total of∼ 9000 lines of code measured with SLOCCount [3].

Eliminating effects of caching. We eliminate OS-level

caching so that our experiments represent worst-case sce-

narios. Our implementation uses kernel APIs that directly

access data on the physical disks and we explicitly disable

OS-level caching for both disk reads and writes.

Warming up ORAMs. In all experiments, we warm up the

ORAMs first before taking measurements. Warming up is

achieved by always first initializing ObliviStore into a state

that it would be after O(N) accesses.

A. Single Client-Server Setting

1) Results with Rotational Hard Disk Drives: We ran

experiments with a single ORAM node with an i7-930 2.8
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Ghz CPU and 7 rotational WD1001FALS 1TB 7200 RPM

HDDs with 12 ms random I/O latency [1]. To be comparable

to PrivateFS, our experiments are performed over a network

link simulated to have 50ms latency (by delaying requests

and responses). We also choose the same block size, i.e.,

4KB, as PrivateFS.

Throughput and response time. Figure 8 shows the

throughput of our ORAM against the ORAM capacity. For
a 1TB ORAM, our throughput is about 364KB/s. Figure 9

plots the response time for data requests with various ORAM

capacities. For a 1TB ORAM, our response time is about
196ms. We stress that the response time is measured under

maximum load – therefore, the response time accounts

for both the online data retrieval and the offline shuffling

overhead.

In both Figures 8 and 9, we also marked data points

for PrivateFS and PD-ORAM for comparison. For a 1 TB

ORAM, ObliviStore has about 18 times higher throughput

than PrivateFS. Note that we set up this experiment and

parameters to best replicate the exact setup used in the

PrivateFS and PD-ORAM experiments [47].

Small number of seeks. Our optimizations for reducing

disks seeks (see full version [39]) help greatly in achieving

(relatively) high performance. Figure 16 plots the average

number of seeks per ORAM operation. At 1TB to 10TB

ORAM capacities, ObliviStore requires under 10 seeks per

ORAM operation on average.

Effect of network latency. In Figures 10 and 14, we

measure the throughput and latency of a 1 TB ObliviS-

tore ORAM under different network latencies. The results

suggest that for rotational hard drives, the throughput of

ObliviStore is almost unaffected until about 1 second of

network latency. To obtain higher throughput beyond 1s

network latency, we can increase the level of parallelism

in our implementation, i.e., allowing more concurrent I/Os

– but this will lead to higher response time due to increased

queuing and I/O contention.

The response time of ObliviStore (single node with 7

HDDS) is consistently 140ms to 200ms plus the round-trip

network latency. The additional 140ms to 200ms is due to

disk seeks, request queuing, and I/O contention.

2) Results with Solid State Drives: Even though our

implementation makes a lot of progresses in reducing disk

seeks, there are still about 4 to 10 seeks per ORAM operation

on average (Figure 16). Solid state drives (SSDs) are known

to perform much better with seek intensive workloads, but

are also currently more expensive per GB of storage than

HDDs. To compare HDD and SSD storage, we repeated the

experiments of Section VII-A with 2 x 1TB solid state drives

on Amazon EC2 using a hi1.4xlarge VM instance.

The results are shown in Figures 11, 12, and 13. In

comparison, the throughput of ObliviStore with 2 SSDs of

storage is about 6 to 8 times faster than with 7 HDD. For

a typical 50ms network link, the response time with SSD

storage is about half of that with HDD storage.

HDDs or SSDs? Our experiments suggest that roughly 21 to

28 HDDs can achieve the same throughput as a single SSD.

Since the SSDs used in the experiment are about 20 times

more expensive than the HDDs, for a fixed throughput, SSDs

are slightly cheaper than HDDs. On the other hand, HDDs

are about 20 times cheaper per unit of capacity. Under a

typical 50ms network latency, SSDs halve the response time

in comparison with HDDs.

B. Distributed Setting

We measure the scalability of ObliviStore in a distributed

setting. We consider a deployment scenario with a dis-

tributed TCB in the cloud. We assume that the TCB is

established through techniques such as Trusted Computing,

and that the TCB is running on a modern processor. How

to implement code attestation to establish such a distributed

TCB has been addressed in orthogonal work [26, 27, 32, 33],

and is not a focus of this evaluation.

For the distributed SSD experiments, each ORAM node

was a hi1.4xlarge Amazon EC instance with 2x1TB SSDs

of storage directly attached, and the load balancer ran on

a cc1.4xlarge instance. Although our instances have 60GB

of provisioned RAM, our implementation used far less

(under 3 GB per ORAM node, and under 3.5 GB for the

load balancer). The load balancer and the ORAM nodes

communicate through EC2’s internal network (under 5ms

network latency).

Figure 15 suggests that the throughput of ObliviStore

scales up linearly with the number of ORAM nodes, as

long as we do not saturate the network. The total bandwidth

overhead between the oblivious load balancer and all ORAM

nodes is 2X, and we never saturated the network in all

our experiments. For example, with 10 ORAM nodes and

4KB block size, the ORAM throughput is about 31.5 MB/s,

and the total bandwidth between the load balancer and

all ORAM nodes is about 63 MB/s. We also measured

that ObliviStore’s response time in the distributed setting is

about 60ms for 4KB blocks and is mostly unaffected by the

number of nodes (detailed results in the full version [39]).

The throughput of ObliviStore using HDD storage (also

tested on Amazon EC2) similarly scales linearly with the

number of nodes. Please refer to full version [39] for the

concrete results.

C. I/O Bottleneck Analysis

I/O overhead. ObliviStore incurs about 40X-50X I/O over-

head under parameters used in our experiments, i.e., to

access one data block, on average 40-50 data blocks need

to be accessed. Though this seems high, under the amount

of ORAM capacity and private memory considered in this

paper, the SSS scheme (what we implement) seems to

achieve the lowest I/O overhead (absolute value instead of
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Figure 8: ObliviStore throughput with 7
HDDs. Experiment is performed on a single
ORAM node with the following parameters:
50ms network latency between the ORAM
node and the storage, 12ms average disk
seek latency, and 4KB block size.

Figure 9: ObliviStore response time with
7HDDs. Experiment is performed on a sin-
gle ORAM node with the following param-
eters: 50ms network latency between the
ORAM node and the storage, 12ms average
disk seek latency, and 4KB block size.

Figure 10: Effect of network latency on
throughput with 7HDDs. Experiment is
performed on a single ORAM node with 7
HDDs, 12ms average disk seek latency, and
4KB block size.

Figure 11: ORAM throughput v.s. vari-
ous ORAM capacities with 2SSDs. The
experiments are performed in a single client,
single server setting with a simulated 50ms
network link, and 2 SSDs attached to the
server. Block size is 4KB.

Figure 12: ORAM response time v.s. var-
ious ORAM capacities with 2SSDs. The
experiments are performed in a single client,
single server setting with a simulated 50ms
network link, and 2 SSDs attached to the
server. Block size is 4KB.

Figure 13: Effect of network latency on
throughput with 2 SSDs. Experiment is
performed on a single ORAM node with 2
SSDs and 4KB block size.

Figure 14: Effect of network latency on
response time. Experiment is performed on
a single ORAM node with 7 HDDs (12ms
average seek latency), and again with 2
SSDs. Block size = 4KB. The ideal line
represents the roundtrip network latency.

Figure 15: Scalability of ObliviStore in
a distributed setting. 1 oblivious load
balancer, 2 SDDs attached to each ORAM
node. Throughput is the aggregate ORAM
throughput at the load balancer which dis-
tributes the load across all ORAM nodes.

Figure 16: Average number of seeks
of ObliviStore per ORAM operation.
Includes all I/O to storage (reads and
writes/shuffles). Experiment is performed on
a single ORAM node with 4KB block size.

asymptotics) among all known ORAM schemes. Therefore,

this is essentially the cost necessary to achieve the strong

security of ORAM.

In comparison, PrivateFS should have higher I/O overhead

– our I/O overhead is O(logN) with a constant under

2, while theirs is O((logN)(log logN)2) [6]. This means

that when network bandwidth is the bottleneck, PrivateFS

achieves lower ORAM throughput than ObliviStore.

In our open source release, we will also implement the

matrix compression optimization technique [40], which will

further reduce the I/O overhead by a factor of 2.

Bottleneck analysis for various deployment scenarios.
The I/O overhead means that for every 1MB/s ORAM

throughput, we require about 40MB/s - 50MB/s throughput
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on 1) AES computation, 2) total disk I/O bandwidth, and 3)

total network bandwidth between ORAM nodes and disks.

Depending on the deployment scenario, one of the above

three factors will hit bottleneck, which will become the main

constraint on the ORAM throughput.

For the hybrid cloud setting, our experiments show that

the network bandwidth between the private and public

cloud is likely to be the bottleneck. For example, assuming

a 1Gbps link between the private and public cloud, the

network will become a bottleneck with a single ORAM node

with 2 SSD drives – at the point of saturation, we would

achieve roughly 25Mbps (or 3MB/s) ORAM throughput.

For the trusted hardware in the cloud scenario, assume

that SSD drives are directly attached to ORAM nodes, and

that the distributed TCB is running on modern processors

(e.g., using Trusted Computing to establish a distributed

TCB in the cloud)1. In this case, the bottleneck is likely

to be disk I/O, since the total amount of data transferred

between the oblivious load balancer and the ORAM nodes is

relatively small, whereas the provisioned network bandwidth

between them is large. Specifically, under our setup where

each ORAM node has 2SSDs directly attached, suppose the

network bandwidth is Zbps shared amongst the oblivious

load balancer and all ORAM nodes, we can support roughly

20Z ORAM nodes before the network starts to be saturated.

The total ORAM throughput should be 3.2yMB/s, where

y < 20Z is the total number of ORAM nodes.

Our experiments suggest that computation is not the

bottleneck when ORAM client algorithms (including the

oblivious load balancer and the ORAM node algorithms)

are run on a modern processor.

D. Applications

Oblivious file system. Using NBD (short for Network Block

Device), we mounted the EXT4 File System on top of

our ORAM (a single host with a single SSD). On top of

this oblivious file system, we achieved average read/write

throughput of roughly 4MB/s. For metadata operations, it

took 2.1− 3.5 seconds to to create and delete 10,000 files.

How to hide the number of accesses (e.g., depth of directory)

is our future work.

E. Comparison with Related Work

The most comparable work is PrivateFS (PD-ORAM) by

Williams et. al. [47]. Other than ObliviStore, PrivateFS is

the most efficient ORAM implementation known-to-date.

PrivateFS also propose a novel algorithm for multiple clients

to share the same ORAM, while communicating amongst

each other using a log on the server side.

Lorch et. al. also implement ORAM in a distributed data

center setting [25]. They are the first to actually implement

1For off-the-shelf secure co-processors such as IBM 4768, chip I/O and
computation will be the main bottlenecks, as demonstrated by Lorch et.
al. [25]. See Section VII-E for more details).

ORAM on off-the-shelf secure co-processors such as SLE 88

and IBM 4768, and therefore can achieve physical security

which off-the-shelf trusted computing technologies (e.g,

Intel TXT and AMD SVM) do not provide. On the other

hand, their implementation is constrained by the chip I/O,

computational power, and memory available in these secure

co-processors. Lorch et. al. performed small-scale exper-

iments with a handful of co-processors, and projected the

performance of their distributed ORAM through theoretic

calculations. Their work suggests that for ORAM to become

practical in large-scale data centers, we need more powerful

processors as part of the TCB. One way is to rely on Trusted

Computing – although this does not offer physical security, it

reduces attack surface by minimizing TCB such that formal

verification may be possible. It is also conceivable that more

powerful secure co-processors will be manufactured in the

future [12]. Iliev and Smith also implemented an ORAM

algorithm to create a tiny TCB [19] with secure hardware.

Table IV compares our work against related works. As

mentioned earlier, since the work by Shroud [25] is less com-

parable, below we focus on comparing with PrivateFS [47].

The table suggests that on a single node with 7HDDs and

under the various parameters used in the experiments, 1)

ObliviStore achieves an order of magnitude higher through-

put than PrivateFS; and 2) ObliviStore lowers the response

time by 5X or more. Although we do not have access

to their implementation, we conjecture that the speedup

is partly due to the reduced number of disk seeks in our

implementation (Figure 16, Section VII). Disk seeks are

the main bottleneck with HDDs as the storage medium,

since ORAM introduces a considerable amount of random

disk accesses. While both schemes have O(logN) seeks in

theory [6], ObliviStore is specifically optimized to reduce

the number of seeks in practice. It is also likely that our im-

plementation benefits from a finer granularity of parallelism,

since we rely on asynchronous I/O calls and build our own

optimized event scheduler. In comparison, PrivateFS uses

multiple synchronous threads to achieve parallelism. Below

are some additional remarks about the comparison between

ObliviStore and PrivateFS:

• For ObliviStore, all HDD experiments consume under 30

MB/s (i.e., 240Mbps) network bandwidth (in many cases

much less) – hence we never saturate a 1Gbps network

link.

• For our HDD experiments, we had several personal

communications [6] with the authors of PrivateFS to

best replicate their experimental setup. Our disks have

similar performance benchmarking numbers as theirs

(approximately 12ms average seek time). We have also

chosen our network latency to be 50ms to replicate their

network characteristics. Both PrivateFS (PD-ORAM) and

ObliviStore run on similar modern CPUs. Our experi-
ments show that CPU is not the bottleneck – but disk I/O
is. The minor difference in the CPU is not crucial to the
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Scheme Processors Deployment
scenario

Methodology Bottleneck

Shroud [25] secure co-processors Trusted hard-
ware in cloud

experiments and the-
oretic projection

chip I/O, computation power, and
memory of secure co-processors

PrivateFS (PD-ORAM) [47] modern CPUs hybrid cloud experiments Disk I/O or Network I/O
ObliviStore modern CPUs both experiments Disk I/O or Network I/O

Table III: Comparison of experimental setup.

Scheme
Experimental setup Results

block size ORAM capacity processors private RAM consumed response time throughput

Secure co-processors (IBM 4764), distributed setting
Shroud [25] 10 KB 320 TB 10,000* 300 GB 360 ms 28 KB/s

7 HDDs, 50ms network latency to storage, 12ms disk seek latency, single modern processor (client-side)

PrivateFS‡ [6, 47] 4 KB 100MB 1 < 2 GB † >1s†
110 KB/s†

(peak performance [6])

PD-ORAM‡ [47] 10 KB
13 GB 1

< 2 GB† >1s 15 KB/s
ObliviStore 4 KB 0.46 GB 191 ms 757 KB/s

PrivateFS‡ [6, 47] 4 KB
1 TB 1

< 2 GB† >1s 20 KB/s†

ObliviStore 4 KB 2.3 GB 196 ms 364 KB/s

Distributed setting, 20 SSDs, 11 modern processors
1 oblivious load balancer + 10 ORAM nodes (each with 2SSDs directly attached)

ObliviStore 4 KB 3 TB 11 36 GB 66 ms 31.5 MB/s
ObliviStore 16 KB 3 TB 11 33 GB 276 ms 43.4 MB/s

Table IV: Comparison with related work.
Throughput means average total throughput measured after warming up the ORAM (i.e., the ORAM is in a state that it would be after

O(N) accesses, where N is the ORAM capacity), unless otherwise indicated.

†: These numbers obtained through personal communication [6] with the authors of PrivateFS [47]. PrivateFS reports the amount of private

memory provisioned (instead of consumed) to be 2GB.

‡: Based on personal communication with the authors, the PrivateFS paper has two sets of experiments: PD-ORAM experiments and

PrivateFS experiments. Based on our understanding: i) PD-ORAM seems to be an older version of PrivateFS; and ii) the experimental

methodology for these two sets of experiments are different.

*: Based on a combination of experimentation and theoretic projection. Due to the constrained I/O bandwidth and computational power

of IBM 4768 secure co-processors, unlike PrivateFS and ObliviStore, Shroud [25] is mainly constrained by the chip I/O, computational

power, and memory available on these off-the-shelf secure co-processors.

performance numbers for ObliviStore.
• PrivateFS also experimented with faster disks, i.e., six

0.4TB 15K RPM SCSI (hardware RAID0) disks. They

report a 2X speedup with these faster HDDs due to the

superior seek time on these drives. We were not able to

obtain the same disks for our experiments, but since disk

seek is our main bottleneck with the HDD experiments,

we expect to see a similar speedup with these faster disks.

VIII. RELATED WORK

Oblivious RAM: theory. Oblivious RAM was first pro-

posed by Goldreich and Ostrovsky [14]. They propose a

seminal hierarchical construction with O((logN)3) amor-

tized cost, where N denotes the storage capacity of the

ORAM. This means that to access a block, a client needs

to access O((logN)3) blocks on average to mask from the

server the true block of intent. Since then, a line of research

has been dedicated to ORAM [9, 11, 13–16, 18, 23, 28,

29, 31, 43, 44, 46], most of which build on top of and

improve the original hierarchical construction by Goldreich

and Ostrovsky [14]. Recently, researchers have proposed a

new paradigm for constructing ORAM [35, 40]. By relying

on secure partitioning, this new paradigm breaks an ORAM

into smaller instances, therefore reducing data shuffling (i.e.,

oblivious sorting) overhead [40] or completely eliminating

oblivious sorting [35]. Constant round-trip ORAMs have

been studied in seminal works by Goodrich et. al. [17] and

Williams et. al. [45].

Oblivious RAM: bridging theory and practice. Willams,

Sion et. al. have been pioneers in bridging the theory and

practice of ORAM [43, 46, 47]. Goodrich, Mitzenmacher,

Ohrimenko, Tamassia et. al. [17, 18] have also made sig-

nificant contributions to bridging the theory and practice of

ORAM.

Backes et. al. [8] use a combination of the binary-

tree ORAM [35] and trusted hardware to build privacy-

preserving behavioral advertising applications. They demon-

strated a request latency of 4 to 5 seconds under rea-
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sonable parametrization. However, their implementation is

synchronous and all operations are blocking and sequen-

tialized. Backes et. al. reported only latency results, but

no throughput results. Their request latency can be broken

down into an online latency of 750ms for fetching data from

ORAM, and an offline latency of ∼ 4s for data shuffling.

The most closely related works are the independent works

by Williams et. al. [47] (i.e., PrivateFS and PD-ORAM) and

Lorch et. al. [25]. We refer the readers to Section VII-E for

a detailed comparison of these works and ours.
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