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Abstract—Context-based pairing solutions increase the usabil-
ity of IoT device pairing by eliminating any human involvement
in the pairing process. This is possible by utilizing on-board
sensors (with same sensing modalities) to capture a common
physical context (e.g., ambient sound via each device’s micro-
phone). However, in a smart home scenario, it is impractical to
assume that all devices will share a common sensing modality.
For example, a motion detector is only equipped with an
infrared sensor while Amazon Echo only has microphones. In
this paper, we develop a new context-based pairing mechanism
called Perceptio that uses time as the common factor across
differing sensor types. By focusing on the event timing, rather
than the specific event sensor data, Perceptio creates event
fingerprints that can be matched across a variety of IoT
devices. We propose Perceptio based on the idea that devices
co-located within a physically secure boundary (e.g., single
family house) can observe more events in common over time,
as opposed to devices outside. Devices make use of the observed
contextual information to provide entropy for Perceptio’s pairing
protocol. We design and implement Perceptio, and evaluate its
effectiveness as an autonomous secure pairing solution. Our
implementation demonstrates the ability to sufficiently distin-
guish between legitimate devices (placed within the boundary)
and attacker devices (placed outside) by imposing a threshold
on fingerprint similarity. Perceptio demonstrates an average
fingerprint similarity of 94.9% between legitimate devices while
even a hypothetical impossibly well-performing attacker yields
only 68.9% between itself and a valid device.

I. INTRODUCTION

While Internet-of-Things (IoT) devices provide significant

value to smart home operations, the data they create often

contains privacy-sensitive information about user activities

within the home [74], [49], [31], [52], [33]. Securing the

wireless communication among IoT devices is thus a critical

capability for any home IoT deployment. In particular, newly

deployed IoT devices must be able to securely pair with exist-

ing devices through cryptographic key establishment in a way

that protects against man-in-the-middle (MitM) and protocol

manipulation attacks [38], [29], [6], [48], [25], [71], [43].

Such protections unfortunately require users to be involved

in the protocol (e.g., to type in a password), and such human-
in-the-loop solutions are not feasible for many IoT systems.

The first reason is that the number of IoT devices in a home

is projected to increase from around ten to several hundred

within the next decade [15], [53], increasing the complexity

and burden to the homeowner. Second, most emerging IoT

devices do not have a user interface, so direct password

entry or management is challenging or impossible [40].

While it is possible to equip IoT devices with pre-loaded

keys, user interfaces, or dedicated pairing hardware (e.g.,

NFC), such approaches would overburden manufacturers,

limit interoperability, and slow IoT innovation.

Efforts to reduce or remove human involvement from

the secure pairing process has brought the emergence of

context-based pairing. This allows devices to rely on on-

board sensors to extract entropy from the surrounding en-

vironment, using the principle that co-present devices will

observe similar events. The common sensor measurements

can be translated to common randomness, forming the basis

of a symmetric key agreement protocol [51], [32], [65].

Intuitively, the unpredictability of the activities in the envi-

ronment provides the entropy source and eliminates the need

for a human participant.

While promising first steps have been taken toward devel-

oping usable and secure IoT device pairing, existing solutions

rely on a common, properly calibrated sensing capability

across all devices (e.g., a microphone or light sensor on each

device). However, in reality, a wide diversity of hardware

capabilities will be present in a smart home, so a usable

pairing protocol must consider this device heterogeneity. We

are particularly inspired by emerging IoT products that have

a small number of embedded sensors (often only one) to opti-

mize cost, power consumption, and form factor (e.g., motion

detector with a single infrared sensor [11] or peel-and-stick

sensors [60]). One of the major challenges in this hetero-

geneous device landscape is that the sensor measurements

from different IoT devices will not be directly comparable.

Aside from different sensing modalities, manufacturers may

use different chipsets or calibration methods, so even sensors

of the same type may measure an event in a different way.

Heterogeneous sensor-based pairing protocols must therefore

rely on a suitable invariant property that can be measured by

devices with a wide variety of configurations.

Toward such goals, we need to gain a stronger un-

derstanding of the contextual content of sensory data as

observed from different IoT devices. To do this, we can

gain some insight from analogous human behavior through

the following scenario. Suppose that one person with a

hearing impairment and another with a visual impairment

are both in a room. When the door to the room closes, both

people can observe the event at the same time, but using

different senses; the hearing impaired person can see the

door closing, while the visually impaired person can hear
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Fig. 1: We demonstrate how different types of sensors are

capable of measuring aspects of the same events.

the door closing. Because of the timing, both people could

share their observations and determine they had witnessed

the same event. This analogy can be further extended to

include events that humans perceive in multiple ways. For

example, we perceive rainfall through hearing, feeling, and

seeing raindrops [8]. By applying this analogy to the IoT

device space, we can similarly leverage timing information

as an invariant property among heterogeneous devices. We

thus develop our approach using a principle we refer to as

“numerically different yet contextually similar” observation

of events, exploiting commonly observed timing information.

In the IoT device regime, we provide a more detailed example

to demonstrate the ability for disparate sensing devices to

measure common events. In this scenario, Bob knocks on

his roommate Dan’s door to invite him for coffee in the

living room. Dan opens his bedroom door and walks into

the living room, and Bob then makes two cups of coffee.

After enjoying their coffee together, Dan goes back into his

bedroom and closes the door. Suppose now that Bob and Dan

have deployed IoT devices with a geophone and microphone
and that the coffee machine is connected to a power meter.

In this case, the corresponding sensor readings from these

devices capture the events, as depicted in Figure 1. The

different types of sensors are capable of perceiving some

events in common. In particular, the geophone and the mi-

crophone both capture the knocks and door opening/closing

events, while the microphone and power meter both capture

the activity of the coffee machine.

In a more general scenario, sensing devices can detect

relevant events, group them by event type (e.g., using un-

supervised clustering), measure the time interval between

subsequent occurrence of each event type, and map the time

interval measurements to a collection of fingerprints. These

fingerprints can then be incorporated into a verification algo-

rithm to prove co-presence and contribute to the generation

of a shared symmetric key. Different fingerprints can be

incorporated to verification with other devices, depending on

the sensing capabilities of each device.

While our use of inter-event timing removes some useful

signal content, this comes in trade for support of many critical

aspects of practical fingerprint verification that may not be

possible using more descriptive signals. Most importantly,
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Fig. 2: A physical boundary (house) provides a perceptual

separation between user’s devices inside vs. other devices

outside, enabling context-based pairing via observations of

random events within the house.

elimination of numerical signal features introduces a high

degree of tolerance that addresses (1) differing hardware

or sensor calibration methods, (2) signal attenuation due

to variations in proximity between sensors and events, and

(3) measurements from different sensor types. In addition,

the use of time intervals eliminates the need for tight time

synchronization across devices. Moreover, the devices do not

need to recognize the events themselves to measure timing,

but simply (as discussed later) group events by clusters using

unsupervised learning.

Another key insight contributing to our approach is the

idea that IoT devices deployed in a common environment

are intended to collaborate as part of the same smart home

system. Hence, there is an implicit human-driven intent for

the devices to pair with each other as long as they can

determine that they are deployed in the same environment. In

the context of a single-family home, comprising the majority

of housing units in the U.S [46], the building structure and

composition provide a barrier for many types of activities

that would be observed by sensors, including but not limited

to vibration, sound, light, or electrical load. Through the

combination of this physical sensing barrier and the typical

physical security of a single-family home, the secure pairing
problem reduces to verifying co-presence within the home.

Our approach to verifying device co-presence leverages the

fact that devices deployed in the same room of a house will

perceive most of the same events over time, while devices

outside the home will observe different (or significantly

attenuated) events. Random events induced by user activities

(e.g., walking, making coffee) within the home thus provide

the necessary entropy to enable co-presence verification.

Because our approach is based on sensory perception of

events in the surrounding environment, we name our au-

tonomous device pairing technique Perceptio. In Figure 2,

we illustrate the high-level ideas of Perceptio, where multiple

devices within the home observe physical events that cannot

be clearly observed by the outside attacker.Building on this

idea, Perceptio enables IoT devices to effectively fingerprint
their surroundings with no human involvement, achieving

maximum usability. Perceptio uses these fingerprints for sym-
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metric key establishment, taking advantage of our findings

that an outside attacker can neither accurately observe nor

predict events within the home at the temporal granularity

required for verification. From these findings, our Perceptio
design includes a Key Strengthening Process that builds

confidence in co-presence verification over time. Starting

with an initial shared key (that may be insecure), Perceptio
augments this key with subsequent fingerprint information

until reaching a desired strength. This process is similar in

spirit to a multi-round security protocol.
To evaluate the design of Perceptio, we perform exper-

iments by equipping a room with a variety of sensors to

represent existing and prevalent commercial IoT products.

Our deployment includes a microphone (smart speakers [7],

[27]), an accelerometer (on-object sensors [69], [23], [56]),

a motion detector [55], [20], a power meter [37], [36], and

a geophone (structure or footstep monitors [73], [58]). In

addition, we deploy corresponding devices as well as higher

quality microphone and accelerometer outside the room to

represent the attacker’s devices. Human participants perform

a number of typical events in the room, providing the ambient

inputs to the various sensors. As a proof of concept, our

empirical evaluation demonstrates that fingerprints generated

by devices within the room are far more likely to match

(yielding an average of 94.9%), while the highest fingerprints

generated by the attacker’s devices outside the room have

low similarity to those inside the room (only yielding an

average of 68.9%). To support the proof of concept, we study

existing data sets for activity within smart homes to quantify

the available entropy and the corresponding amount of time

for devices to establish keys with sufficient confidence.
Overall, our contributions in this paper are as follow.

• We develop an autonomous context-based pairing pro-

tocol, named Perceptio, for IoT devices with heteroge-

neous sensing types, using a fingerprint mechanism that

is robust to signal variation across devices, requires no

time synchronization across devices, and needs no prior

training phase.

• We demonstrate through proof-of-concept implementa-

tion and experimentation that Perceptio can differentiate

between devices inside and outside of the room, effec-

tively protecting against attacking devices located just

outside a user’s home.

• We analyze existing data sets to quantify entropy extrac-

tion rates in real-world smart home scenarios, in support

of quantifying the time to build sufficient confidence in

device pairing.

The remainder of this paper is organized as follows. We

discuss background and relevant related work in Section II,

and present models and assumptions in Section III. In Sec-

tion IV, we present the entropy extraction and fingerprinting

techniques, and we then present the Perceptio protocol in

Section V. We present our proof-of-concept implementation

of Perceptio in Section VI and subsequent evaluation in

Section VII. We discuss practical deployment considerations

and limitations in Sections VIII and IX, respectively. We then

conclude our work in Section X.

II. BACKGROUND AND RELATED WORK

We present background information on sensors equipped

by smart home devices, and related work on secure pairing.

Commercial Smart Home Sensors. We witness many

smart home IoT devices commercially available today. Each

of these devices is equipped with a small number of on-board

sensors (often one), with a specific sensing modality – e.g.,

smart speakers equipped with microphones and motion detec-

tors equipped with PIR sensors. We present a more detailed

overview of smart home IoT devices and their corresponding

sensor types in Appendix A. We present Perceptio to enable

these smart home devices of heterogeneous sensor modalities

to prove that they are co-located within a physical boundary

by experiencing similar events.

Human-in-the-Loop-based Pairing. We first highlight

some of the traditional secure pairing protocols using human-
in-the-loop solutions. One of the work in this category

is Seeing-is-Believing, which authenticates other device’s

public key by taking a picture of a 2D bar code which

encodes the hash of the public key of the other device [47].

Furthermore, many industry standards such as Bluetooth

Secure Simple Pairing [29] and Wi-Fi Protected Setup [6]

requires humans to enter passwords on the devices intended

for pairing. These solutions, however, are not applicable in

smart home environments due to usability concerns.

Context-based Pairing. Researchers also explore context-
based pairing protocols to capture commonly observed con-

text for pairing leveraging on-board sensors without requiring

human involvement. Miettinen et al. propose recurring au-

thentication when pairing devices at home by leveraging am-

bient sound or light [51]. Devices co-located at one household

would experience similar context as opposed to devices in a

neighbor’s house. Schurmann et al. propose a similar idea,

but leverage short audio as contextual information for secure

pairing [65]. Rostami et al. propose a key agreement scheme

between an implanted heart with its remote programmer [63].

They establish a shared key by extracting entropy bits from

measuring the patients heart beat. Han et al. propose recurring

authentication across trucks driving on a highway by sensing

context from the road bumpiness using accelerometer [32].

While these approaches are promising first steps in the

context-based pairing schemes, they all focus on leveraging

identical sensor pairs across devices such as microphones,

accelerometers, and other sensors using direct signal analysis.

Unlike these homogeneous context-based pairing schemes,

Perceptio addresses a difficult but interesting question of how

to enable differing (i.e., heterogeneous) sensor modalities to

capture the same contextual information.

III. MODELS AND ASSUMPTIONS

We now present our threat model describing the goals

and capabilities of the attacker. Subsequently, we present the

assumptions and constraints of Perceptio.

A. Threat Model

The goal of the attacker is to leak private information
of home occupants by eavesdropping on the communication
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between IoT devices. In order to achieve this goal, the

attacker may launch (1) Shamming attack or (2) Man-in-the-
Middle attack.

We define a Shamming attack where the attacker’s device,

M (placed outside of the house but within the wireless com-

munication range), succeeds in fooling a legitimate device,

LD (inside the house), to accept the pairing as another LD.

M may launch three types of Shamming attacks. First, it

may launch an (1-a) Eavesdropping attack by attempting to

sense (from outside) the events occurring inside. M may

have following three levels of capabilities to launch this

attack. M may have (i) normal-level of resources equipped

with standard off-the-shelf IoT sensors that are comparable

to LDs inside the house. M may also have (ii) medium-
level of resources equipped with higher-end off-the-shelf

consumer electronic devices that are more powerful than (i).

Furthermore, M may have (iii) powerful-level of resources
equipped with asymmetric capabilities (e.g., military-grade

thermal imaging and x-ray vision). As such, we focus on

(i) and (ii) and disregard (iii) because such attackers could

already visualize activities within the home and reveal private

activities, independent of Perceptio and the IoT devices

deployed within the home. Moreover, the attacker may

launch other types of Shamming attack such as: (1-b) Signal
Injection attack – by creating events with large noise or

vibration from outside (e.g., using jack-jammer); or (1-c)
Sensor Spoofing attack – by injecting spoofing signals to

LDs. The attacker launches either of these attacks again in an

attempt to allow both M and LDs to perceive simultaneous

event signals and ultimately succeed in fooling LDs to accept

the pairing with M.

Second, M may launch a man-in-the-middle (MitM) at-

tack on key agreement messages between a pair of LDs by

simply intercepting messages transmitted over the wireless

medium. Such an attacker is able to use a variety of primitives

such as injection, replay, modification, and blocking/deleting

messages in the communication channel.

B. Assumptions and Constraints

We assume that the physical boundaries of a house draw

a natural trust boundary for deployed devices, LDs. This as-

sumption reflects scenarios in which LDs inside the boundary

are owned and operated by a common entity (e.g., home

owner). However, non-authorized personnel do not have

access to the physical space, hence do not have control over

the IoT devices. We also assume that the family members

and authorized guests are not malicious. For example, if one’s

family members or authorized guests are the only people who

have access to their house, and devices brought into the home

for prolonged periods of time are assumed to be trustworthy,

then a proof of deployment within the house is sufficient to

bootstrap a trusted connection to the IoT network. We view

the introduction of unauthorized devices into the home by

malicious guests as a problem of the homeowner’s physical

security, not as a relevant problem of secure pairing. Hence,

this issue is out of scope for our work.

In addition, we acknowledge that single-family homes are

made up of a number of joined rooms, and the separating

walls actually present numerous physical boundaries within

the home. While sensors within the same home are likely to

perceive some common events due to the common physical

structure, the walls are bound to induce a non-negligible
attenuation factor, with different propagation media caus-

ing distortion and attenuation of mechanical signals. More

specifically, walls and joints are known to cause material

damping, reflection and diffraction of acoustic and vibration

signals [39], [26]. However, since interior walls tend to

provide far less attenuation compared to exterior walls, we

expect a fair amount of signal to propagate between nearby

IoT devices, at least a sufficient amount to allow for IoT

network connectivity, as full pairwise connectivity is likely

unnecessary. As we will discuss later, it may also be possible

to configure a small number of IoT devices to act as “bridging

devices”, if needed, to facilitate secure pairing across the

internal walls of the home.
In either case, we design Perceptio to rely on the core

observation that sensors outside the home cannot consistently
perceive the relevant activities inside with similar fidelity as

LDs. While our design focuses on single-family detached

housing (comprising 61.5% of U.S. housing [46]), we believe

that future extensions of Perceptio could extend our work

to other multi-tenant attached housing (e.g., apartments or

townhouses) through rigorous engineering of thresholds and

other protocol parameters.

IV. ENTROPY EXTRACTION AND

FINGERPRINTING

We first present different sources of shared entropy that

can be used to bootstrap trust among the IoT devices.

Subsequently, we explain how to extract the entropy via our

context fingerprinting mechanism.

A. Entropy Extraction
Analogous to a cryptographic key agreement protocol rely-

ing on a source of entropy to establish (pseudo-)random key

bits, we propose approaches to enable devices to capture and

extract shared entropy from the device’s surroundings, which

is later used to bootstrap trust as discussed in Section V.
One possible approach to help devices extract shared

entropy is to deliberately inject randomness to the devices

within the physical boundary. This may be realized by intro-

ducing a signal injecting device (e.g., device with vibration

motor or speaker) that outputs signals such as vibration or

sound that are encoded random bits. This is analogous to

traditional key establishment schemes that provide “deliber-

ate entropy” [9]. However, this solution poses many practical

concerns regarding cost and usability, as well as scalability

with respect to multiple sensing modalities.
To address the above concerns, we propose an approach

that relies on the inherent randomness of events in a device’s

surroundings to establish a context fingerprint, i.e., “natural

entropy”. We leverage the inherent randomness of events

occurring in a room (e.g., knocking, walking, talking, etc.)

as its source of entropy for a cryptographic protocol. Specif-

ically, Perceptio leverages the fact that it is infeasible for an
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attacker to predict the precise timing of events within the

physical boundary at a millisecond-scale granularity. Using

the randomness in event timing, the fundamental goal of

the fingerprint generation mechanism is for two devices

to generate “similar” fingerprints only if they meet the

contextual requirements of the scenario. Unlike traditional

secure pairing protocols, however, the nature of our problem

requires that there is a degree of tolerance to capture the

dissimilarities between sensing devices and their respective

abilities of perception, namely relaxing the requirement that

fingerprints FDeviceA and FDeviceB are numerically equal

to instead satisfy d(FDeviceA , FDeviceB ) < ε for a suitable

distance metric d and small tolerance ε > 0 only when the

two devices “match”. For now, we leave the specifics of

fingerprint matching to the later sections and focus on the

fingerprinting mechanism.

B. Context Fingerprinting

We present the fingerprint extraction algorithm and how

multiple event types affect Perceptio context fingerprinting.

We also explain how Perceptio guarantees sufficient entropy

needed for key agreement protocol.

1) Fingerprint Extraction Algorithm: The main idea be-

hind Perceptio’s fingerprinting mechanism is based on three

primary insights: (1) raw signals obtained by different de-

vices and sensor types will have different characteristics; (2)

sensors on different devices will perceive the same event in

roughly the same way; and (3) inter-event timing measured

by different sensors will be roughly the same. When we

combine these three properties, we arrive at an approach that

combines event detection, event clustering, and per-cluster

inter-event timing. Specifically, each device will generate a

set of fingerprints, one for each cluster, that collectively rep-

resent the observable context. Note that devices do not need

to know what specific types of events are occurring. From

these core ideas, it is clear that the context fingerprinting

approach is general, and we will further describe specific

use cases and experimental evaluations in later sections.

To illustrate how the start times and corresponding inter-

event intervals (time between start of subsequent events of

the same type) are used to create the fingerprints, we provide

Figure 3(a). The figure highlights the fact that the two sensors

do not need to have a common representation of the event

detected (one device labels the clusters with � and the other

uses �), but the inter-event timings match. Note also that the

event detection does not need to be perfectly synchronized. In

general, each device measures an event sequence S yielding

the inter-event times, iS , and the resulting fingerprint, F , is

computed by concatenating bit-representations of intervals as

FA = {iSn
||iSn−1

||...||iS1
}.

We further take into account that a sensor is capable of

detecting multiple events. Consider one device A with a mi-

crophone and another device B with a geophone. Microphone

will be more sensitive to talking, and geophone will be more

sensitive to vibrations caused by walking, but both will sense

aspects of a running coffee machine, since it vibrates and

emits sound. In this case, the two devices can each detect
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(b) Events observed by each sensor

Fig. 3: Figure depicts fingerprint (F ) extraction from starting

point intervals of same event type (i.e., cluster). (a) depicts

how two sensors with different modalities, A and B, rep-

resents commonly observed event differently as � and �,

respectively. Despite differences in representation, inter-event

timings, iA and iB , are similar. (b) depicts how A and B
extracts various fingerprints from many event types.

multiple event types (including but not limited to talking,

walking, and making coffee). Each device will collect its

time-series data, perform a sequence of signal processing

to detect events, cluster the events based on various signal

properties, and create a fingerprint for each event cluster.

The microphone’s event sequence, SA, may involve three

event types – talking, walking, and making coffee – while

the geophone’s event sequence, SB , may involve two event

types – walking and making coffee. From Figure 3(b), we

see that the microphone labeled its three event clusters with

{�,�,�} and the geophone labeled its two event clusters

with {�,�}. The embedded devices creates sets of per-

cluster fingerprints {F�, F�, F�} and {F�, F�}, exchange

them with each other, and perform a pairwise search to see

if any of the fingerprints match (Section V).

2) Fingerprint Entropy: Perceptio bootstraps its trust from

the entropy of event timings in the environment. Intervals

between starting points of subsequent event observations are

translated into the bits of the fingerprint. Hence, the entropy

of the fingerprint depends on the number of similar events

observed and the bit resolution of each interval. This is

depicted in (Equation 1). F depicts the concatenation of bit

values of intervals iAk
, for k = 1, . . . , n. If the length of F

is less than a minimum acceptable fingerprint length lF , the

fingerprint is discarded due to insufficient entropy, otherwise

F is truncated to lF bits. We explain the requirement of lF
in Appendix C in order to provide sufficient entropy.

Ffinal =

⎧⎨
⎩

[
F
]
lF
, if |F | ≥ lF

∅, otherwise
(1)
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Fig. 4: Figure depicts how incorrect event detection affects

error accumulation when extracting F over tF . B mistakenly

misses two observations, but the resulting FB accumulates

error, analogous to framing error in serial communications.

3) Advantages of Fingerprint Extraction Algorithm: We

present a series of important advantages inherent to the

Perceptio fingerprint extraction algorithm. First, the devices

are not required to be time synchronized as (1) fingerprint

extraction can be triggered by event occurrences and (2)

fingerprints are generated based on event intervals rather than

specific event occurrence times. As long as the clock rates

are consistent across the devices, the generated fingerprints

will be similar regardless of time synchronization. Second,

the generated fingerprints are independent of the varying

amplitudes of the captured signal depending on the location

of the sensors relative to the source of the event. This is

also because the algorithm makes use of the starting point

intervals rather than the signals themselves.

The fingerprint algorithm inherently provides robustness

against malicious adversaries launching Shamming attack.

First, the algorithm makes it increasingly difficult for an

attacker to predict events at a fine granularity. While some of

the daily activities in a house seems rather predictable (e.g.,

opening a door around 9 a.m.), it is extremely difficult to

predict it at the millisecond granularity, making it possible

to extract entropy from the context. Second, the algorithm

inherently protects against an attacker’s device capturing

some of the events from outside the physical boundary, as

the attenuation factor of the physical boundary (e.g., walls)

is assumed to be non-trivial. However, capturing only some

of the events by an attacker’s device is insufficient to create a

fingerprint that is similar enough. This is because the errors

accumulate as the attacker’s device misses certain events, as

illustrated in Figure 4. In this example, sensors A inside

and B outside the boundary generate different fingerprints

because of B’s inability to sense everything that A senses.

Even such non-consecutive event misses are detrimental to

the attacker because the error accumulates, analogous to

framing errors in serial communications. Hence, in order for

the attacker’s device to succeed in pretending to be a device

within the physical boundary, it needs to consistently capture

most of the events occurring in the room. We further analyze

this difficulty with empirical data in Section VII-B.

V. PROTOCOL DESIGN

Perceptio’s fingerprint verification incorporates the finger-

print, F , into a cryptographic protocol to yield a verifiable
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Fig. 5: Figure depicts Perceptio protocol overview. Unequal

heterogeneous sensors data from A and B are eventually

converted to numerically equivalent symmetric key.

shared symmetric key between the two parties. Figure 5

depicts the high-level overview of Perceptio protocol. (1)

Initially two devices with disparate sensor modalities captures

numerically unequal time series data streams. (2) While co-

located devices observe similar events, the extracted pair of

fingerprints will not be exactly the same due to sensitivity

and different modalities. (3) We treat such subtle differences

in fingerprints as errors and tolerate them using a fuzzy

commitment scheme [41], [18] building on error correcting

codes. (4) Finally two devices share a master symmetric

key, k, and can subsequently generate shared session key,

kAB . Similar to the related work [51], [32], we design a

Key Strengthening Process, which gradually strengthens the

initially shared (but potentially insecure) key. This is made

possible by gradually increasing the authenticity confidence

over time through repeated execution of the fuzzy commit-

ment using different fingerprints (Steps (1) through (4)), until

a minimum confidence score is attained, inherently making

it extremely difficult for Shamming attacker devices (located

outside of the physical boundary) to sustain the shared key.

Protocol Details. Perceptio’s fuzzy commitment protocol

is composed of four main phases – (1) Initialization: devices

discover each other and determine through exchange of

identifiers that they wish to pair with each other; (2) Key
Agreement: devices compute, exchange, and verify context

fingerprints to establish a symmetric key; (3) Key Confirma-
tion: devices verify the correctness of the symmetric key and

increment the confidence score if the key is validated; and

(4) Confidence Score Check: devices either declare pairing

success if the confidence score is above a certain threshold

or repeat from the key agreement phase. These phases are

depicted in Figure 6 and described in more detail as follows.

We intentionally omit the underlying cryptographic protocol

details in this section, but present an in-depth description in

Appendix B.

In the Initialization Phase, device A initiates a broad-

cast message containing its identifier (e.g., device ID

or pseudonym). A nearby device B that receives the

message and wishes to “pair” with A responds with a

RQST_TO_PAIR, including its identifier in the request.

If A also wishes to pair with B, it responds with a

RSP_TO_PAIR message, at which point both devices

continue to the Key Agreement Phase. A and B follow
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Fig. 6: Figure depicts Perceptio protocol flowchart diagram.

Details of this protocol is presented in Appendix B.

the previously described fingerprint generation process to

create respective sets of fingerprints {FAi , i = 1, . . . , p}
and {FBj , j = 1, . . . , q} for the p and q observed event

clusters. Using the fingerprints, A is able to compute a set of

commitments, CA, that it hides a set of secrets generated

by A, ki, by effectively encrypting it using an extracted

fingerprint, FAi . Another device, B, can decode the message

to acquire ki only if it has a fingerprint ˆFBJ
that is “close

enough” to FAi
. The fuzzy commitment primitive is similar

in spirit to encryption of ki with FAi
using a one-time pad.

Once B successfully derives the secret with its FBj
that

is similar to FAi
, A and B has now established a shared

symmetric master key, k. Then the two devices continue to

the Key Confirmation Phase, creating a shared session key,

kAB , derived from k. Each time a pair of devices A and

B successfully execute the key generation and confirmation

phases for a round, they increase their respective confidence

by a small amount. Upon each increment, each device verifies

ConfScore > ThrConf . In the final Confidence Score
Check Phase, each device can finally decide that the other

is contextually verified once the overall confidence score is

above a threshold. The confidence score check mechanism is

thus similar to a reputation system.

In addition to the four main phases, Perceptio protocol

includes an optional extension to allow a notion of transitive
verification for cases where two devices want to verify each

other but their sensing equipment does not allow for gen-

eration of matching fingerprints (e.g., the accelerometer and

the power meter who perceive no event in common). We call

this extension Transitivity of Trust (ToT). If the two devices

A and C have each performed the fingerprint verification

with a third device B, meaning A and B share key kAB

and B and C share key kBC , A and C can rely on ToT to

expand the “pairing” operation to a “grouping” operation by

leveraging authenticated encryption scheme [64] to exchange

public parameters for Diffie-Hellman key exchange [17]. Fur-

thermore, this approach enables devices located in different

rooms within a house to pair, leveraging bridging devices.

We discuss this extension further in Section IX.
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Fig. 7: Figure depicts Perceptio fingerprint generation flow

chart, taking as input the raw sensor data, performs clustering

to distinguish group of events (e.g., walking, door opening,

knocking) represented as �,�,�, and computes correspond-

ing fingerprints per event cluster (i.e., F�, F�, and F�).

VI. IMPLEMENTATION

We now present our implementation of Perceptio finger-

print generation. Figure 7 depicts the flow chart diagram.

First, each sensor perceives the contextual information by

measuring its sensor data for a fingerprinting time period,

tF . Measured data is input to Pre-processing module for

noise reduction. The pre-processed signals are then input to

Signal Detection module, which distinguishes event signals

(e.g., walking, door opening, knocking.) against the rest of

the signal and outputs the corresponding signal time indices.

Subsequently, the the indices, along with detected signals are

input to Feature Extraction and Event Clustering module,

which performs unsupervised learning to cluster signals of

similar events via K-Means clustering. This is analogous to

categorizing detected event signals into clusters of �,�,�.

The Fingerprint Extraction module then converts the result-

ing cluster indices into corresponding fingerprints per cluster

(i.e., F�, F�, and F�). We present the implementation details

of the Signal Detection and Event Clustering modules.

A. Signal Detection

Signal detection module identifies events of interest by (1)

signal smoothing and (2) threshold-based detection.

1) Pre-processing: Signal Smoothing for Noise Reduction:
We first compute a moving average to smooth the signal

for noise reduction, specifically applying an exponentially

weighted moving average (EWMA) filter to discrete time

series x as y[k] = α∗x[k]+(1−α)∗y[k−1], where α, k, x[k],
and y[k] denote the weight, sample index, sensor data and

moving average data, respectively. Hence, EWMA smooths

the signal while retaining significant changes. Figure 8(a)

depicts the original geophone signal of the event of a person

walking. Figures 8(b) and (c) depict the absolute values of

the original and EWMA-filtered values, respectively.

2) Thresholding and Signal Detection: We then perform

thresholding for signal detection, including both a lower-

bound (Thrlower) and an upper-bound (Thrupper) threshold.
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Fig. 8: Figure depicts an example of Pre-processing module

where the (a) raw sensor signal is first converted to (b)

corresponding absolute value, and ultimately converted to (c)

subsequent pre-processed signal.
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Fig. 9: Figure depicts an example of the Signal Detection
module, and demonstrate the effects of thresholding and

signal isolation.

We leverage Thrlower to distinguish event signals to ambient

noise. On the other hand, we also leverage Thrupper to

remove any signals of high amplitude, in order to thwart

Shamming attack. We note that Thrupper can be a function

of Thrlower after certain calibration phase.

This is depicted in Figure 9(a), where we apply a lower-

bound thresholding to the EWMA signal using the lower

dotted line (i.e., Thrlower = 3). The signal above the

threshold are highlighted with a gray box. Also, we apply an

upper-bound thresholding as well using the upper dotted line

(i.e., Thrupper = 10). For more accurate event clustering,

however, we implement a signal lumping technique to group

segmented parts of the event signal into a single event signal,

as shown in Figure 9(b). Specifically, we disregard short

discontinuities between adjacent segmented signals above

threshold to “lump” the signals into one continuous group

of signal event. From the indices returned by these steps,

we determine the signal of interest in the original signals

as presented in Figures 9(c) and (d), depicting before and

after lumping technique, respectively. Finally, this module

outputs the corresponding indices of detected signal to the

Event Clustering module.

B. Event Clustering

We implement event clustering to appropriately group

observed events. Though some additional work may increase

the accuracy and efficiency of the clustering results, we detail

a preliminary proof-of-concept implementation.

1) Feature Extraction: We select a set of features per

sensor to reliably separate perceived events via clustering.

We select common time-domain features for analysis (e.g.,

maximum amplitude, duration, and area under the curve and

its variants) and evaluate them using principle component

analysis. We choose final set of features based on their

capacities to maximize visibilities across events. We choose

maximum amplitudes and lengths for geophone, microphone,

and accelerometer. Motion and power meter did not require

clustering as these sensors only perceive one specific event in

our experiments. Hence, we performed dimensionality reduc-

tion via feature extraction process while retaining essential

features for differentiating events.

2) K-Means Clustering and Elbow Method: We leverage

K-Means clustering to eliminate the need for a training phase.

K-Means takes as input k cluster groups and outputs data

points to similar clusters. K-Means algorithm computes the

Euclidean distances between data points and then selects

cluster centroids that minimizes the distances.

The number of cluster groups is unknown in Perceptio,

as the devices do not know how many types of events will

occur. To address this issue, we leverage Elbow method to

infer the optimum value of K [42]. Elbow method tests

several K-cluster hypotheses to output the optimum K value.

Specifically, this method evaluates the rate at which data

variances captured by the clusters increase when varying

K. By leveraging K-Means and Elbow method, Perceptio
increases its practicality by eliminating the burden of the

user or device manufacturer to train specific event types.

VII. EVALUATION

We implement the Perceptio protocol and evaluate its ef-

fectiveness in different settings. After detailing the apparatus

used, we present an end-to-end study of Perceptio’s various

aspects, including sensors’ event detection abilities and ro-

bustness of fingerprint similarity and key establishment.

A. Experiment Apparatus

We describe the nature of legitimate devices, LDs, placed

inside the environment and attacker devices, Ms, placed out-

side attempting to launch Shamming–Eavesdropping attack.

The LDs include a SM-24 geophone [13], an MD9745APA-

1 microphone [3], an ADXL335 accelerometer [16], an MP

Motion Sensor NaPiOn passive infrared motion detector [59],

and a Kill-A-Watt P4400 power meter [37]. Each of the

sensors is interfaced to an Arduino Uno board [5] with a

Wireless SD Shield [4] and microSD card for data logging

at 5 kHz sampling rate. The sensors were placed between

2.5-5.5m apart from each other. The Ms also include a SM-

24 geophone, MD9745APA-1 microphone, and an ADXL335

accelerometer, as well as a higher-quality MMA1270KEG

accelerometer [66] and a higher-quality Blue Yeti micro-

phone [50] as depicted in Figure 10(c). The higher-quality

accelerometer and microphone cost an estimated $10 and

$100 respectively, which is roughly one and two orders more

expensive than the normal-quality IoT accelerometer and

microphone.
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(c) Attacker devices

Fig. 10: To study event detection accuracy for LDs and Ms of different sensor modalities, we have human subjects conduct

the following actions shown in (a): knock on a door hosting an accelerometer, walk across a motion detector, around a

microphone and geophone on the ground, and brew coffee from a machine attached to a power meter. The attacker sensors

are placed outside the wall opposite to the door. We study the effect of environmental factors in (b): a coffee machine and

blender are used successively while varying the distance between them and the sensors, the floor type and the noise level

inside the room. We illustrate the five Ms in (c) including higher quality accelerometer and microphone.
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(a) Legitimate Devices – Knock
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(b) Legitimate Devices – Walk
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(c) Legitimate Devices – Coffee
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(d) Attacker Devices – Knock
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(e) Attacker Devices – Walk
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(f) Attacker Devices – Coffee

Fig. 11: We study the ROC of LDs and Ms for accuracy of event detection. Across all events, the LDs have a high

detection rate while the Ms (even the higher-quality microphone and accelerometer) hardly perform better than a random

guess. (Note: For each event type, we only show sensors whose modalities have the ability to detect that event. For example,

the accelerometers cannot detect the coffee machine, hence are ignored in (c) and (f)).

B. Event Detection

1) Detection Abilities of Legitimate and Attacker Devices:
We now evaluate the performance of each sensor in dis-

tinguishing event signals from ambient noise. Recall from

Section VI-A the three variables of interest are a lower-bound

threshold Thrlower to separate the signal from noise; an

upper-bound threshold Thrupper to discard distinct signals

with high amplitude to thwart Shamming–Eavesdropping

attacks; and the weight α used in the exponential moving

average. In this experiment, we vary Thrlower, which is

important in signal detection, while fixing Thrupper and α
to empirically optimized values.

We illustrate the study setup in Figure 10(a). The exper-

iment is conducted in a squash court wherein the LDs are

arranged with the geophone on the floor, the microphone on

a table, the accelerometer on the door, the motion detector

aimed at the center of the room, and the power meter

supporting a single serving coffee machine (Nespresso Pixie

Carmine [54]). The Ms deployed just outside the room (as

illustrated in Figure 10(a)) include the accelerometer, the

higher-quality accelerometer and the geophone attached to

the outside of one of the walls of the squash court and

the microphone and higher-quality microphone placed on the

ground adjacent.

We have ten human subjects perform the following tasks:
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knock on the door hosting the accelerometer, walk across

the court (across the motion detector and the geophone) and

around the table, brew coffee from the espresso machine on

the table two times, one after another, walk back across the

court, and knock on the door again before exiting. Hence,

participants performed each activity of knock, walk and

coffee twice per trial over ten different trials, providing a

total of 600 activity traces. To evaluate sensor accuracy in

event detection, we present Receiver Operating Characteristic

(ROC) curves for each sensor used in this setup. The ROC

curves plot the true positive rate (TPrate) against false
positive rate (FPrate) and depict the ability of the different

sensor modalities to detect events at varying threshold levels

of signal amplitude.

Figure 11 depicts the resulting ROCs by event type.

For each event, we depict the ROC of only those sensors

whose modalities would allow them to possibly detect it.

For example, a motion detector cannot detect a coffee event,

and hence is ommitted from the coffee ROC. We find that

all legitimate sensors have a high signal detection accuracy

as most Thrlower yield a high TPrate with relatively low

FPrate. For example, knock ROC depicts good detection

abilities for the inside geophone, microphone, and accelerom-

eter, yielding large area under the curve (AUC), while the

motion detector and power meter do not produce any signal

for this event as expected (hence not shown). On the other

hand, ROC curves for the Ms show relatively poor detection

ability. We note that while all three events indicate that

the higher quality attacker accelerometer and microphone

generally perform better than their lower-quality counterparts,

they are nevertheless unable to generate high TPrate without

generating equally high FPrate. At best, their curves follow

a random guess trend. Some of the ROCs, especially for

the attacker, appear to be increasing in a piecewise step

fashion rather than a smooth concave trend. This is due to the

nature of ambient noise in the system. As the signal detection

threshold is lowered, noise is detected as true positive until

the threshold is lowered enough such that other (lower)

ambient noise is detected as false positives.

2) Effect of Floor Types and Distances: We next study

the effect of the floor type on the detection accuracy of

LDs vs. Ms. We vary the floor type between wood and

carpet (most common variations found in homes) as de-

picted in Figure 10(b). For each floor type, we trigger two

events sufficiently spaced apart with no overlap in signal

detection: a coffee maker brewing (the same machine used

from Section VII-B1) and a blender (Cuisinart SPB-650 [14])

grinding. Since the accelerometer and motion detector cannot

detect either, and the floor type does not affect the power

meter, we study the sensing accuracy of the legitimate and

attacker geophones and microphones. For each event type,

the distance between the attacker/legitimate nodes and the

event source (coffee maker/blender) is varied from 1-6m.

We show the resulting area under the ROC curve (AUC) for

each sensor in Figure 12. Since the ambient noise inside the

room is low (as is typical in homes), the legitimate geophone

and microphone detect both the coffee and blender events
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(a) Legitimate Devices – Coffee
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(b) Legitimate Devices – Blender
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(c) Attacker Devices – Coffee
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(d) Attacker Devices – Blender

Fig. 12: As the distance between sensor devices and event

source varies from 1-6m, the LDs are consistently able to

detect the event (with high AUC) while the Ms have a

detection rate fluctuating around a random guess for carpet

and wood alike. Since the blender is significantly louder with

higher vibration than coffee brewing, the attacker’s AUC is

correspondingly higher.

with high accuracy for both floor types and across distances.

The latter occurs due to the high signal to noise ratio inside

the room even at longer distances from event source. On the

other hand, the attacker’s AUC fluctuates around 50% for

carpet and wood alike across all distances for coffee events.

Essentially, the attacker outside is contending with fluctuating

noise levels due to the noisy surrounding, and is unable to

detect these signals with accuracy any better than a random

guess. For the blender event, the attacker geophone does

show a slightly higher AUC, indicating better than random

guess. This is as expected with the consistently higher sound

and vibration caused by the blender as compared to the coffee

machine. However, the attacker’s AUC for blender, even for

the geophone, barely exceeds 80% at best, and is significantly

lower than the legitimate node’s AUC.

3) Effect of Background Noise and Distances: While our

analysis in Sections VII-B1 and VII-B2 show that LDs

consistently have high detection accuracy, the prevailing

ambient noise inside the court was indeed low. We now

study the degradation in event detection accuracy for the

legitimate sensors with increasing background noise. Hence

the background noise is varied between 50, 60 and 70 dB.

We show the resulting AUC for the legitimate microphone

and geophone inside the room across distances of 1m to 6m

from the event source in Figure 13. We see a clear trend of

decreasing AUC across noise levels for all sensor types. As

the ambient noise floor rises, the signal to noise ratio for the

events degrades, incurring higher false positives for a given

threshold of signal amplitude. At 50dB both the geophone

and microphone are able to detect the coffee and blender

with high AUC, with hardly any decline in detection rate

from increasing distances to source. At 60 dB, the geophone’s

AUC for coffee is decreased compared to 50 dB, but remains

mostly stable. The microphone, however, exhibits signifi-
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(b) Coffee – Mic
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(c) Blender – Geo
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Fig. 13: For events coffee and blender alike, increasing noise

levels result in poorer detection accuracy even for devices

inside, as expected. Since the coffee machine has a signif-

icantly weaker signal than the blender, the degradation in

detection accuracy is steeper for coffee event as the distance

from source and noise level increases.

cantly degraded performance as the distance from the coffee

maker increases at 60dB. As seen from previous analysis,

the inherently higher sound and vibration generated by the

blender results in the both sensors continuing to perceive it

with high accuracy. At 70 dB, the signal to noise ratio for

the coffee event degrades enough at higher distances to make

its detection effectively a random guess for both nodes. Even

for the blender, we see the geophone’s AUC start to suffer at

higher distances. Most home environments where Perceptio
is suitable might have instances of high background noise

(e.g. music playing loudly for a few minutes), during which

sensors inside might not be able to fingerprint successfully.

But as long as the environment exhibits ambient noise levels

below 70dB for the most part, the sensors are able to detect

events successfully for fingerprint extraction.

C. Key Establishment

1) Fingerprint Similarity between Legitimate Devices:
While we demonstrated generally high event detection accu-

racy of legitimate devices, LDs, under prevailing conditions

inside the squash court in Section VII-B, this may not directly

translate to satisfactory key establishment. This could be due

to occasional detection errors, clustering errors, and relative

temporal offsets in event detection between different sensor

modalities. Hence, we evaluate our protocol in an end-to-end

manner to demonstrate Perceptio’s ability to establish shared

keys between LDs (with heterogeneous modality) located

within the physical boundary. To do so, we use real-world

data to execute the Perceptio protocol and evaluate the fin-

gerprint similarities Fsim between device pairs. Specifically,

we first generate a data stream of three thousand events –

consisting of knocking, walking, coffee, and ambient noise –

by randomly drawing samples from the data set described in

Section VII-B1. Upon executing the protocol, we compute

Fsim for all seven feasible sensor pairs across LDs, as de-

picted in Figure 14 (note that there are ten sensing modality-

pairs possible, but {acc,mot}, {acc, pow} and {mot, pow}
are omitted as none of the tested events can be sensed in

common by these pairs). We illustrate two interpretations

of the fingerprint similarity for each sensor pair. First, we

depict the overall fingerprint similarity across all fingerprint

comparisons. The large standard deviation in this first set

of bars reflects the variation across fingerprints that will be

used and those that will be discarded due to low similarity.

Second, we depict the average fingerprint similarity Fsim for

only those fingerprints that are not discarded (i.e., those with

similarity above the threshold). These are the fingerprints

that actually contribute to secure key establishment and

confidence. As depicted in Figure 14, all the sensor pairs that

perceive at least one common event have high Fsim after the

thresholding.

2) Confidence Score: Another important aspect of Per-
ceptio is its Key Strengthening Process discussed in Sec-

tion V, which takes advantage of incremental growth in the

confidence score (ConfScore) upon a successful iteration of

key establishment protocol. Figure 15 depicts ConfScore of

sensor pairs over time. As in the previous discussion, we

depict the sensor pairs that perceive at least one event in com-

mon. The notion of time is depicted as the number of events

arrivals in this figure, as more events arrive with more time

(detailed modeling of event inter-arrival times and resulting

time for entropy extraction is presented in Appendix D).

From this figure, we have two important takeaways. First,

sensor pairs that detect more events reliably and/or frequently

in common exhibit a steeper increase in confidence. For

example, {geo,mic} pair perceives three events in common

– knock, walk, and coffee – while {acc,mic} perceives only

the knock event in common. Hence we see that as more events

arrive,ConfScore of {geo,mic} pair increases faster than that

of {acc,mic}. The pairs that do not reliably or frequently

perceive a common event, such as {geo,mot} have much

slower increase in ConfScore. Second, it is important to note

that ConfScore never decreases over time. Upon fingerprint

mismatches (which contributes to lowered average Fsim

in the first bar graphs of each sensor pairs depicted in

Figure 14), the ConfScore levels off at the current state until

the next successful fingerprint matching occurs. This means

that any fingerprint mismatches – due to detection and/or

clustering errors – do not degrade the key establishment

process, but simply takes longer.

3) Fingerprint Similarity between Attacker and Legitimate
Devices: It is evident from the attacker’s event detection

ROC studied in Figures 11(d) 11(e) 11(f) that the Ms can

hardly perform better than random guess. Further, given that

requisite clustering also incurs some errors, it is expected

that the likelihood of an M achieving a high Fsim with an

LD can be no better than a random guess. We nevertheless

evaluate this by further granting two unfair advantages in

favor of the attacker. First, we assume that the Ms are

capable of yielding less errors in event detection. There

are two types of errors in event detection – insertion and

deletion errors, each represented by FPrate and TPrate
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Fig. 14: We verify that LDs that sense common events are in-

deed able to pair with high fingerprint similarity. Occasional

inaccuracies in event clustering and temporal offsets in event

detection cause the average fingerprint similarity between

modality-pairs to be around 65% with a high variance.

However, even at 85% similarity threshold for successful

pairing, all sensor modalities manage to establish keys within

a few successful tries, with low variance.
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Fig. 15: We study the key strengthening process by observing

the increase in confidence score for each established legit-

imate sensor pairing as the number of encountered events

in the environment increases. Modalities such as geophone

and microphone that are able to simultaneously sense most

of the occurring events exhibit a much steeper increase in

confidence scores as compared to pairings such as {geo, mot}
that sense relatively fewer events in common.

respectively. We only considering errors due to deletion, and

assume that the Ms do not yield any insertion errors –

i.e., yielding high TPrate with no FPrate. From the ROC

curves aforementioned in Section VII-B, we choose the best

possible TPrate for each attacker sensor that corresponds to

FPrate = 50%, but replace the FPrate to 0%. Second, we

assume that the attacker has 100% clustering accuracy.

While these are unrealistic advantages, we evaluate Fsim

with such assumptions to account for the chance possibility

that the attacker may detect events at a higher accuracy or

have access to better clustering methods. Hence, the two

advantages provide an optimistic scenario for the attacker.We

evaluate fingerprint similarities between Ms and LDs with

a simulated stream of events by exhaustively searching for

best matching fingerprints. Figure 16 depicts the reported

values, with a maximum value of 70% between the attacker

and legitimate geophones. Recall from Figure 14 that we

draw the requisite similarity threshold at 85%. Hence the

attacker’s best case Fsim, even with the unfair advantages,
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Fig. 16: We present a simulated study of Fsim for Ms

attempting to pair with LDs. Even with overestimated ca-

pabilities of the attacker, average of all Fsim is only at 55%,

bar the expensive geophone (around 70%), but nevertheless

sufficiently below the tolerance line of 85% set in Figure 14.

are sufficiently below the tolerance level, demonstrating that

Perceptio succeeds in thwarting the attack.

VIII. DEPLOYMENT CONSIDERATIONS

We now discuss practical considerations when deploying

Perceptio in smart homes.

Simultaneous Events. While we present experiment eval-

uations with a single event per time period and background

noise, this may not always be true in real life, as multiple

events may occur simultaneously (e.g., coffee making while

walking). In such cases, we have seen that the concurrent

events will produce an overlapping signal and either be

clustered as a separate event type or mismatch errors will

occur leading to a longer time to reach the confidence

threshold. To test our hypothesis, we conducted a preliminary

experiment with two events – coffee making and generating

footsteps (walking in place) – occurring simultaneously,

while the sensors were located 1m away from the event

sources. We then kept the locations of sensors and the coffee

machine static, while varying the stepping positions from 1-

6m. Figure 17 depicts an example plot of signals captured

at 1-4m distances between the simultaneous events. At 1m

distance, the signals differ significantly from those generated

by the coffee machine and footsteps in isolation, while at

4m distance, the signal characteristics are closer to those of

a coffee machine in isolation. We see that many overlapping

signals will lead to new event clusters of their own, rather

than with existing event types.

Ad-hoc networking. Perceptio provides a novel solution

to secure ad-hoc connectivity among IoT devices, without
the need for a trusted home gateway. Many applications

may benefit from such ad-hoc networks due to reduced

communication and computational overhead, as it no longer

requires going through a central gateway or cloud. In fact,

there is a push in the industry to shift from star to mesh

topologies, as seen by industry activities such as Thread [30].

Resourceful attackers. Through our evaluation, we

demonstrated the difficulty of the attacker succeeding in

Shamming–Eavesdropping attack due to the need to consis-

tently detect events inside the home. However, as defined

in our threat model in Section III, if an attacker launches
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Fig. 17: When events coffee and footsteps occur simultane-

ously, the combined signals are distorted significantly enough

to possibly cluster into a new event type of its own. However,

the magnitude of this distortion also depends on distance

between event sources.

Shamming–Signal Injection attack by creating and injecting

events from outside that are consistent and loud enough

to be sensed from legitimate devices inside the house, the

attacker may succeed in fooling the legitimate device to pair.

However, due to the same attenuation factor that protects

inside events from the external attacker, it would be difficult

for inside devices to consistently detect outside events unless

they are extremely loud, otherwise the fingerprints would

not match. To make this attack harder, Perceptio’s Key
Strengthening Process requires multiple iterations that take

enough time that such injections would be easily noticed

by human users, making the attack extremely risky and

likely impractical. Furthermore, our threat model also defines

Shamming–Sensor Spoofing attack by injecting spoofing

signals to sensors of legitimate devices similar to prior

work [70], [72], [67], [68]. While such attacks may still be

possible, Perceptio would cluster injected signals into another

event type. Hence, the attacker would only slow down the Key
Strengthening Process. Furthermore, such injection attacks

require a high amplitude signal to be exerted to the sensor,

which is rather difficult in our setting as signals attenuate

significantly through the wall as our experiments have shown.

IX. LIMITATIONS

We present some of the limitations of our work and discuss

how they can be improved in future.
Devices located in different rooms. Perceptio is poten-

tially unable to establish trust between valid devices located

in different rooms of a smart home. A possible remedy is

to introduce a bridging device in each room to facilitate

cross-room connections. A bridging device would be like

any other IoT device, but with the additional functionality

for human-in-the-loop pairing. For example, two infrared-

and NFC-enabled motion detectors in different rooms may

be first manually paired by the user (e.g., via NFC tagging

with a smartphone) and then deployed to each room. Devices

in each room can leverage the Transitivity-of-Trust (ToT)

protocol (Section V) via the bridging devices to pair with

devices in other rooms. Manually bootstrapping bridging

devices is reasonable because there are only as many bridging

devices as rooms in the home. This is analogous to distributed
WiFi systems that use multiple APs to provide or enhance

connectivity through a large home [28], [62], [21].

Calibration. Perceptio depends on sensor calibration and

determination with respect to appropriate threshold values

presented in Section VI-A. Thresholding is important to helps

distinguish signals from noise and is thus critical with respect

to factors such as sensor placement, sampling rate, and events

in the environment. Hence, in practice, Perceptio would

require a calibration phase by allowing the IoT devices to

perform local sensor calibrations for a given amount of time

prior to starting the Perceptio protocol. Device manufacturers

could also provide course-grained pre-calibrated settings.

Public and Shared Spaces. Perceptio is based on the

assumption that physical boundaries draw natural barriers

between the legitimate devices and the attacker’s device

outside, which may not hold for public spaces such as

public libraries or shopping malls. However, with further

work on fine tuning thresholding parameters, Perceptio can

be extended from single family housing to other multi-tenant

private office buildings with existing access control policies.

Frequency of activity vs. Pairing time. The pairing time

between devices is directly proportional to the frequency of

activities in the house. However, there may be households

with less family members and thereby decreased sensor activ-

ity, leading to undesirably long pairing times. In such cases,

users may introduce a signal injecting device (as presented in

Section IV-A) for faster convergence. This solution, however,

trades procurement cost and usability for speed.

X. CONCLUSION

We propose Perceptio for autonomous, secure pairing

of IoT devices using context information from embedded

sensors. The novelty of Perceptio stems from its ability to

address the difficult challenge of context-based pairing across

devices equipped with different types of sensors. Perceptio
achieves this goal by abstracting sensor measurements and

using timing information as an invariant property to generate

context fingerprints as a source of shared entropy for cryp-

tographic key agreement. We demonstrate through proof-of-

concept experiments that Perceptio is able to securely pair

heterogeneous sensing devices co-located within the same

physical boundary, while rejecting potential attacker devices

placed outside.
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APPENDIX

This section presents the detailed descriptions of sensors in

smart home IoT devices, the Perceptio cryptographic protocol

and its security analysis, and simulation of entropy extraction.

A. Sensors in Smart Home IoT Devices
Numerous IoT devices for smart homes are already com-

mercially existing. We introduce some of the most prevalent

sensing modalities, and their use in real-world commercial

products as well as research prototypes. Table I summarizes

them. Smart speakers (e.g., Amazon Echo [7] and Google
Home [27]) and TVs [22] are equipped with with micro-

phones used for voice-activated controls. Motion detectors

used to monitor movements, are equipped with Passive
Infrared (PIR) sensors [55], [20], [2]. We also find many

on-object sensing devices in the market that monitor the

status of the object it is attached to [56], [69], [1], [44],

[20], [35]. For example, when attached on a door, it monitors

events such as door open/close as well as knocking. These

devices mainly utilize accelerometers by performing simple

signal processing to output object status information. Power

meters that measure the electrical usage of the appliance

it is attached to is also gaining popularity along with the

emergence of smart grid [37], [36]. Geophones are seismic

sensors that are gaining both industry and academic attention

for their applicability in building health monitoring [73] as

well as occupant monitoring via gait detection [58], [57].

We exploit the heterogeneous sensing modalities of these

prevalent IoT device to prove that they are co-located within

a physical boundary.

B. Perceptio Protocol Details

We present the details of the cryptographic protocol de-

scribed in Section V. In the Key Agreement Phase, A and

B generates fingerprints {FAi
, i = 1, . . . , p} and {FBj

, j =
1, . . . , q} for the p and q observed event clusters. Device A
then encodes a randomly generated secret key ki using each

fingerprint FAi
, i = 1, . . . , p, to create a set of commitments

as CAi
= FAi

� ENC(ki), where � is subtraction in a

finite field, Fn, equivalent to an XOR operation, and ENC(·)
is the encoding operation for an error correcting code (e.g.,

Reed-Solomon). A then sends {(CAi , h(ki)), i = 1, . . . , p}
to B, where h(·) is a collision-resistant hash function, which

discloses no information about the keys ki or the fingerprints

FAi
. Upon receiving the set of commitments from A, device

B attempts to open the commitment to acquire any one

of the original secrets ki using its fingerprints FBj
. B

computes k̂i,j = DEC(FBj
� CAi

) for all i, j pairs, where

DEC(·) is the complementary decoding function, such that

DEC(ENC(m)� ν) = m for a bit string m whenever the

Hamming weight (l1 norm) |ν|1 is within the code’s decoding

capability t. If B finds an i, j pair such that h(ki) = h(k̂i,j),
then it most likely found a fingerprint match,FAi

≈ FBj
.

There are many protocol variations at this point, but we

choose one in which B needs to find only one such pair, so

not all pq values need to be computed if a match is found. At

this point, B can use a key derivation function KDF (·) [61]

to create a shared symmetric key as kAB = KDF (k̂i,j),
though A is unaware of this key at this point (Figure 18

Steps 1-4).

To allow A to generate the matching symmetric key kAB

and verify it actually matches the key generated by B, both

A and B further participate in the Key Confirmation Phase.

B generates a random nonce nB and transmits β, where

H(k̂i,j) equals to H(ki) and Mk(m) represents a keyed

message authentication code (MAC) of message m using

key k. A, upon receiving this message, first identifies the

key, ki, from H(ki). If found, A derives the shared key

as kAB = KDF (ki) for the matching i. A then performs
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Sensor Microphone PIR Accelerometer Power Meter Geophone
IoT Device
Category

Voice Recognition (Smart
Speakers [7], [27], Smart
TV [22])

Motion Detector
[55], [20], [2]

Door Knock / Open / Close
Monitor [56], [69], [1], [44],
[20], [35]

Electricity Usage
Monitor [37], [36]

Structural Health /
Footstep Monitor
[73], [58]

TABLE I: We provide a table of sensors embedded in commercial IoT products and research prototypes.

a MAC verification with kAB and if successful, it also

generates a nonce, nB , and transmits to B, α. B, upon

receiving α, performs MAC verification to verify that A also

generated the same key kAB . If successful, device A and B
successfully computed a shared symmetric key for one round

(Figure 18, Steps 5- 8).

» Key Agreement Phase «
1. A : FAi = extractFs(ctx, tF ); i = 1, . . . , p

B : FBj
= extractFs(ctx, tF ); j = 1, . . . , q

2. A : ki
R←− KGen(1γ)

CAi
= FAi

� ENC(ki)

3. A → B : CA = CA1 ||H(k1), .., CAp ||H(kp)

4. B : k̂i,j = DEC(FBj
� CAi

)

Verify H(ki)
?
= H(k̂i,j); Aborts if fails

Creates k̂AB = KDF (k̂i,j)

» Key Confirmation Phase «
5. B → A : β = H(k̂i,j)||nB ||Mk̂AB

(nB),

where nB
R←− {0, 1}η

6. A : Creates kAB = KDF (ki);

Mk̂AB
(nB)

?
=MkAB

(nB); Aborts if fails

7. A → B : α = nA||MkAB
(nB ||nA),

where nA
R←− {0, 1}η

8. B : MkAB
(nB ||nA)

?
=Mk̂AB

(nB ||nA);

Aborts if fails

Fig. 18: Details of Perceptio key agreement and confirmation

protocol using contextual information

C. Security Analysis
We now present the analysis of Perceptio’s cryptographic

protocol, namely presenting how an attacker would try to

launch attacks to compromise the shared secret. Specifically,

the attacker’s goal is to acquire ki generated by A in

Figure 18 Step 2. We analyze two types of attacks that an

attacker may launch to achieve the aforementioned goal – (1)
bruteforcing and (2) eavesdropping attacks.

(1) Bruteforcing attack. The attacker first tries to directly

bruteforce the key, ki by attempting to perform dictionary

attack on the hash, H(ki), which is transmitted together

with CAi in Figure 18 Step 3. As long as the length of
the cryptographic hash function (H(·)), lH(·), is longer than

lNIST bits, bruteforce attack is computationally infeasible

(i.e., lH(·) ≥ lNIST bits). We leverage the state-of-the-art

secure cryptographic hash function such as SHA-3 [19],

which is well above lNIST bits. We define lNIST = 112bits,

as recommended by NIST [10].

(2) Eavesdropping attack. A more sophisticated attacker

pretends to be a legitimate device placed within the physical

boundary by trying to open the commitment. The attacker

launches an eavesdropping attack to try to capture some

of the events by placing his/her devices just outside of the

physical boundary. Hence, these devices may capture some

of the signals, depending the transmission media as well

as the amplitude of the original signal. Hence, rather than

performing a bruteforce attack with no known information,

the attacker has more information at guessing the fingerprint,

which can be decoded with DEC(·), which in turn leads to

less amount of computations to acquire ki.
We denote leaves as the number of bits of the fingerprint

that the attacker knows as a result of the eavesdropping at-

tack. Hence, we denote lbf as the number of bits the attacker

needs to bruteforce in order to successfully know ltol bits in

order to succeed in the attack, such that lbf = ltol − leaves.

Hence, the attacker’s success probability is P (Adv) = 1 with

computational complexity, Cpx, as following:

Cpx = p2lbf (Ops+�+DEC(·) +H(·) + VH(·))

≈ O(2lbf )

where p is the number of F s and VH(·) is hash verification.

Cpx is computationally infeasible if lbf ≥ lNIST . Hence

the gain from eavesdropping, leaves should be bounded by

leaves = ltol − lNIST .

D. Evaluating Entropy Extraction

We now evaluate the required time to extract lF (i.e., length

of fingerprint) to ensure sufficient entropy (e.g., 128 bits). As

discussed in Section IV-B, F is created by concatenating the

time intervals of consecutive events of same cluster type (e.g.,

series of knocking events).

1) Modeling the Arrival Time: We follow the traditional

approaches of modeling event arrivals as a Poisson pro-

cess [34], [45]. We define Sn as the waiting time until

the nth event, assuming that n events yields lF bits of

fingerprint. We define Ti as the sequence of inter-arrival

times for i = 1, 2, ..., which can also be described as i.i.d.

exponential random variables. Furthermore, the probability

density function of Sn has a gamma distribution with average

arrival rate λ, number of events n, and time t as depicted in

Equation 2.

Sn =

n∑
i=1

Ti, n ≥ 1, fSn(t) = λe−λt (λt)
n−1

(n− 1)!
. (2)
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Fig. 19: Cumulative probability distribution of motion and door opening events modeled after real world smart home data

collected for two months

The corresponding expected time of nth event, E(Sn), is

depicted in Equation 3. We also define bit rate which is

the effective rate of the generating the lF fingerprint bits

in a time duration of E(Sn), capturing the effective rate of

generating useful fingerprint bits. The bit rate is modulated by

a correction factor, ρ, which is proportional to the detection

rate of the events. We note that the units of the bit rate can be

measured in bits per second, but in many practical scenarios

it may be more meaningful to express this value in bits per

hour.

E(Sn) =
n

λ
, BitRate =

lF ρ

E(Sn)
=

λ lF ρ

n
(3)

2) Evaluation Using a Real-world Smart Home Dataset:
To ensure the practicality of our analysis, we analyze a real-

world smart home data set, publicly available from CASAS

online repository [24]. We analyze two sets of sensor data

collected for two months (i.e., over 1450 hours of data): a

motion detector used to monitor movement in the home, and

a door sensor to monitor door open/close activities. Specifi-

cally, we extract mean arrival rate of the two events, λmotion

and λdoor, to be 8.85 events/hour and 0.96 events/hour,

respectively. We note that the average was computed from the

users’ daily activities only. This reflects the practical use case

of Perceptio, as the system will not extract much entropy at

night due to stagnant event occurrences. Using these values,

we plot a cumulative probability density function (CDF)

and vary n and t. Figure 19 (a) and (b) depict the CDF

of the two types of events, respectively. The results are

intuitive as the plots demonstrate that for more number of

n events, the longer t is required to reach a high probability.

Furthermore the two figures of motion and door events depict

clear contrast, as the door events require much longer time

to reach a high probability. We note that this analysis is an

optimistic approach as we assume perfect detection accuracy

(i.e., ρ = 1) for simplicity of the analysis.

For example, assume that it takes 20 events to yield lF =
128 bits of the fingerprint, then using (Equation 3), n = 20
events arrive in about 2.3 hours for motion events, as opposed

to 20.8 hours for door events. Hence, the corresponding bit
rate for the two events are BitRatemotion of 56.6 bits/hour

and BitRatedoor of 6.1 bits/hour. We note that the bit rate

would potentially increase if there were more occupants in

the house as opposed to a single resident case from this data

set. (For example, the average number of occupants in a home

in the United States is 3.14 persons [12]).
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