

 奈良先端科学技術⼤学院⼤学 学術リポジトリ

Nara Institute of Science and Technology Academic Repository: naistar

Title
An Ensemble Approach of Simple Regression Models to Cross-Project

Fault Prediction

Author(s) Uchigaki, Satoshi; Uchida, Shinji; Toda, Koji; Monden, Akito

Citation

2012 13th ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel/Distributed

Computing, 8-10 Aug. 2012, Kyoto, Japan

Issue Date 2012

Resource Version author

Rights

© 2012 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component

of this work in other works.

DOI 10.1109/SNPD.2012.34

URL http://hdl.handle.net/10061/12750

An Ensemble Approach of Simple Regression
Models to Cross-Project Fault Prediction

Satoshi Uchigaki

Graduate School of Information Science

Nara Institute of Science and Technology

Nara, Japan

satoshi-u@is.naist.jp

Shinji Uchida

Department of Information Engineering

Nara National College of Technology

Nara, Japan

uchida@info.nara-k.ac.jp

Koji Toda

Department of Computer Science and Engineering

Fukuoka Institute of Technology

Fukuoka, Japan

toda@fit.ac.jp

Akito Monden

Graduate School of Information Science

Nara Institute of Science and Technology

Nara, Japan

akito-m@is.naist.jp

Abstract- In software development, prediction of fault-prone

modules is an important challenge for effective software testing.

However, high prediction accuracy may not be achieved in

cross-project prediction, since there is a large difference in

distribution of predictor variables between the base project (for

building prediction model) and the target project (for applying

prediction model.) In this paper we propose an prediction technique

called “an ensemble of simple regression models” to improve the

prediction accuracy of cross-project prediction. The proposed

method uses weighted sum of outputs of simple (e.g. 1-predictor

variable) logistic regression models to improve the generalization

ability of logistic models. To evaluate the performance of the

proposed method, we conducted 132 combinations of cross-project

prediction using datasets of 12 projects from NASA IV&V Facility

Metrics Data Program. As a result, the proposed method

outperformed conventional logistic regression models in terms of

AUC of the Alberg diagram.

Keywords: fault-prone module prediction, product metrics,

empirical study

I. INTRODUCTION

Prediction of fault-prone modules is an important challenge

for effective testing and/or software inspection [1]. Various

multivariate modeling techniques, which are applicable to

fault-prone module prediction, have been proposed, including

multivariate logistic-regression (MLR) model [4], linear

discriminant analysis [5], neural network model [6], etc.

These models are constructed from a fit dataset, which

contains product metrics and fault data of modules of a past

software project [2] [3].

However, for a new development project and/or an

enhancement project that had not recorded data of past

releases, high prediction accuracy cannot be expected. It is

because defect prediction works well if models are trained

with a sufficiently large amount of data and applied to a single

software project [7]. Indeed, Zimmermann et. al. conducted

622 combinations of cross-project prediction, but only 3.4%

of them showed enough prediction performance [7]. They

suggested that difference in distribution of metrics between fit

dataset and test dataset influences the predictive accuracy.

To improve the prediction performance of cross-project

prediction, we need to improve the generalization ability of a

predictor model. One of the methods to solve this problem is

normalization of dataset. Kuramoto showed that the

prediction performance was improved using normalization of

metrics in MLR models [8].

This paper proposes a prediction method called “an

ensemble of simple regression models” to improve the

generalization ability of MLR models. While “strong”

multivariate models can cause overfitting problem, our

technique uses an ensemble of “very weak” (1-variable)

models to avoid overfitting. In our technique, we use

weighted average of outputs of simple models based on the

goodness of fit of the models. We also use normalized values

of predictor variables.

This paper evaluates the proposed method using datasets

of 12 projects from NASA IV&V Facility Metrics Data

Program [10]. We compared predictive accuracy with

normalized MLR models [8].

In what follows, Section 2 describes the proposed

fault-prone module prediction method. Section 3 explains an

experiment to evaluate the proposed method. Section 4 gives

the discussion of the result. Finally Section 5 summarizes this

paper.

II. FAULT-PRONE MODULE PREDICTION MODEL

A. An Ensemble of Simple Regression Models

Figure 1 shows the overview of the proposed method. The

proposed method predicts a probability of having a fault in a

module. Given a fit dataset for model construction, the

proposed method constructs sub-models (simple logistic

regression model) each using one of the software metrics. The

weighted average of outputs of sub-models is used as a final

output of the proposed method. The weights are computed

based on the goodness of fit of each sub-model. While “strong”

multivariate models can cause overfitting problem, our

technique uses an ensemble of “very weak” sub-models to

avoid overfitting in cross-project prediction.

The simple regression model is a technique to predict a

dependent variable using single independent variable. While

multivariate models like MLR model need to make sure that

independent variables are certainly independent each other,

our method can use a set of predictor variables that are

dependent each other since each sub-model contain just one

predictor variable.

The output y of our method is defined as the following

formula (1).

y =
∑ ����(�)
�
��

∑ ��
�
��

 (1)

where y is a probability of having a fault in a module, n is

the number of sub-models, fi(xi) is i-th sub-model whose

predictor variable is xi, and wi is a weight for i-th sub-model.

In this paper we use as w the contribution ratio of the

sub-model. The contribution ratio is one of the criteria of

goodness of fit of a model. Its value range is [0,1].

In this paper, we use a simple logistic regression model as a

sub-model fi(xi), which outputs the probability of having a

fault in a module. The model is defined by the following

formula (2).

��(��) = P(y|x�) =
�

����(α���β)
 (2)

where, y is a dependent variable. � is an independent

variable. α and β are regression coefficients. P(y|xi) is

probability that y takes 1 with respect to the independent

variable xi.

B. Normalization of Metrics

Enough predictive accuracy is not achieved if the

distribution of the metrics of test dataset is different from fit

dataset's one. [5]. Kuramoto reported that by normalizing

software metrics in fit dataset and test dataset can improve

prediction accuracy of logistic regression models [8].

In this paper, we apply metrics normalization to our

prediction method. The normalization is performed by two

steps. The first step is logarithmic transformation and the

second step is Z-score transformation. The purpose of these

steps is to make the distribution of metric values closer to the

standard normal distribution.

The logarithmic transformation changes a metric value into

its logarithm by formula (3), where X is a metric value and Y

is a transformed value. Note that 1 is added before

log-transformation since some metrics contain zero (such as

cyclomatic number.)

Figure 1. Overview of the proposed method

Independent

variable

A

Dependent

variable

Independent

variable

B

Independent

variable

C

Independent

variable

D

Sub-Model

A

Sub-Model

B

Sub-Model

C

Sub-Model

D

Simple Regression Analysis

Weighted Average

Output

 	Y = log� (X " 1) (3)

The Z-score transformation is performed by formula (4),

where Y$ is the average of Y and ν is the standard deviation of

Y. After this transformation, the average of Z becomes 0 and

the standard deviation of Z becomes 1.

Z =
&'&(

)
 (4)

III. EXPERIMENTAL EVALUATION

A. Outline

The goal of the experiment is to evaluate the prediction

performance of the proposed method . In this experiment,

cross-project fault-prone module prediction was performed

using three approaches; the proposed method, the proposed

method with normalization, and the MLR (multivariate

logistic regression) with normalization, which we refer to as

“conventional method.”

B. Datasets

The target dataset is the NASA IV&V Facility Metrics Data

Program(MDP) datasets [10]. We used datasets of 12 projects.

Details of each project are shown in Table 1. JM1 and KC1

consist of 21 software metrics while MC1 and PC5 consist of

39 software metrics. The remaining 8 projects had 40

software metrics. Therefore, we used 21 software metrics

common to the 12 projects. In this paper, a “module” is a

“source file.”

C. Evaluation Criteria

In this experiment, we used the area under the curve (AUC)

of the Alberg diagram to evaluate the prediction performance.

The Alberg diagram shows the percentage of accumulated

number of faults when modules are ordered with respect to

the probability of having a fault [9]. Figure 2 shows an

example of AUC of the Alberg diagram. The larger AUC

indicates better prediction performance. Also, AUC=0.5

means that the prediction performance is as worst as the

random prediction.

D. Experiment Procedure

The fault-prone module prediction was performed to 132

combinations of project pairs. The procedure of the

experiment is shown below.

Step1: Normalizing all software metrics of 12 project

datasets.

Figure 2. An example of the Alberg diagram

Table 1 Summary of NASA project data

project language # of metrics Total SLOC # of modules # of bugs % faulty

CM1 C 40 17K 505 48 9.50%

JM1 C 21 457K 10878 2107 19.40%

KC1 C++ 21 43K 2107 325 15.40%

KC3 Java 40 8K 429 43 10.00%

MC1 C&C++ 39 67K 4625 68 1.50%

MC2 C 40 6K 161 52 32.30%

MW1 C 40 8K 403 31 7.70%

PC1 C 40 26K 1059 76 7.20%

PC2 C 40 27K 4505 23 0.50%

PC3 C 40 36K 1511 160 10.60%

PC4 C 40 30K 1347 178 13.20%

PC5 C++ 39 162K 15414 503 3.30%

Step2: Constructing fault-prone detection models. In each

model, one of 12 projects is used as a fit (training)

dataset.

Step3: Prediction of the probability of having a fault. For each

model, all the other projects are used as test datasets.

Step4: Evaluation of prediction performance using AUC of

the Alberg Diagram.

E. Results and its Analysis

The prediction performance of each model is shown in Table

2, 3 and 4. The average of the AUC, the percentage of

improvement of the average AUC (compared with the

conventional method), and standard deviation of the AUC are

shown in table 5. Below describes our findings in Table 2, 3, 4

and 5.

� The prediction performance of the proposed method

was improved in 83 cases out of 132 compared with the

conventional method.

� The prediction performance of the proposed method

“with normalization” was improved in 98 cases out of

132 compared with conventional method.

� The improvements of the average AUCs were 0.037

(5.3%) in the proposed method and 0.043 (6.1%) in the

proposed method with normalization, compared with

the conventional method.

� The standard deviation of the AUC of the proposed

method became smaller than the conventional method,

which indicates that the proposed method did stable

prediction.

Fig.3 shows the histograms of AUC of the conventional

Table 2 AUC of the conventional method (multivariate regression with metrics normalization)

 Fit Data

CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Test Data

CM1 0.749 0.726 0.695 0.717 0.726 0.769 0.716 0.725 0.691 0.53 0.749

JM1 0.426 0.576 0.661 0.532 0.615 0.604 0.603 0.631 0.618 0.562 0.599

KC1 0.619 0.733 0.768 0.63 0.743 0.733 0.653 0.647 0.708 0.417 0.741

KC3 0.72 0.79 0.698 0.739 0.765 0.786 0.761 0.725 0.786 0.61 0.784

MC1 0.669 0.812 0.717 0.844 0.707 0.802 0.813 0.774 0.833 0.78 0.792

MC2 0.651 0.603 0.631 0.616 0.552 0.625 0.529 0.638 0.601 0.405 0.626

MW1 0.728 0.745 0.703 0.735 0.635 0.703 0.723 0.738 0.752 0.388 0.742

PC1 0.664 0.75 0.598 0.758 0.742 0.624 0.722 0.626 0.763 0.66 0.686

PC2 0.451 0.803 0.86 0.86 0.735 0.831 0.849 0.612 0.86 0.659 0.791

PC3 0.668 0.754 0.624 0.792 0.731 0.655 0.754 0.751 0.703 0.688 0.702

PC4 0.474 0.714 0.577 0.777 0.706 0.597 0.665 0.638 0.638 0.731 0.65

PC5 0.893 0.918 0.925 0.939 0.851 0.938 0.935 0.791 0.858 0.897 0.61

Table 3 AUC of the proposed method

 Fit Data

CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Test Data

CM1 0.745 0.747 0.727 0.752 0.746 0.757 0.751 0.748 0.75 0.708 0.746

JM1 0.655 0.645 0.661 0.658 0.654 0.665 0.658 0.648 0.649 0.664 0.643

KC1 0.726 0.746 0.733 0.75 0.734 0.748 0.754 0.728 0.73 0.74 0.741

KC3 0.77 0.778 0.775 0.78 0.773 0.776 0.781 0.77 0.782 0.781 0.768

MC1 0.774 0.798 0.792 0.833 0.768 0.798 0.813 0.752 0.803 0.822 0.743

MC2 0.634 0.631 0.632 0.616 0.628 0.631 0.626 0.638 0.634 0.609 0.648

MW1 0.749 0.76 0.758 0.742 0.777 0.726 0.777 0.717 0.757 0.754 0.696

PC1 0.658 0.679 0.675 0.684 0.703 0.658 0.684 0.657 0.715 0.696 0.659

PC2 0.845 0.856 0.854 0.837 0.859 0.847 0.851 0.853 0.856 0.848 0.849

PC3 0.706 0.733 0.725 0.736 0.752 0.706 0.743 0.75 0.686 0.745 0.678

PC4 0.63 0.66 0.645 0.715 0.672 0.631 0.645 0.687 0.626 0.706 0.635

PC5 0.853 0.921 0.925 0.898 0.921 0.913 0.922 0.936 0.871 0.898 0.916

method, the proposed method, and the proposed method

with normalization. Table 6 shows the case distribution of

AUC in each model. In the conventional method, there exist

cases of AUC < 0.5, which means the prediction

performance is worse than the random prediction. Since the

prediction performance cannot be known beforehand, this

indicates that the conventional method cannot be used for

cross-project prediction since it often produces worse

prediction than the random.

On the other hand, in the proposed method and the

proposed method with normalization, all the cases are larger

than 0.6, which means that the proposed method is much

more practically useful than the conventional method.

IV. CONCLUSION

To improve the prediction accuracy of cross-project

fault-prone module prediction, this paper proposed a

modeling technique called “an ensemble of simple

regression models.” Our main idea is to use an ensemble of

“very weak” (1-variable) models to avoid overfitting to the

fit (training) dataset. In addition, we also employed metric

normalization method to improve the prediction

performance.

To evaluate the prediction performance of the proposed

method, we conducted 132 combinations of cross-project

Figure 3. Histogram of AUC

0

10

20

30

40

50

60

70

0~ 0.1~ 0.2~ 0.3~ 0.4~ 0.5~ 0.6~ 0.7~ 0.8~ 0.9~

Conventional

Proposed

Proposed with

normalization

AUC

n
u
m
b
er
 o
f
ca

se
s

Table 4 AUC of the proposed method with metrics normalization

 Fit Data

CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Test Data

CM1 0.734 0.741 0.739 0.744 0.74 0.747 0.748 0.738 0.744 0.724 0.74

JM1 0.632 0.631 0.641 0.632 0.627 0.639 0.626 0.641 0.625 0.621 0.649

KC1 0.752 0.749 0.752 0.75 0.748 0.753 0.749 0.745 0.748 0.736 0.753

KC3 0.779 0.777 0.776 0.79 0.776 0.781 0.791 0.789 0.792 0.802 0.781

MC1 0.793 0.78 0.788 0.794 0.777 0.798 0.814 0.795 0.817 0.833 0.8

MC2 0.633 0.633 0.631 0.629 0.625 0.631 0.624 0.629 0.626 0.608 0.629

MW1 0.759 0.742 0.752 0.752 0.764 0.743 0.77 0.744 0.77 0.733 0.754

PC1 0.678 0.672 0.673 0.676 0.691 0.667 0.683 0.675 0.704 0.708 0.674

PC2 0.861 0.841 0.858 0.857 0.86 0.858 0.86 0.856 0.861 0.858 0.853

PC3 0.729 0.72 0.72 0.725 0.742 0.715 0.736 0.752 0.724 0.757 0.727

PC4 0.652 0.653 0.649 0.658 0.676 0.641 0.652 0.681 0.667 0.683 0.658

PC5 0.937 0.937 0.936 0.936 0.937 0.936 0.937 0.938 0.934 0.937 0.931

Table 5 The average and the standard deviation of AUC

Average

% of

improvement

Standard

Deviation

Conventional 0.703 ― 0.109

Proposed 0.740 5.26% 0.082

Proposed with

normalization
0.746 6.12% 0.089

Table 6 The number of cases for each AUC value range

Conventional Proposed
Proposed with

normalization

AUC

value

 to 0.3 0 0 0

0.3 to 0.4 1 0 0

0.4 to 0.5 5 0 0

0.5 to 0.6 10 0 0

0.6 to 0.7 40 44 41

0.7 to 0.8 56 63 62

0.8 to 0.9 15 19 18

0.9 to 1.0 5 6 11

prediction using datasets of 12 projects from NASA IV&V

Facility Metrics Data Program. As a result, the proposed

method outperformed conventional multivariate logistic

regression models in terms of AUC of the Alberg diagram.

Moreover, while the prediction by the conventional method

contained cases of AUC < 0.5, which means worse than the

random prediction, the proposed method achieved AUC >

0.6 for all 132 predictions.

The major limitation of this paper is that we used only

NASA MDP datasets. Our future work is to confirm our

result using other datasets

REFERENCES

[1] Li, P.L., Herbsleb, J., Shaw, M. and Robinson,

B., ”Experiences and Results from Initiating Field Defect

Prediction and Product Test Prioritization Efforts at ABB

Inc.” , Proc. 28th Int’l Conf. on Software Engineering

(ICSE’06), pp.413–422 ,2006.

[2] Nagappan, N., Ball, T., and Zeller, A., ”Mining metrics to

predict component failures”, Proc. Int’l Conf. on Software

Engineering (ICSE’06), pp.452-461 ,2006.

[3] Kamei, Y., Sato, H., Monden, A., Kawaguchi, S., Uwano,

H., Nagura, M., Matsumoto, K., Ubayashi, N., ”An

Empirical Study of Fault Prediction with Code Clone

Metrics”, In Proc. Joint Conference of International

Workshop on Software Measurement and International

Conference on Software Process and Product

Measurement (IWSM/Mensura2011), pp.55-61,

November 2011.
[4] John, C.Munson., and Taghi M.Khoshgoftaar., ”The

detection of fault-prone programs. “, IEEE Trans. Softw.

Eng., Vol. 18, No. 5, pp. 423–433, 1992.
[5] Fisher, R.A., “The Use of Multiple Measurements in

Taxonomic Problems”, Annals Eugenics, Vol.7, Part II,

pp.179-188, 1936.
[6] Rumelhart, D.E., Hinton, G.E. and Williams, R.J.,

“Learning Representations by Back-propagating

Errors”, Nature, Vol.323, pp.533-536, 1986.

[7] Zimmermann, T., Nagappan, N., Gall, H., Giger, E. and

Murphy, B., ”Cross-project Defect Prediction.”, The 7th

joint meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering (ESEC/FSE’09),

pp.91-100 ,2009.

[8] Kuramoto, T., Matsumoto, S., Kamei, Y., Monden, A.,

Matsumoto, K., ”Performance Improvement of

Fault-prone Module Detection by Normalization of

Software Metrics”, The Special Interest Group Technical

Reports, IPSJ Special Interest Group on Software

Engineering, Vol.2009-SE-166, No.11, 2009

[9] Ohlsson, N. and Alberg, H., ”Predicting Fault-Prone

Software Modules in Telephone Switches.”, IEEE

Trans. on Software Engineering, Vol.22, No.12, pp.

886–894 ,1996.

[10] NASA IV&V Facility Metrics Data Program, available

from http://mdp.ivv.nasa.gov/

	matsumoto20181031_Part30
	72_SNPD2012

