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Abstract—In a resource allocation system, resource suppliers
and customers can be naturally modelled as autonomous and
interactive entities. In this context, we propose in this paper a
multiagent system architecture based on trust and honesty con-
cepts between agents in order to synchronize resource allocation
in a distributed environment. Indeed, agents use several means in
order to allocate resources efficiently as dialogue, adaptability,
cooperation, collaboration and even negotiation in addition to
the notion of trust. So, individual agents have to evaluate the
trustworthiness of others to select those to interact with. More-
over, resource inadequacies can exist in the resource allocation
systems, and it is difficult to meet the resource requirements
of all agents simultaneously. To overcome these difficulties, we
propose a distributed multiagent resource allocation system that
emphasizes the issues of agents trust and resource inadequacies,
which is called MARA-T&R. In this system, the evidence theory
is improved thanks to the Deng entropy to estimate the trustwor-
thiness of agents. Additionally, we use the concept of reservations
to solve the problem of resource inadequacies. Our simulation
results highlight the excellent performances of this improved trust
model and the efficiency of the proposed MARA-T&R system for
resource allocation.

Index Terms—Multiagent system, Resource allocation, Trust,
Uncertainty, Resource inadequacy

I. INTRODUCTION

Over the past few decades, resource allocation has been a
hot issue that received much attention [1]. With the devel-
opment of multiagent systems (MASs), these technics have
taken a new dimension. Distributing a number of resources
amongst various agents is known as MARA (multiagent re-
source allocation) [1]. MARA has been used in a wide range
of applications, including, but not limited to public transporta-
tion, logistics, exploitation of earth observation satellites, or
industrial procurement.

In a distributed environment, agents communicate with each
other using particular rules and protocols to allocate resources.
In this context, numerous models for agent communication
have emerged to distribute resources, including negotiation,
coordination, and collaboration. However, several challenges
arise together linked to these protocols. For example, an agent
in a distributed system makes decisions by investigating the
received local information for its intended purpose, which
means that the priority is to maximize its private utility. For
this reason, it is difficult to get rid of some misleading resource
information delivered by unfriendly agents. At the same time,
because of the limited capability of storage and calculation,

agents have to trust the information they receive to minimize
hazards and to achieve more personal goals.

Trust, a concept of human beings, is often used to capture
the reliability or honesty of agents in MASs [2], which
makes sense to improve the quality of interactions. In general,
there are four main models associated with trust systems:
Logical models describe how one agent trust another according
to mathematical logic; Social-cognitive models estimate the
trustworthiness by taking inspiration from human psychology;
Organizational models capture trust by personal relationships
in the system considered, and numerical models understand
trust from the perspective of mathematical probability [3],
[4]. We focus on the numerical and social-cognitive models
in this paper. To obtain the trustworthiness of an agent, the
numerical models need to collect some information concerning
the potential interaction. Typically, they are direct trust, which
is based on the previous experience from its direct interactions
[5]; Indirect reputation, which is based on the recommendation
provided by third-party agents [4], [6].

Numerous methodologies have been employed to process
the collected information in the context of numerical models.
Evidence theory, also referred to as the theory of belief
functions or Dempster-Shafer theory (DST), has also been
adopted [7], [8]. In the system of multiagent, an agent hires
the basic probability of assignment (BPA) to represent a
source of information provided by other agents. However, two
issues need to be thoroughly stressed; that is, the reliability
of previous experience might fade over time, as well as
processing conflicts between BPAs. Our goal is therefore to
improve these aspects for trust estimation in MASs.

Accounting for multiple agents pursuing first-rate resources,
we also adopt the concept of reservations to emphasize the
expected future changes and fairness in MARA systems [9],
[10]. In summary, this paper makes two main contributions,
namely, to propose an improved DST trust models in MAS,
and resolve resource allocation in a multiagent context thanks
to the improved trust model and the concept of reservation.
The remainder of the paper is organized as follows. In section
2, we highlight state of the art about some related works, and
some preliminaries are discussed in section 3. The proposed
model is presented in section 4. Simulations and results are
then discussed in section 5. Conclusions and perspectives are
included in the last section.



II. RELATED WORKS

The literature is rich with different approaches to trust
detection in MAS, DST has also been employed [11], [12].
In [13], DST is used for distributed reputation management of
electronic commerce. The method relies on either direct trust
or indirect reputation, and indirect reputation is not necessary
if the direct trust is obtained. Meanwhile, Dempster’s combi-
nation rule is directly applied to integrate multiple materials.
Swift trust in a virtual temporary system based on DST is
recognized in the literature [7]. The proposed method clas-
sifies the swift trust in three sub-objectives (the vulnerability,
uncertainty, and venture) supported by five influencing factors,
and Dempster’s rule of combination is employed to fuse all
influencing factors. In the literature [14], trust transitivity is
stressed by the DST. They described the trust relationship
considering uncertainty and established a trust transition model
based on the trust features and trust relationship types. In
[8], the authors utilized DST to address the network security
problem in wireless sensor networks. The BPA is defined
by some trust factors, such as the received packets rate,
packets forwarding rate. The evidence similarity is processed
as weights to modify evidence, and the modified parts are
designated as unknown. The proposed method can be used to
identify malicious nodes. However, uncertainty, as well as the
property that the reliability of evidence vanishing over time,
are not emphasized.

The aforementioned DST-based trust models have both
advantages and disadvantages. In terms of limitations, the
property that evidence reliability vanishing over time is not
well stressed when generating BPAs. In addition, the standard
Dempster’s combination rule is not applicable directly when
combining conflicting evidence. Recently, evidence distance
and entropy-based models have been used to combine con-
flicting evidence outside of the MAS community [15]–[18].
However, we realize that the assigned weight is directly
proportional to the entropy of the evidence (the higher the
entropy, the greater the weight) in data fusion models [16],
[17], [19]. We argue that great weights are assigned to the
high-entropy evidence is inappropriate. Additionally, to the
best of our knowledge, to cope with the combination of
conflict evidence with the amount of information conveyed by
BPAs has rarely been stressed, especially in the field of trust
estimation. We therefore propose an improved DST-based trust
estimation model (ITEM) in MASs, mainly to emphasize the
two limitations as discussed. Firstly, we propose to generate
direct trust considering interaction orders, with which the
fading property is stated. Also, we improve the entropy-based
weighted approach when combing evidence.

III. DEMPSTER-SHAFER THEORY OF EVIDENCE

DST, proposed by Dempster and Shafer to handle un-
certainty [11], [12], has a wide range applications in risk
assessments, medical diagnosis, and target recognition. It is
a typical method of uncertain information fusion [20]. Some
preliminaries are introduced below.

definition 1: The frame of discernment and BPAs

DST is defined in the frame of discernment denoted by
Ω which consists of n mutually exclusive and collectively
exhaustive elements. 2Ω is the set of all subsets of Ω. Math-
ematically, a basic probability assignment (BPA, also known
as mass function) is 2Ω → [0, 1], with

∑
A∈2Ω m(A) = 1 and

m(∅) = 0 satisfied, where ∅ is the empty set, the non-zero
element A is named focal element, the set of all focal elements
is called core. Given two BPAs m1 and m2, Dempster’s
combination rule m =m1⊕m2 is used to combine them.

definition 2: Dempster’s combination rule

m(A) =

{
1

1−K

∑
B∩C=A m1(B)m2(C), A ̸= ∅;

0, A = ∅; (1)

with K =
∑

B∩C=∅ m1(B)m2(C), A, B and C are elements
in 2Ω. The normalization constant K shows the conflicting
degree between defined BPAs.

It has to be stressed that Dempster’s combination rule makes
sense only when K < 1, otherwise it is meaningless. To put
it another way, when BPAs are in high conflict, irrational
results might be generated [21]. In the previous studies,
there are two main methods to deal with highly conflicting
evidence combination, namely modifying the combination rule
[22] and preprocessing data [23], [24]. Han et al. modified
weighted average by evidence similarities is often used for
data preprocessing [24]. In this paper, we use the amount
of information contained in BPAs to manage high-conflict
evidence combination. Entropy of DST is the methodology
proposed to measure the amount of information conveyed by
BPAs [25], [26]. In what follows, some basic conceptions
related to entropy are introduced.

definition 3: Entropy of DST
Entropy is a measure of uncertainty and disorder that comes

from physics [27]. Shannon entropy is often implemented
to estimate the average amount of information carried by
a message in the context of probability theory [28]. As a
generation of probability theory, many definitions of entropy
of DST have arisen, for instance, the definitions proposed by
Smets [29], Yager [30], Deng [25] and so on [17], [31]. We
use Deng entropy to capture the uncertainty of BPAs. Given
a BPA mi, Deng entropy [25], [26] is defined

Ed(mi) = −
∑

F⊆2Ω

mi(F )log2(
mi(F )

2|F | − 1
). (2)

where F is the focal element in the BPA and |F | is the
cardinality of F .

IV. MARA-T&R SYSTEM

In this part, we present the MARA-T&R system, which
consists of two principal parts. One is to quantify the reliability
of agents based on the improved DST, and another is to allo-
cate resources based on agent trustworthiness and the concept
of reservation. In what follows, we first briefly introduce the
system of multiagents.



A. Multiagent system

The role of an agent can be interpreted as a computer
program that acts as a user or other program. Agents may
generate tasks, dialogue, perform actions, learn, and adapt to
the changing environments. A MAS is a computerized system
of multiple agents and their environments. When discussing
resource allocation in a MAS, both resource suppliers and
customers are modelled as intelligent agents, they dialogue,
cooperate and collaborate on resource allocation [32].

Our proposed MARA-T&R system consists of multiple
agents, each of which has general features such as unique iden-
tity (ID). Of course, agents also have other specific-purpose
capacities such as communication, memory and reasoning.
We particularly stress the allocation of touchable and visible
resources in a distributed MAS. An agent can be either a
resource supplier or a resource customer, and sometimes, it
could be both a resource supplier and a resource customer
simultaneously. For simplicity, the set of resource customers
is represented by C, and ci ∈ C if ci acts as a customer.
Likewise, the set of resource suppliers is illustrated by S, and
sj ∈ S if sj acts as a supplier.

Once a resource customer ci needs resources or services,
it takes turns asking its acquaintances sj (sj ∈ S) for
information. In this way, ci collects all resource supplier
candidates. However, it is emphasized that ci has to assess the
trustworthiness of these candidates in MARA with multiple
potentially deceptive agents. In the following subsection, the
proposed approach for trust estimation is described in detail.

B. ITEM

Typically, a customer ci (ci ∈ C) estimates the trustworthi-
ness of another resource supplier candidate sj (sj ∈ S) with
either direct trust or indirect reputation [6]. In this paper, both
direct and indirect trust information are adopted.

It is necessary to emphasize that the trust information
process involves much uncertainty caused by randomness,
incompleteness, fading over time, and so on. Meanwhile, a
customer might receive multiple recommendations provided
by other clients, i.e., indirect reputation. Thus, the central
issues for trustworthiness estimation lie in processing uncer-
tainty and integrating multiple information [33]. We use DST
to deal with these issues.

1) Generation of BPAs for direct trust: In this part, we
discuss how to generate BPAs to express direct trust based
on previous experience. Let T mean that a customer agent
considers a supplier agent to be trustworthy. Accordingly, nT
indicates that the supplier agent to be untrustworthy. Thus,
the frame of discernment is Ω = {T, nT}. the customer agent
can generate evidence, i.e., BPAs, according to its previous
experience to capture the reliability of the resource suppliers.

Firstly, we have to achieve the rates of satisfaction with
the previous experience. Here, Sij(t) and Fij(t) represent
respectively the rates of satisfaction and dissatisfaction of the
supplier sj from the perspective of ci at time t. As stated, it
is necessary to emphasize that the stability of memory fading

over time, we have

Sij(t) =
∑Rij

r=1(e
−

Rij−r+1

λi∗Rij ∗ sin( [I(r)+1]π
4

))

Fij(t) =
∑Rij

r=1(e
−

Rij−r+1

λi∗Rij ∗ cos( [I(r)+1]π
4

))

(3)

where λi is the stability of memory to the customer ci (deter-
mines how fast a memory fading over time). Rij indicates the
total number of interactions raised by the customer agent ci
with the supplier agent sj and r corresponds to the interaction
sequence. I(r) is the interactive outcome of the rth interaction,
I(r) = 1 if it is a positive feedback, otherwise, I(r) = −1.

Besides, in order to characterize uncertainty caused by in-
complete information, randomness, etc., a fading factor fij(t)
is employed by the customer ci. Then the BPA, namely the
direct trust, which captures the reliability of the supplier sj
by the customer ci at time t is as follows, mt·d

ij (T ) = Sij(t)/(Sij(t) + Fij(t)) ∗ fij(t)
mt·d

ij (nT ) = Fij(t)/(Sij(t) + Fij(t)) ∗ fij(t)
mt·d

ij (T, nT ) = 1− (mt·d
ij (T ) +mt·d

ij (nT )).
(4)

The BPA can also be rewritten as mt·d
ij = (mt·d

ij (T ), mt·d
ij (nT ),

mt·d
ij (T, nT )). As (3) and (4) exhibit, recent interactions have a

greater impact on the estimation of direct trust. In this way, we
modelled the fading property of direct experience. Moreover,
this direct trust can be extended to dynamic MASs where
agents have oscillating behaviors.

2) Modified Dempster’s combination rule for indirect repu-
tation: In the previous part, we studied direct trust according
to a customer’s previous experience. Generally, the customer
would require indirect experience to make sound decisions. As
stated in the preliminary part, the combination of conflicting
evidence would result in inconsistent and irrational results. The
inconsistent results would mislead the customer to choose a
partner that is not trustworthy. In the literature [34], a method
based on BPA preprocessing is proposed. Supposing that the
customer ci has received L BPAs mt·ind

qj (q = 1, ..., L), each
of which can be regarded as an indirect reputation provided
by the third-party customer cq . the pretreatment of these BPAs
[34] is as following

MAE(F ) =
L∑

q=1

ωqjm
t·ind
qj (F ) (5)

where ωqj is the weighted degree of mt·ind
qj and F is the

element in the union of the focal elements in the L BPAs.
MAE(F ) represents the weighted average BPA of all the
primitive evidence. After preprocessing, the classic Dempster’s
combination rule is used L − 1 times to combine MAE(F )
to receive the final result [34]. However, it is challenging
to decide the appropriate weight of mt·ind

qj . In the previous
methods [18], [23], [34], [35], especially outside the system of
multiagents, evidence distance and entropy-based approaches
and average weight approaches are dominant for data fusion.
However, we recognize that the assigned weight is directly
proportional to the entropy value [16], [17], [19], that is, the
high weight is assigned to the evidence with high entropy, and



it is not reasonable. Besides, the entropy of DST is rarely used
alone for conflict evidence combination.

As explained, the generation of BPAs involves much uncer-
tainty. Generally speaking, uncertainty can also be interpreted
as the amount of information conveyed by the message, and it
can be utilized to construct weights [24], [36]. Compared to the
news “the sun rises from the east,” it is accepted that “the sun
rises from the west” carries more knowledge. Namely, when
the data source produces a low-probability value, the event
conducted more “information” than when a high-probability
event occurs. Deng entropy shows the information contents
contained by the BPAs (2). Therefore, the higher the entropy
value, the greater the uncertainty the evidence is, and accord-
ingly, the less information the evidence contains. Thus, lesser
weight should be assigned. Moreover, the frame of decrement
consists of two elements, i.e., Ω = {T, nT}, considering the
Deng entropy values as weights could be more accessible and
acceptable. Suppose that L BPAs mt·ind

qj (q = 1, ..., L) are
received by the customer ci, then the detailed processes to
fuse the L indirect reputation are shown as follows,

(i) Compute Deng entropy of BPA mt·ind
qj by (2) and results

are represented by Ed(m
t·ind
qj ). It must be emphasized

that because of the existence of uncertainty and fading
functions, the evidence of 100% negative or positive
does not exist, for instance, at time t, (mt·ind

qj (T ) = 1,
mt·ind

qj (nT ) = 0, mt·ind
qj (T, nT ) = 0) does not exist;

(ii) Normalize the Deng entropy Ed(m
t·ind
qj ), in order to

observe obvious difference between the Deng entropy
Ed(m

t·ind
qj ), we propose to use the equation below and

results are represented by Êd(m
t·ind
qj )

Êd(m
t·ind
qj ) =

maxL
k=1e

Ed(m
t·ind
kj ) − eEd(m

t·ind
qj )∑L

p=1(maxL
k=1e

Ed(mt·ind
kj ) − eEd(mt·ind

pj ))
(6)

(iii) Afterward, each BPA is weighted with its normalized
entropy, we therefore have ωqj = Êd(m

t·ind
qj ) in (5).

Thus, we modified the entropy-based weighted approach
to combine multiple BPAs, that is, a great weight is
appointed to the low-entropy BPA. From another per-
spective, agents tend to trust the third-party agents that
provide more information in the trust estimation model,
or third-party agents with higher certain indirect repu-
tations are more trustworthy. If all the entropies are the
same, the weights are set equally.

(iv) Finally, combine the modified BPA L− 1 times as [34]
stressed to obtain the final result.

In this way, the received L BPAs are combined and the
combined indirect reputation is represented by (M t·ind

ij (T ),
M t·ind

ij (nT ), M t·ind
ij (T, nT )).

3) Direct trust and indirect reputation combination: The
customer ci therefore receives the direct trust and indirect
reputation to the supplier sj at time t with the before-
mentioned method, which are represented by mt·d

ij and M t·ind
ij

respectively. However, a customer usually relies more on its
direct trust compared to the indirect reputation provided by

Algorithm 1 ITEM

1: Input: Ŝ, Ĉ.
2: Output: T̂wij of each sj (sj ∈ Ŝ).
3: for sj in Ŝ do
4: for cq in Ĉ do
5: ci asks cq for indirect reputation mt·ind

qj ;
6: end for
7: ci receives customers’ evaluations, denoted by

mt·ind
1j ,...,mt·ind

qj ...;
8: Compute Deng entropy of each evaluation by (2);
9: Normalize the obtained Deng entropy by (6);

10: Preprocess the received evaluations with the normalized
Deng entropy by (5);

11: Combine the preprocessed BPA to get the combined
indirect reputation M t·ind

ij by (1);
12: Obtain the direct trust mt·d

ij of sj by (3) and (4);
13: Modify mt·d

ij and M t·ind
ij by (7) to get the revised direct

trust m̂t·d
ij and indirect reputation M̂ t·ind

ij ;

14: Combine m̂t·d
ij and M̂ t·ind

ij by (1) and record the final
trustworthy T̂wij of sj from the perspective of ci.

15: end for

third-party agents. As a result, two weights, Wd and Wind,
are employed to modify the direct trust mt·d

ij and indirect
reputation M t·ind

ij , respectively. The corresponding results
after modification are represented by m̂t·d

ij and M̂ t·ind
ij . The

direct trust is revised as follows,
m̂t·d

ij (T ) = mt·d
ij (T ) ∗ Wd

m̂t·d
ij (nT ) = mt·d

ij (nT ) ∗ Wd

m̂t·d
ij (T, nT ) = 1 − (m̂t·d

ij (T ) + m̂t·d
ij (nT )).

(7)

The indirect reputation is also revised in the same way by the
weight of indirect reputation Wind. Afterward, the Dempster’s
combination rule is employed to fuse the modified direct trust
and indirect reputation to get the ultimate trustworthiness T̂wij

of the supplier sj from the perspective of ci. The general rule
for the customer ci to estimate the trust of all the potential
resource suppliers could be translated into the Algorithm 1,
which is also named as Improved DST-basd Trust Estimation
Model (ITEM). Our proposed ITEM has two inputs: Ŝ which
is the set of prospective suppliers, and Ĉ is the set of third-
party customers who provide indirect reputation to a certain
supplier sj . Specifically, for each potential resource supplier
sj ∈ Ŝ, the customer ci receives recommendations from other
customers (lines 4-6). Then indirect reputation is calculated
with the proposed trust model (lines 7-11). Likewise, direct
trust can be computed in the same way (line 12). Direct trust
and indirect reputation are combined to obtain the ultimate
trustworthy value of sj (lines 13-14). Finally, ci achieves the
trust value of all suppliers.

C. Resource reservation and resource allocation

An agent in the proposed method makes decisions locally
and prioritize its utility function. Therefore, a well-evaluated
agent is more likely to be selected more than once. However,



the allocation of resources may not be interrupted once they
begin processing. Besides, the agent has no priority over other
agents. Hence, we offer solutions guided by the concept of
reservations to ensure a fair allocation of resources.

The customer ci (ci ∈ C) attempts to reserve the required
resource provided by the most reliable supplier sj (sj ∈ S).
ci sends a message to inform its unique identity and reser-
vation time. The supplier sj acts generous and preserves the
corresponding available resource. Once the exact resource is
retained, no one has the right to assign it before the reservation
period. In this way, the resource customer who first reserves
the resource is prioritized to obtain the resource. “First come,
first served” guarantees the fairness and normal operation of
the proposed system.

V. SIMULATION STUDY

In this section, we conducted two separate simulations to
illustrate the effectiveness of the proposed method. Firstly, the
ITEM part of our proposed MARA-T&R system in section
IV-B is compared to beta reputation system (BRS) [4] in terms
of the relative frequency of successful interactions (RFS) [37].
The comparison is employed to indicate the effectiveness of
the ITEM for agents’ trust estimation in MASs. Afterward, the
proposed MARA-T&R system is applied in a bicycle sharing
system for resource allocation to test its effectiveness.

A. ITEM vs. BRS

Of the existing computational trust models, the BRS is
widely applied in different fields and somehow similar to
our trust method. It is a probabilistic model that relies on
the number of successful and failed interactions [4]. We
compare the performance in terms of the RFS, which evaluates
the system based on how many interactions are executed to
complete a target number of successful interactions. Specif-
ically speaking, we exhibit the fraction of a fixed number
of successful interactions over the total required amount of
interactions. Here, it is necessary to state that a successful
interaction for an agent corresponds to an interaction that
selects it as a provider, and the latter has properly provided
the service.

1) Simulation setting for ITEM vs. BRS: Our simulation
uses one resource customer, 10 resource suppliers and 10 third-
party resource customers, i.e., card(Ŝ) = card(Ĉ) = 10.
Each supplier sj ∈ Ŝ has a constant trust value of providing
satisfactory resources, which is sampled uniformly from the
values of 0.1, 0.2,...,0.9. This value indicates the probability
of a successful outcome when interacting with this supplier.
For preprocessing, we let all the third-party customers interact
with the resource suppliers so that they can achieve direct
trust information about the suppliers. 5000 interactions are
conducted to assure the data to be near-accurate, and each
of the 5000 interactions a supplier sj ∈ Ŝ is chosen randomly
from the ten resource suppliers, and a third-party customer cq
is randomly selected from the ten resource customers. Each
resource customer cq remembers, for each resource supplier

sj , the interaction order, and the corresponding interactive
feedback, which can be either success or failure.

Afterward, customers cq ∈ Ĉ estimate their (direct) trust
in any resource suppliers employing the previous information.
Two different direct trust values, computed by the ITEM and
the BRS are received respectively. In terms of the BRS, the
customer cq models its trust in the supplier sj using the
numbers of successful pqj and failed nqj interactions raised
by cq with sj . Then the trust value of sj from the perspective
of cq can be represented by brs(pqj , nqj) =

pqj+1
pqj+nqj+2 [4].

With regards to the ITEM, (3) and (4) are then adopted to
generate the direct trust mt·d

qj . An honest third-party customer
cq will simply report the actual evaluation when asked for
direct experience with respect to the supplier sj .

However, it must be emphasized that there are many de-
ceptive agents in a MAS. In terms of the third-party resource
customer settings, a partly customer firstly picks the resource
suppliers for which it would provide distorted recommenda-
tions. Each supplier sj could be picked with a probability of
50%. For all the other suppliers, cq would always be honest. If
a supplier sj is in the list of providing distorted information,
cq yields two random numbers nq1 and nq2 (nq1, nq2 ∈
[0, 1]) with which it reports the distorted recommendation
mt·d

qj (T ) = nq1 ∗ nq2, mt·d
qj (nT ) = (1 − nq1) ∗ nq2, and

mt·d
qj (T, nT ) = 1−m(T )−m(nT ). cq also reports nq1 ∗Hq

and (1−nq1)∗Hq rounded to 1 instead of the actual amounts
of successful and failed interactions, where Hq is the number
of total interactions that cq has raised.

Subsequently, the resource customer ci tries to interact with
a resource supplier chosen randomly from the 10 resource
suppliers. ci starts with an empty set of direct trust, and then
the experiment proceeds in rounds to reach a fixed number
of successful interactions. Each round, we force ci to assess
the trustworthiness only by indirect reputation provided by
cq(cq ∈ Ĉ). When ci collected all indirect reputation at the
selection step, two resource suppliers would be selected to
conduct interactions based on the trustworthiness estimated by
the ITEM and the BRS, respectively. Accordingly, we record
the two selected suppliers and the corresponding feedback.

With regard to demonstrating the effectiveness of the re-
vised entropy-based weighted approach for multiple BPAs

combination, we use e
Ed(mt·ind

qj )∑L
p=1 e

Ed(mt·ind
pj

)
to replace (6) in our

proposed ITEM. As (6) shows, we hold that great weights
should be appointed to the small-entropy BPAs. However, [16],
[17], [19] employ

Ed(m
t·ind
qj )∑L

p=1 Ed(mt·ind
pj )

, or
Ed(m

t·ind
qj )

max(Ed(mt·ind
pj )

for data
fusion outside the system of multiagent. In other words, the
weight assigned to BPA is proportional to the entropy value.
The simulation terminates when the number of successful
interactions reaches at 100 with the proposed method.

2) Results: Fig. 1 presents the RFSs obtained by the ITEM
(blue cuboid) and the BRS (red cuboid) under P% P ∈ [0, 50]
dishonest agents, respectively. We ran 100 simulations and
randomly select 10 times under 0 and 50% deceptive agents
due to space constraints and similar results. As is shown in



Fig. 1. the RFS comparison between the ITEM and the BRS

Fig. 2. RFS comparison of A) our proposed entropy-based weighted approach
ITEM (high weight assigned to low-entropy BPAs) with B) the analogous
version of ITEM with high weight assigned to high-entropy BPAs

Fig. 1, RFSs are nearly the same when several deception
agents are involved in the MAS. That is to say, the ITEM
part of our proposed MARA-T&R system competes with the
BRS for trust estimation. However, we have overcome the
limitations in the context of the DST-based trust estimation
models as discussed in the last paragraph of section II, from
both generating BPAs and combing multiple BPAs aspects.

Fig. 2 exhibits the performances of the two entropy-based
weighted approach for indirect reputation combination. We use
the RFS value v1 obtained by the proposed ITEM, minus the

RFS value v2 obtained by replacing (6) with e
Ed(mt·ind

qj )∑L
p=1 e

Ed(mt·ind
pj

)

in ITEM. Therefore, each round, we receive a v1−v2, and the
red line is hired to show the results. The blue line indicates the
cumulative RFS differences. As displayed, we have v1−v2>
0 in each round, which means the proposed entropy-based
weighted approach could always receive a better RFS value.
Thus, great weights assigned to low-entropy BPAs for multiple
BPAs combination is correct.

In summary, the ITEM part of our proposed MARA-T&R
system is an ideal trust estimation model, and it is as efficient
as BRS. However, there are at least three advantages in ITEM.
First, we considered the fading property when generating
evidence by previous experience ((3) and (4)), which has
fulfilled the DST-based trust system. This approach is extend-
able for dynamic trust estimation. Secondly, we performed
an information amount based approach to combine multiple
indirect reputations, that have rarely been emphasized before
in MASs for trust estimation. Lastly, we revised the entropy-
based weighted approaches for BPAs combination. That is,
high weights should be assigned to small-entropy BPAs.

B. Simulation setup of MARA T&R system

We also test the proposed MRAR-T&R in an agent-based
bike sharing system with the help of Python and modular
Mesa. In the simulation setup, bicycles and user agents are

placed in the grid ‘20*20’ randomly, where (0,0) is assumed
to be the bottom-left and (19,19) is the top-right, more than
one agent can be placed in the same cell.

In terms of resources (bicycles), they have identities, states,
and locations, initialized by placing randomly in the grid. It is
essential to emphasize that the status of the bicycle switches
from ‘Free,’ ‘Reserved,’ and ‘Busy.’ A customer sends a reser-
vation message to the available bicycle informing its identity
and the reservation time. The state of the reserved bicycle
converts to ‘Busy’ if the user arrives before the reservation
time; otherwise, the reserved bicycle would become available
(‘Free’) again. The “busy” bicycles become “Free” when
reaches the destination.

In the simulation setup, a user agent has various properties
and actions. These actions include “Update memory”, ‘Need
bicycles,’ ‘Reserved a bicycle,’ ‘Using a bicycle’ and ‘Return
a bicycle.’ The user agent ai has two memories, namely
memi(bike) and memi(history), and both have limited
lengths 20. memi(bike) is used to record free bicycles seen
in the same cell, which would act as resource information
when others need a bicycle. memi(history) remembers the
interactive feedback, which acts as direct experiences for trust
estimation. Each round, the user agent ai updates memi(bike)
firstly. If ai needs a bike (with the probability of 0.3), it
asks its neighbours (agents in the circle with a radius of 6
are regarded as neighbours) for information about available
bicycles. We force the distance between its location and the
destination to exceed 3/4 times the length of the grid ([15, 40]
units of length), it is because we would like to compare
the average waiting time. It is essential to stress that the
distance of the cube (x1, y1) and (x2, y2) is calculated by
|x2 −x1|+|y2− y1|. In this circumstance, when the neighbour
aj receives the message, it acts generously and provides its
memory memj(bike). As stated, users in the system may
provide misleading information, and it is reported that 31%
person lies to an acquaintance in real life [38]. Accordingly, all
user agents provide deceptive information with the probability
satisfy the normal distribution with a mean equaling to 0.3.
Here, the misleading information is mainly to give a fake
location of the shared bicycle by randomly selecting a neigh-
bouring cell. When collected all the bike candidates, the user
has to assess the trustworthiness of the information providers.
Thus, the blackboard shares the collected information related
to the supplier’s pervious performance. The ITEM part of our
proposed MARA-T&R system in section IV-B is adopted for
trust estimation, and ai selects and reserves a bicycle with the
highest trust value and shortest distance. Afterward, the user
agent goes towards the reserved shared bicycle. It is a success
if it obtains the shared bicycle; otherwise, the interactive out-
come is a failure. Subsequently, memi(history) remembers
the interactive outcome and the corresponding information
supplier. Simultaneously, the blackboard is real-time updated
by collecting memi(history). It would generously share the
collected information as long as the other user agents need
evidence for trust estimation. Finally, we calculate the average
waiting time each round, which would be explained later.



Fig. 3. Average required time comparison between A) trust is taken
into consideration by the proposed ITEM (the red line), and B) Without
considering trust (the blue line).

Each round, an experiment in the test environment is
conducted using the parameters as explained. For example,
the length and width of the cube are 20 units of length.
There are 100 users and 100 bicycles in the network. Two
things need to be stressed. Firstly, the waiting time starts from
the time an agent needs a shared bicycle and ends when it
reaches the destination. A user agent could either walk or
ride to the destination. It moves forward three units of length
per time with a bicycle. In contrast, an agent moves one
unit of length if it walks. In this way, the distance can be
interpreted as the required time walking from its position to
the destination. However, if not characterized precisely, the
misleading information provided by dishonest neighbouring
agents would lead the user to a wrong place, which would
waste more time than simply walking. We continue to calculate
the waiting time of each agent until its request (to have a bike)
is satisfied (in the worst case until its arrival at the destination).
As a comparison, the distance is also recorded as it shows the
time of walking to the destination. Secondly, the generation of
basic probability assignment is conducted by calculating the
satisfying degree of the historical interactions, and the fading
factor is essential to generate BPAs. In this simulation setting,
the generation of BPAs is defined in Equations 3 and 4 where
λi = 0.25 and fij(t) = e−

1
R . We run the simulation several

times and Fig. 3 exhibits the results.
As is shown in Fig. 3, we could see that the average

required time 15.8 noted by the red line (with trust) is much
smaller than the average required time 20.70 represented by
the blue line (without trust). That is to say, most user agents
successfully find bicycles even if nearly 30% of neighbouring
agents could be dishonest. More in detail, the average distance
starts from nearly 7.5 in the first few rounds, as the blue line
shows in Fig. 3. It is because there are plenty of free bicycles
nearby, and a user has enough opportunity to receive a shared
bicycle. However, the average time gradually increases as there
are limited available resources (bicycles).

It has to be emphasized that 100 shared bicycles and 100
users are averagely placed in 400 cubes in the previous simu-
lation. Meanwhile, some shared bicycles are reserved by other
user agents which means that there are not enough available
shared bicycles for users. Fig. 4 shows the comparison of the
proportion of successfully obtaining a shared bicycle when
there are enough bicycles (400 bicycles). Nevertheless, we also
find that 61% of users received a shared bicycle successfully

Fig. 4. Comparison of successful allocation each round between the
green line: with sufficient resources and the magenta line: without sufficient
resources; Comparison of reaching with a bicycle between the red line: with
sufficient resources, and the blue line: with insufficient resources.

each round even without sufficient bicycles (as the magenta
line shows in Fig. 4).

As exhibited in Fig. 4, the system provides enough shared
bicycles (400 shared bicycle agents and 100 user agents).
The average probability of providing misleading information
satisfies the normal distribution with a mean equaling to 0.3.
Compared to the magenta line (with 100 bicycle agents),
we find that the successful allocation rate indicated by the
green line (with 400 bicycle agents) increased by nearly eight
percent. Whereas, the improvement is not that much obvious.
However, the ratio of riding to destinations could be around
98%, which is a significant improvement. In other words, even
without enough resources, the proposed MARA-T&R system
can find reliable partners. When with sufficient resources, the
method can efficiently help obtain required resources.

C. Discussion

In the forenamed parts, we conducted two tests to illustrate
the effectiveness of our proposed MARA-T&R system. Firstly,
we compared the ITEM part of our proposed MARA-T&R
system to BRS. Our ITEM competes with BRS with a small
amount of dishonest agents involved. That is to say, the ITEM
can be used for trust estimation in MASs. Moreover, at least
three aspects have been improved from the perspectives of gen-
erating and combining evidence, which was detailed discussed
at the end of section V-A. The improvements have overcome
the shortcomings and also extended the DST-based trust model
for dynamic trust estimation. Then we simulate our proposed
MARA-T&R system in a bike-sharing system. Because of
the particular simulation setup, and no prior experience is
provided, it is reasonable and convincing to compare the ratio
of average waiting time and successful resource allocation to
present the efficiency of the proposed method.

Generally speaking, the received evidence contains much
uncertainty caused by many factors, including incomplete
information, randomness and so forth. Thus, we use a fading
factor to generate BPAs is reasonable. However, agents are
used to acting stably. Therefore, the fading factor is only useful
in generating a BPA, and it has little influence on the final
results. In the next work, we would test the proposed method
in a MAS where agents behave oscillating to show the power
and significance of the fading factor.



VI. CONCLUSION

In this paper, we have provided two principal contributions.
First, we have improved the DST-based trust model. In the
previous literature of DST-based trust models in MASs, two
issues were not well emphasized. One is about the reliability
of evidence vanishing over time, and another is to cope with
high-conflict evidence. We used the fading factor ((3) and (4))
as well as Deng entropy to improve these two shortcomings.
The comparison results indicate that the proposed entropy-
based weight approach is correct and perfect in dealing with
evidence combination. Meanwhile, the ITEM part of our
proposed MARA-T&R system can be extended for dynamic
trust estimation in MASs. Second, we proposed a resource
allocation system based on the trust of agents and the concept
of reservation. We have then applied our model to a bicycle-
sharing system and the results showed its efficiency in bicycle
selection in a MAS with deception agents.

However, we also have limitations that we will address in
future work: First, we did not simulate the dynamic reliability
of resource suppliers. The generated BPAs are sensitive to
recent interactions, and the proposed trust model should work
well with the dynamic change in the trustworthiness. Second,
the proposed trust model does not work well in a system with a
majority of dishonest agents. In the future, we would enhance
our methods to overcome these limitations and solve more
practical resource allocation problems.
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