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Abstract
This work introduces sequential neural beamforming, which
alternates between neural network based spectral separation
and beamforming based spatial separation. Our neural net-
works for separation use an advanced convolutional architecture
trained with a novel stabilized signal-to-noise ratio loss func-
tion. For beamforming, we explore multiple ways of computing
time-varying covariance matrices, including factorizing the spa-
tial covariance into a time-varying amplitude component and a
time-invariant spatial component, as well as using block-based
techniques. In addition, we introduce a multi-frame beamform-
ing method which improves the results significantly by adding
contextual frames to the beamforming formulations. We exten-
sively evaluate and analyze the effects of window size, block
size, and multi-frame context size for these methods. Our best
method utilizes a sequence of three neural separation and multi-
frame time-invariant spatial beamforming stages, and demon-
strates an average improvement of 2.75 dB in scale-invariant
signal-to-noise ratio and 14.2% absolute reduction in a compar-
ative speech recognition metric across four challenging rever-
berant speech enhancement and separation tasks. We also use
our three-speaker separation model to separate real recordings
in the LibriCSS evaluation set into non-overlapping tracks, and
achieve a better word error rate as compared to a baseline mask
based beamformer.

1. Introduction
Audio source separation has many applications, for example as
a front end for robust automatic speech recognition (ASR) and
to improve voice quality for telephony. Leveraging multiple
microphones has great potential to improve separation, since
the spatial relationship among microphones provides comple-
mentary information to spectral cues exploited by monaural ap-
proaches. Multi-microphone processing can also improve the
suppression of reverberation and diffuse background noise.

Recently, a new paradigm has emerged as a promising alter-
native to conventional beamforming approaches: neural beam-
forming, where the key advance is to utilize the non-linear
modeling power of deep neural networks (DNN) to identify
time-frequency (T-F) units dominated by each source for spa-
tial covariance matrix computation [1, 2]. Unlike traditional
approaches, neural beamforming methods have the potential to
learn and adapt from massive training data, which improves
their robustness to unknown positions and orientations of mi-
crophones and sources, types of acoustic sources, and room ge-
ometry. An initial success of neural beamforming approaches

*Work done during an internship at Google.

was improving time-invariant beamforming using T-F domain
mask prediction, where predicted masks were used to obtain
time-invariant spatial covariance matrices for all sources. This
has proven useful in ASR tasks such as CHiME-3/4 [3]. Recent
studies considered online or low-latency beamforming [4, 5]
and time-varying beamforming [6] for improved performance
in certain scenarios. In addition, spatial features such as inter-
channel phase differences (IPD) [7], cosine and sine IPDs [8]
and target direction compensated IPDs [9], which can encode
spatial information, are utilized as additional network input to
improve the mask estimation in masking-based beamforming.
Other cues, such as visual information [10], location informa-
tion [11] and speaker embeddings [12, 13], can also be used as
additional inputs to improve target extraction and source sepa-
ration in both single- and multi-microphone setups.

This paper explores alternating between spectral estimation
using DNN-based masking and spatial separation using linear
beamforming with a multichannel Wiener filter (MCWF), per-
forming up to three applications of the neural separation net-
work: separate, beamform, separate, beamform, and separate.
By doing so, linear beamforming is effectively driven by DNN-
based masking. This is inspired by the single-channel sequen-
tial network of [14], which we use as a baseline, and by the
findings that better beamforming results can be used as extra
features to improve spectral masking and vice versa. This se-
quential approach is related to iterative neural beamforming
with postfiltering [15], which uses the same DNN repeatedly
with only the beamformed signal as input for speech enhance-
ment; in contrast, we train a different neural network for each
stage, concatenating the mixture signal with the beamformed
signals, applied to both speech enhancement and separation.
For beamforming, we consider both time-invariant and time-
varying ways of calculating covariance matrices to improve spa-
tial separation. We also explore the effectiveness by incorporat-
ing multi-frame context during beamforming. Evaluation re-
sults on four challenging sound separation tasks demonstrate
the effectiveness of the proposed algorithms. Also, our best
three-speaker separation model achieves significantly improved
word error rate on the LibriCSS dataset compared to a neural
mask beamforming baseline separation system.

2. Contributions
The model we introduce has similarities with earlier mask-
based beamforming models but has the following novel aspects
which end up improving the performance significantly.

• We perform multiple repetitions of mask-based beamform-
ing where each sequential application of a neural network
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has its own parameters optimized separately.

• We use different window and hop sizes for the mask-
prediction network and the beamformer, in contrast to previ-
ous works where the same STFT parameters were used for
both. Our networks predict time-domain waveforms, and
we take another independent STFT to perform beamform-
ing. We achieve best results using a smaller window size in
the mask network and a larger one for the beamformer.

• We use a state-of-the-art TDCN++ network [14] for mask-
prediction as well as mixture consistency projection [16] to
improve separation performance.

• We use a stabilized SNR loss function for training the mask-
prediction neural network.

• Our best performing beamformer is a time-invariant multi-
frame multichannel Wiener filter that improves the re-
sults significantly compared to previously-used single-frame
beamformers.

• Our model is completely independent of microphone and
room geometry, and we show that our three-speaker sepa-
ration model works well on a mismatched real data set with
different number of microphones and an unseen room geom-
etry.

3. Methods
Assume an M -channel time-domain signal consisting of S
sources, y[n] =

∑S
s=1 x(s)[n], recorded in a reverberant envi-

ronment. The short-time Fourier transform (STFT) of this mul-
tichannel signal can be written as Yt,f =

∑S
s=1 X

(s)
t,f , where

Yt,f and X
(s)
t,f ∈ CM respectively represent the mixture and

the reverberant image of source s at time t and frequency f . Our
study proposes multiple algorithms to recover the constituent
reverberant sources X(s)

ref from a reverberant mixture Yref re-
ceived by a reference microphone, with or without leveraging
spatial information contained in Y. We assume offline process-
ing and non-moving sources throughout each utterance.

Figure 1 illustrates our proposed system. Each spectral
masking stage uses an improved time-domain dilated convo-
lutional neural network (TDCN++) [14]. The first stage per-
forms single-channel processing to estimate each source via T-F
masking. The estimated sources are then used to compute statis-
tics for time-invariant or time-varying beamforming. The next
masking stage combines spectral and spatial information by tak-
ing in the mixture and beamformed results for post-filtering.
This sequence is then repeated several times.

As shown in Figure 1, we train through multiple
iSTFT/STFT projection layers. These layers are helpful as
they can effectively address the well-known phase inconsis-
tency problem, a common issue of magnitude-domain masking
[16, 17]. In addition, our masking networks operate at a typical
32 ms window size, but our system can use a larger window size
for beamforming. This way, beamforming can be performed at
a higher frequency resolution and produce finer separation. The
iSTFT/STFT pairs are necessary here to change the window size
back and forth during sequential processing. This strategy dra-
matically improves time-invariant MCWF in our experiments.

3.1. Spectral mask estimation for sound separation

For monaural speech enhancement and speaker separation, we
use TDCN++ based T-F masking (see [18] for an overview)
to produce source estimates X̂(s)

MNi = Â
(s)
i � Yref , where �
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Figure 1: System overview.

denotes element-wise multiplication and Â(s)
i is the mask esti-

mate produced by the ith TDCN++. Note that i ∈ {1, 2, ..., I},
meaning that there are I (set to 3 in this study) stages in the se-
quence. The loss function at each stage maximizes a stabilized
SNR in the time domain

Li = min
π∈Π

S∑
s=1

−SNRτ,ε
(

iSTFT(X̂
(π(s))
MNi ), x

(s)
ref

)
, (1)

where

SNRτ,ε(x̂,x) = 10 log10

(
‖x‖2

‖x− x̂‖2 + τ‖x‖2 + ε

)
, (2)

Π is the set of all permutations over S sources, and π(s) is the
permuted source index s under permutation π. The parameter
τ acts as a soft threshold limiting the maximum SNR that can
dampen the effect on the total loss from examples that are al-
ready well-separated. We use permutation invariance for speech
separation, but not for speech enhancement. For i > 1, the
network input is the concatenation of the mixture magnitude
STFT features with those of all beamformed source estimates,
X̂

(s)
BFi−1.

3.2. Multi-frame multichannel Wiener filter

Inspired by the success of convolutional beamformers [19],
we introduce multi-frame MCWF beamforming and investigate
various context sizes. The rationale is that, by stacking multiple
frames, the beamformer can have more contextual information
and degrees of freedom for better noise suppression.

We first define a context-expanded observed signal Ȳt,f =[
YT
t−a,f , . . . ,Y

T
t,f , . . . ,Y

T
t+b,f

]T ∈ CcM which is a flattened
complex vector including multiple frames around a T-F unit,
where a is the left and b the right context size in frames, and
c = a + b + 1. We treat all the contextual T-F units as if
they are additional microphones in the subsequent beamforming
formulations. In each stage i, estimated sources X̂(s)

MNi from the
TDCN++ are used to compute the spatial covariance of each
source for a time-invariant MCWF (TI-MCWF)

ŵ
(s)
i,f = (Φ̂

(y)
f )−1Φ̂

(s)
i,furef , (3)

where uref is a one-hot vector with the coefficient correspond-
ing to the reference microphone at the center frame set to one,
the multi-frame mixture covariance matrix is estimated as

Φ̂
(y)
f =

1

T

T∑
t=1

Ȳt,fȲ
H
t,f , (4)



and Φ̂
(s)
i,f is the source covariance matrix computed as

Φ̂
(s)
i,f =

1

T

T∑
t=1

Â
(s)
i,t,fȲt,fȲ

H
t,f , (5)

Â
(s)
i,t,f =

|X̂(s)
MNi,t,f |

2∑S
s′=1 |X̂

(s′)
MNi,t,f |2

. (6)

This approach follows recent developments in neural beam-
forming [3, 20, 2] and straightforwardly applies them to a multi-
frame setup. The idea is to use T-F units dominated by source
s to compute its covariance matrix for beamforming. Here the
Wiener-like mask Â(s), which can be derived based on a dif-
ferent window size, is recomputed in an alternate STFT domain
from the reconstructed time-domain signal for source s from the
masking network. For convenience, the mask is considered the
same across microphones, which is a reasonable approximation
for compact arrays in far-field conditions. The beamforming
result for source s in stage i is computed as

X̂
(s)
BFi,t,f = (ŵ

(s)
i,f )HȲt,f . (7)

We also experimented with MVDR and MPDR beamform-
ers [21, 22], but they did not perform as well as MCWF in terms
of SI-SNR. This paper hence only reports results with MCWF.

3.3. Time-varying beamforming for spatial estimation

A TI-MCWF has limited power for separation, as it is only
a linear time-invariant filter per-frequency. To obtain time-
varying behavior, we experiment with a block-based ap-
proach, where we calculate TI-MCWF beamformers in half-
overlapping blocks of frames with some windowing. We use
windowed signals to calculate spatial covariance matrices and
perform overlap-add for post-windowed beamformed signals.
The Vorbis window [23] is used for this processing.

A frame-level way of computing a time-varying covariance
matrix for each source is to factorize it as a product of a time-
varying power spectral density (PSD) and a time-invariant co-
herence matrix [24, 25, 26]. The rationale is that for a non-
moving source, its coherence matrix is time-invariant assuming
that the beamforming STFT window is long enough to capture
most of the reverberation. Unlike conventional methods, which
typically use maximum likelihood estimation or non-negative
matrix factorization to estimate the PSD and spatial coherence
[24, 26], the proposed algorithm leverages estimated source sig-
nals produced by neural networks to compute these statistics.
Mathematically,

Φ̂
(s)
i,t,f = |X̂(s)

MNi,t,f |
2Ψ̂

(s)
i,t,f/D̂i,t,f , (8)

where |X̂(s)
MNi,t,f |

2 is the PSD estimate, Ψ̂
(s)
i,t,f can be either

Φ̂
(s)
i,f computed over all the frames in an utterance as in (5) for

a time-invariant covariance matrix, or it could be a block-based
one calculated over the frames in a block. D̂i,t,f = d̂i,t,f d̂

T
i,t,f

with d̂i,t,f = diag(Ψ̂
(s)
i,t,f )1/2 normalizes the spatial compo-

nent to have a unit diagonal. In far-field conditions where level
differences are negligible, D̂i,t,f ≈ (Ψ̂

(s)
i,t,f )m,m11T for a mi-

crophone index m. A time-varying factorized (TVF) MCWF is
computed as

ŵ
(s)
i,t,f = (Φ̂

(y)
i,t,f )−1Φ̂

(s)
i,t,furef , (9)

where Φ̂
(y)
i,t,f =

∑S
s′=1 Φ̂

(s′)
i,t,f , and the beamformed result is

X̂
(s)
BFi,t,f = (ŵ

(s)
i,t,f )HȲt,f . (10)

4. Data and models
4.1. Datasets

We use room impulse responses (RIRs) generated by an image-
method room simulator with frequency-dependent wall filters.
For each example, the RIR is created by sampling random loca-
tions for a cube-shaped microphone array and all sources within
a room defined using a random size: width from 3 to 7 m, length
from 4 to 8 m, and height between 2.13 and 3.05 m. The sides of
the cube-shaped array was 20 cm long. During RIR generation,
all source ”image” locations are randomly perturbed by up to 8
cm in each direction to avoid the “sweeping echo” effect [27].
We generate 140,000 training, 20,000 validation and 20,000 test
rooms which are used to generate train, validation and test data.
Clean speech is from Libri-Light [28] and LibriTTS [29], and
non-speech sounds are from freesound.org. We filtered
out artificial sounds (such as synthesizer noises) based on user-
annotated tags and used a sound classification network trained
on AudioSet [30] to avoid clips likely containing speech. Dur-
ing training, sources are reverberated and mixed on the fly, and
the validation and test sets consist of about 10 hours of mixture
data each. Recipes for these datasets will be publicly released
in the near future. We validate the proposed algorithms on 1, 2,
4, and 8-microphone setups.

Using this source data, the proposed models are evaluated
on both speech separation and speech recognition. For speech
separation evaluation, we construct three tasks: two-speaker
separation, three-speaker separation and speech enhancement.
For the speech enhancement task, a speech source is mixed with
three directional noise sources, and the goal is to separate the
speech from the noises. For each task, a random speech clip
from clean source data is selected, and then each of the other
sources is scaled to an SNR randomly drawn from N (0, 7) dB
with respect to the speech clip. To better compare with previous
arts, we used an additional two-speaker separation evaluation
dataset introduced in [8], which is a multichannel reverberated
version of WSJ0-2mix database simulated using a room simula-
tor with random room configurations and microphone positions.

Besides these separation tasks, we evaluate our three-
speaker separation model in terms of its ASR performance on
the LibriCSS dataset which is a real meeting-like overlapping
speech dataset [31]. This dataset has been collected by playing
LibriSpeech utterances from loudspeakers and recording them
in a room. Each loudspeaker takes a role of a single speaker and
reads only utterances from that speaker [31].

4.2. Why use simulated data?

Our algorithms require multichannel data and we would like to
make sure that we see a huge number of possible mixing con-
figurations during training. Thus, we use simulation to gener-
ate training data with a multitude of possible source locations
and microphone positions in random rooms. We have to use
this type of simulated data since existing “real” multichannel
recordings and room impulse response databases are nowhere
close to the size that’s needed to train a good separation model
that generalizes to unseen conditions at test time. For exam-
ple, the ACE database [32] and BUT ReverbDB [33] provide
real room impulse responses, but they are limited in the number
of rooms, possible source locations, and range of microphone
geometries: ACE has 7 rooms, 1 source location per room,
and one geometry each for 2, 3, 4, 5, 8, and 32 mics; BUT
ReverbDB has 8 rooms, 2-11 source positions per room with
a spherical 8-mic array in addition to 23 single microphones
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with ad-hoc placements. Thus, these real RIR databases are not
extensive enough for training generalizable multichannel sepa-
ration models that can handle arbitrary numbers of sources in
arbitrary rooms. For evaluation of separation systems, simu-
lated test sets provide ground-truth source references that can
be used to measure performance in terms of SI-SNR. Due to
scarcity of common simulated multichannel evaluation sets, we
generate our own development and evaluation sets. We plan to
release our simulated databases to allow wide use of the aca-
demic community and serve as a benchmark for multichannel
separation tasks. Real multichannel datasets with transcription
but without ground-truth source reference signals are available.
To provide evaluation on real data in this paper, we evaluate our
best model with ASR word error rates on the LibriCSS dataset,
which has real acoustic mixing and known transcriptions.

4.3. Networks

The network architecture of the TDCN++ networks is similar
to the recently proposed Conv-TasNet [34] and includes a few
improvements introduced in [14]. It consists of 4 repeats of 8
layers of convolutional blocks. Each block consists of a dilated
separable convolution with feature-wise global layer normaliza-
tion and a residual connection, where the dilation factor for the
kth block is 2k. In contrast to Conv-TasNet, we utilize STFT
basis with 32 ms windows rather than a learned basis with a
very small window size, as initial results showed that the for-
mer leads to better performance. This is likely because an STFT
with a larger window can better deal with room reverberation.
The hop size is 8 ms. The sampling rate is 16 kHz. A 512-point
FFT is used to extract 257-dimensional magnitude features for
mask estimation. We use τ = 10−3 and ε = 10−8 with the
soft-thresholded and stabilized negative SNR loss in (1). We
intend to open-source our implementations of TDCN++ and se-
quential multichannel models. SI-SNR improvement (SI-SNRi)
[35] over unprocessed speech is utilized as the evaluation met-
ric. We also report differential word error rates (dWER) by as-
suming the speech recognition hypothesis of clean speech as the
ground truth, and calculating the WER between the recognition
output of enhanced/separated speech and that of clean speech.
The ASR model we used for obtaining differential WERs on the
simulated datasets is an attention-based encoder-decoder model
with 16k word-piece output units trained on 960 hours of Lib-
rispeech data [36]. For LibriCSS experiments, we used a kaldi
based hybrid-HMM ASR model and an end-to-end ASR model
based on ESPNet.

As a single-channel baseline, we consider a sequential
TDCN++ network [14], where no spatial information is used.
This network consists of three masking networks. For the sec-
ond and third networks, the separated time-domain outputs of
the previous network are concatenated with the time-domain
mixture signal as the input features to produce separated esti-
mates. We report performance for the output of each stage. This
model is trained with the negative stabilized SNR loss in (1) on
the separated waveforms of all three stages.

5. Results
5.1. Results on simulated data

Figures 2 and 3 show the performance on the validation set of
beamforming methods driven by a single-channel neural net-
work under different conditions: using either TI or TV covari-
ance estimation, for various block sizes, with 2, 4, or 8 micro-
phones, for each of the four tasks, and with single (Figure 2) or

multiple context frames (Figure 3). We only display results for
the best beamforming parameters over all tasks and numbers of
microphones. We considered beamforming window sizes of 32,
64, 128 and 256 ms with half-sized hops. Frame context size
were swept in powers of 2, and we chose the most promising
frame context for each window. The best multi-frame TI result
is achieved with window size 64 ms and 4 context frames (64
x 4), and the best multi-frame TV result uses window size 128
ms and 2 context frames (128 x 2). Our frame contexts are cen-
tered around the current frame, where for even context sizes,
left context a is one larger than the right context b.

In the following discussion, we use MNi to refer to the
mask network output after step i and BFi to refer to the beam-
former applied after step i, as consistent with the subscripts in
equations in Section 3. For example, MN3 is the output of the
separation model, and BF2 is the beamformed result achieved
one step before that.

Figures 4 and 5 visualize the SI-SNRi performance on the
validation and test sets of our best sequential neural beamform-
ing models versus iteration, where the best multi-frame beam-
forming parameters are chosen from Figure 3. These plots
also display the performance of single-channel baselines, in-
cluding a single-channel iterative network and an oracle binary
mask (OBM) both using the same STFT parameters. Notice
that performance generally improves monotonically with itera-
tions, with the outputs of the neural networks achieving better
SI-SNRi compared to the beamforming outputs. Also, despite
performing worse than TV on their own, TI beamforming per-
forms best when used in a sequential setup. For all tasks, using
more than one microphone improves performance.

The speech enhancement and speech separation datasets
that we constructed from Libri-Light [28] and freesound.
org have less overlap between sources compared to the WSJ0
speech separation dataset. To fairly compare results, figures
4 and 5 shows SI-SNRi computed only on fully-overlapping
segments with darker colored sub-bars. Notice that the re-
sults are more comparable between our speech separation and
WSJ0 speech separation in overlapped regions. Also, for speech
enhancement and 2 speaker separation, our sequential neural
beamformer exceeds the performance of the oracle binary mask
(not shown) in fully overlapped segments.

Figures 6 and 7 display dWER for the validation and test
sets. Our sequential neural beamforming models significantly
decrease dWER, especially when more microphones are used.
When using TI beamforming with 8 microphones, BF2 achieves
the best dWER as opposed to MN3 since ASR models tend to
work better with linear time-invariant processed signals. For
two microphones though, MN3 output is the best, likely because
two-microphone beamforming cannot achieve sufficient spatial
separation. For the Libri-Light+Freesound speech enhancement
and speech separation tasks, the best-performing outputs of our
model achieve comparable or slightly better dWER than an or-
acle binary mask.

Table 1 presents the results of our best eight-microphone
system as compared to a single-channel baseline, a multichan-
nel baseline, and an oracle binary mask. We point out that our
baselines are strong ones since we use a state-of-the-art neu-
ral network architecture and an improved SNR loss function.
Also, for the beamformer, we use an optimal 128 ms window
size which is typically not the case. Our methods obtain signifi-
cantly better SI-SNR and dWER against these strong baselines.

freesound.org
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Figure 2: Single-frame beamforming versus block size. Figure 3: Multi-frame beamforming versus block size.

Figure 4: SI-SNRi of sequential neural BF (val). Dark
bars indicate score of overlapping regions.

Figure 5: SI-SNRi of sequential neural BF (test). Dark
bars indicate score of overlapping regions.

SI-SNRi (dB) dWER (%)
Method Speech 2 Speaker 3 Speaker WSJ0 2 Spk. Speech 2 Speaker 3 Speaker WSJ0 2 Spk.

Enhancement Separation Separation Separation Enhancement Separation Separation Separation
val tst val tst val tst val tst val tst val tst val tst val tst

Noisy - - - - - - - - 71.5 67.1 99.8 98.6 144.6 143.4 111.1 111.7
MN3, 1 mic 16.2 15.6 20.3 19.2 16.7 15.8 7.4 7.0 44.6 40.5 29.3 30.1 50.6 52.3 68.8 69.3
BF1, 8 mic, TI 128ms x 1 15.7 15.2 16.1 15.5 14.4 13.7 8.6 8.3 31.1 26.6 27.8 27.5 52.0 52.6 57.1 58.2
BF2, 8 mic, TI 64ms x 4 18.7* 18.1* 20.1 19.5 19.5 19.0 11.5 11.1 25.0* 20.9* 17.6* 17.0* 30.3 29.5 40.1 40.6
MN3, 8 mic, TI 64ms x 4 18.1 17.5 22.6 21.5 19.8 19.0 10.9 10.6 26.1 21.9 18.5 18.4 32.5 32.7 43.3 42.8
OBM, 1 mic, oracle mask 18.5 17.9 23.0 22.1 21.2 20.7 12.6 12.4 25.8 22.8 18.5 18.6 28.3 28.7 35.2 33.6

Table 1: SI-SNRi and differential WER (dWER) results of sequential neural beamforming on the validation and test data as compared
to strong single-channel and 8-mic multichannel baselines, as well as an oracle binary mask (OBM) for four different tasks. ∗ indicates
performance better than the oracle binary mask.

5.2. Results on LibriCSS

We ran our three-speaker separation model on the LibriCSS
evaluation dataset which contains 54 different 10 minute meet-
ings with varying amounts of overlap recorded with a circular
7-microphone array [31]. We evaluate our separation model
within a separation-diarization-recognition pipeline which is

described in more detail in [37]. The model is applied in 8 sec-
ond overlapping blocks with a 4 second shift. 7 microphone
data is padded with another channel obtained by shifting the
first microphone signal by one sample and adding white Gaus-
sian noise with variance 1e-6. We used the BF2 output of the
three-speaker separation model since it achieved better dWER
in our experiments on simulated test data as can be seen in Ta-



Figure 6: Differential WER versus iteration (val). Figure 7: Differential WER versus iteration (test).

Table 2: Performance of separation methods on LibriCSS eval set in terms of the resulting downstream diarization error rate (DER)
(using spectral clustering), cpWER (using a hybrid HMM-DNN model) and cpWER (using an E2E model) results. Separation perfor-
mance in terms of signal to distortion ratio (SDR) is reported on a different simulated LibriCSS-like eval set. For comparison, we also
show results obtained on a “no separation” baseline.

Method SDR (dB) DER (%) HMM-DNN cpWER (%) E2E cpWER (%)

No separation - 18.28 31.04 27.11
Mask-based MVDR [31] 5.8 13.86 22.75 13.37
Proposed: sequential multi-frame (BF2) 14.1 14.07 19.28 12.70

ble 1. After separating each block into three speaker tracks, we
stitch together the separated block-length tracks into meeting-
length tracks. We use magnitude STFT domain mean-squared
distance between common parts of neighboring blocks to find
the best permutation between them. Diarization was done us-
ing x-vector based segment clustering from multiple separated
tracks with some post-refinement [37]. Each diarized segment
is recognized using either a hybrid HMM-DNN ASR model or
an end-to-end (E2E) ASR model.

The results, taken from [37] are shown in Table 2. We
compare with a baseline mask-based MVDR separation method
that uses bidirectional LSTM layers [31, 37]. Separation per-
formance was evaluated on a simulated test set since reference
signals are required [37]. Separated tracks are first mapped to
N -speaker tracks whereN is the number of participating speak-
ers in a meeting, using a method we call “oracle track mapping”
[37]. Average meeting-level SDR [38] is reported. Multi-frame
MCWF beamformer (BF2) achieved a much better SDR value
as compared to mask-based MVDR, however this may be ex-
pected since the MVDR beamformer does not attempt to recon-
struct the target signal at the reference microphone directly.

On LibriCSS, diarization error rate (DER) was close be-
tween two separation methods. Our model achieved a concate-
nated minimum-permutation WER (cpWER) [39] of 19.28% on
the LibriCSS eval set using a hybrid HMM-DNN model bet-
ter than the baseline system. When using a superior E2E ASR
model, our separation model achieved a cpWER of 12.70% as
compared to a baseline of 13.37%. Note that our model is
trained using a completely different microphone geometry and
with mismatched data in terms of overlap amount. However,

our model has the advantage of training from on-the-fly mix-
tures and Libri-Light database which is quite large. We can see
that the model generalizes to unseen conditions since it works
well on data which contains a different microphone geometry,
unseen source locations, different overlap amounts, and unseen
reverberations with real recording conditions.

6. Conclusions
We have explored an alternating strategy between spectral esti-
mation using a mask-based network and spatial estimation us-
ing beamformers. For spatial estimation, we introduced multi-
frame beamforming and compared multiple ways of computing
covariance matrices for time-invariant and time-varying beam-
forming. Evaluation results on four sound separation tasks sug-
gest that, when combined with neural network based mask es-
timation, time-invariant multi-frame beamforming with a rea-
sonably large window and context size produces the best sep-
aration performance for non-moving sources. Our best three-
stage method demonstrates an average improvement of 2.75 dB
in SI-SNR and an absolute reduction of 14.2% in dWER over
several strong and representative baselines, across four chal-
lenging reverberant speech enhancement and separation tasks.
Our three speaker separation model was used to separate tracks
from LibriCSS evaluation dataset and ended up improving the
constrained permutation word error rate as compared to a mask-
based MVDR beamformer baseline.
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