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Abstract—Methods for 3D reconstruction such as Photometric
stereo recover the shape and reflectance properties using multiple
images of an object taken with variable lighting conditions
from a fixed viewpoint. Photometric stereo assumes that a
scene is illuminated only directly by the illumination source.
As result, indirect illumination effects due to inter-reflections
introduce strong biases in the recovered shape. Our suggested
approach is to recover scene properties in the presence of indirect
illumination. To this end, we proposed an iterative PS method
combined with a reverted Monte-Carlo ray tracing algorithm to
overcome the inter-reflection effects aiming to separate the direct
and indirect lighting. This approach iteratively reconstructs a
surface considering both the environment around the object and
its concavities. We demonstrate and evaluate our approach using
three datasets and the overall results illustrate improvement over
the classic PS approaches.

Index Terms—Photometric Stereo, 3D Reconstruction, Ray
Tracing

I. INTRODUCTION

Scene and object 3D reconstruction is the process of
capturing their shape and appearance using various methods
and approaches such as stereo, structure from motion, shape
from shading, and many more [35]. The reconstruction is
highly applicable in a number of fields as it provides the
ability to understand 3D scenes and objects on basis of 2D
images. The applications ranging from robotics and automated
industrial quality inspection over human-machine interaction
[6] (example action, gesture and face recognition), satellite
3D data analysis [25], to movies and architectural applications
[17]. Additionally, the method is commonly used to analyse
the surfaces of a celestial object, such as the Moon [18].

Photometric stereo (PS) is a well-established technique that
is used for 3D surface reconstruction [10]. The approach
generally inherits the principle of appearance analysis of a 3D
object on its 2D images. Based on the intensity information,
these approaches attempt to infer the shape of the depicted
object [17]. It estimates shape and recovers surface normals
of a scene by utilising several intensity images obtained under
varying lighting conditions with an identical viewpoint [16],
[41]. By default, PS assumes a Lambertian surface reflectance;
a standard reflectance model which defines a linear depen-
dency between the normal vectors and image intensities. The

definition of the model then can be used to determine the 3D
space in the image [5]. However, just a single Lambertian
image is not adequate to correctly determine the surface
shape. Therefore, the PS uses several images whose pixels
corresponds to a single point on the object and is able to
recover surface normals and albedos [40].

Light displays complicated attributes while interacting with
objects resulting direct and indirect illumination as shown in
figure 1.However, classical PS naively assumes that a scene is
illuminated only directly by the emitting source. In presence
of indirect illumination, it produces erroneous results with
reduced reconstruction accuracy [21]. For example, an indirect
illumination such as inter-reflections makes concave objects
appear shallower [30].

In this paper, we present an iterative 3D reconstruction
method considering inter-reflections due to the concavities and
the environment. We propose a novel method that accounts
for inter-reflections in a calibrated photometric stereo environ-
ment. This approach utilises a reverted Monte Carlo ray tracing
method to extract the environmental colour trying to minimise
the inter-reflections within images used for photometric stereo.
This approach not only accommodates the concave surface but
also applies to any object in a scene with inter-reflections. The
proposed method Iterative Ray Tracing Photometric Stereo
- IRT PS iteratively applies Photometric Stereo (PS) and a
reverted ray tracing algorithm based on a Monte-Carlo im-
plementation to reconstruct with higher accuracy the observed
surfaces. This approach iteratively reconstructs the surface and
separates the indirect from direct lighting considering also the
environment around the object. Likewise, the proposed IPT-
PS method can be integrated to any PS technique removing
the effects of inter-reflections and improving the overall re-
construction accuracy.

Our approach is extensively evaluated on three datasets and
the overall results demonstrate improvement over the classic
approaches. The main contributions of our work are:

• a reverted Monte Carlo ray tracing algorithm to estimate
the indirect lighting both from the environment and the
object’s concavities.

ar
X

iv
:1

81
1.

02
35

7v
1 

 [
cs

.C
V

] 
 6

 N
ov

 2
01

8



• an iterative surface reconstruction method that is utilised
by the reverted Monte Carlo ray tracing

• the proposed methodology that allows IRT-PS to be
combined with any other PS algorithm improving the
overall performance.

The paper is organised as follows: Section II provides
background material on Photometric Stereo, followed by invert
light transport, their properties and related works. In section
3, we introduce the mathematical definition of necessary the
terms. In section 4, we propose a novel iterative PS method
and discuss the suggested reverted Monte Carlo ray tracing
algorithm. The performance of this approach is investigated
in section 5, with section 6 concluding the work.

II. PHOTOMETRIC STEREO

Photometric stereo (PS) is an approach to estimate the
surface normal and reflectance (i.e albedo) of an object based
on three or more intensity images with the fixed view under
varying lighting condition [16]. A number of solutions have
been proposed to address this problem. Woodham [45] was
the first to introduce the PS method. He proposed an approach
simple and effective. However, he only considered Lambertian
surface which suffers from noise. In his method, it is assumed
that the surface albedo is known a prior for each point on the
surface, the surface gradient can be obtained by using a three-
point light source. Onn and Bruckstein [33] developed a two-
image PS method. Their work was based on the assumption
that the objects are smooth and no self-shadows are present.
The PS was further extended by Coleman and Jain [9], which
utilises four light sources, discards the specular reflections and
estimates the surface shape by performing mean of diffuse
reflections and the use of the Lambertian reflection model.
Nayar et al. [29] proposed a PS method which used a
linear combination of an impulse specular component and the
Lambertian model to recover the shape and reflectance for a
surface. Similarly, an algorithm for estimating the local surface
gradient and real albedo from four sources in the presence of
highlights and shadows was proposed by Barsky and Petrou
[3]. Chandraker et al. [7] proposed an algorithm that required
at least four light sources and images to reconstruct surface in
presence of shadow. It is also worth mentioning the related
work presented in [1], [11], [28], [34] following similar
architectures and approaches.

Furthermore, over the previous years, methods that consider
images produced by more general lighting conditions not
known a prior. Basri et al. [4] proposed a PS method where
no prior knowledge of the light source and its type is required,
however the emitting source should be distant or uncon-
strained. They utilised low order spherical harmonics and
optimised it to low-dimensional space to represent Lambertian
objects. Likewise, Shi et al. [36] used colour and intensity
profiles, which are obtained from registered pixels across
images to propose a self-calibrating PS method. They automat-
ically determine a radiometric response function and resolved
the generalised bas-relief for estimating surface normals and

albedos. While lighting conditions could be unknown, they
required fixed viewpoint.

Nevertheless, a majority of the methods and models while
working well with with matte objects, under-perform when the
reconstructed objects are specular, transparent or with inter-
reflections. Non-Lambertian reflection and specifically inter-
reflection may be difficult to solve in photometric stereo.
Solomon and Ikeuchi [37] developed a method where they
utilised four lights and tried to extract the surface shape and
roughness of an object which has specular lobe. They used a
simplified version of Torrance-Sparrow reflectance model to
determine the surface roughness. Bajcsy et al. [2] presented
an algorithm for detecting diffuse and specular interface
reflections and some inter-reflections. They used brightness,
hue, and saturation values instead of RGB as they point out
that the values have a direct correspondence to body colours
and to diffuse and specular, shading, shadows and inter-
reflections. But, the algorithm requires uniformly coloured
dielectric surface under single coloured scene illumination.
Tozz et al. [43] proposed a PS method that is independent of
the albedo values and uses image ratio formulation. However,
their method requires an initial separation of diffuse and
specular components.

In addition, because of the nature of light, inter-reflection
is unavoidable even in a controlled environment. This may
vary in magnitude depending on the environment itself, the
structure, and the material of the object. Moreover, it may not
be uniform over the whole surface. As a result, the images
are blurred locally in shade. Most photometric methods do
not consider inter-reflection from an environment and concave
surfaces, and those that do have considered one of the two cues
only. One of the first attempts at scene recovery under inter-
reflection was purpose by Nayar et al. [30]. They presented
an iterative algorithm which recovers shapes from a concave
surface which first estimates the shape from intensity data;
then this shape is used as input, and the radiosity method
is applied to estimate a corrected, no-interreflection image
intensity distribution. These steps are carried iteratively un-
til convergence. Nevertheless, the algorithm only examines
the inter-reflection in concave shapes, Lambertian reflectance
models and does not take into account the colour of the inter-
reflected light. Funt and Drew [14] proposed an algorithm
which is based on singular value decomposition of the colour
for a convex surface. They proposed a “one-bounce” model
which measured inter-reflection between two matte convex
surfaces with a uniform colour and illumination can vary
spatially in its intensity but not in its spectral composition.
Again, the algorithm is specific to convex surface assuming
a uniform colour and illumination that can vary spatially.
Langer [27] did the study on the shadows which becomes
inter-reflections. They proposed a method for inferring surface
colour in a uni-chromatic scene which is based on the relative
contrast of the scene in different colour channels. Again, the
method is highly specific and only deals with inter-reflection
related to shadow.

Most existing shape from intensity techniques accounts for



an only direct component of light transport. Nayar et al.
[31] proposed using high-frequency illumination patterns to
separate direct and indirect illumination from more general
scenes.Gupta et al. [15] studied the relation between illumina-
tion defocus and global light transport. Again, Chen et al. [8]
used modulated structured light patterns with high-frequency
patterns to mitigate the effects of indirect illumination. La-
mond et al. [26] used high-frequency light patterns to sepa-
rate the diffuse and specular components of BRDF. Holroyd
et al. [19] constructed a high-accuracy imaging system for
measuring the surface shape and BRDF. All these techniques
either are an active method or they assume that the indirect
illumination in each of the acquired images is caused by a
single source. In contrast, we consider separation of indirect
components by simulating the inter-reflections and removing
it from the source images.

III. FORWARD LIGHT PROPAGATION

An image captured by the camera is the results of a complex
sequence of reflections and inter-reflections. When light is
emitted from the source, it bounces off the scene’s surface
one or more times before reaching to a camera.

Fig. 1: (Left)Direct and (Middle)(Right)indirect light bounce
around the environment

In theory, every image can be captured as infinity sum, I =
I1 + I2 + I3 + ..+ In, where In denotes the total contribution
of light that bounces n times before reaching the camera as
shown in figure 1. For example, I1 is the captured image if
it was possible to remove all the indirect illumination from
reaching the camera sensor, while the infinite sum I2 + I3 +
..+In describes the total contribution of indirect illumination.
Although we can capture the final image I using a camera,
the individual n-bounce images are not directly measurable in
the real-world scenario.

Nevertheless, the techniques for simulating inter-reflections
and other light transport effects are not new in the computer
vision and graphics. The algorithm that simulated the forward
light transport was solved by Kajiya [24]. The algorithm is
also known as rendering equation. The rendering equation is
an integral in which the radiance leaving a point is given as
the sum of emitted plus reflected radiance under a geometric
optics approximation.

I(x, x′) = g(x, x′)

[
e(x, x′) +

∫
s

p(x, x′, x′′)I(x′, x′′)dx′′

]
(1)

Where I(x, x′) is related to the intensity of light passing
from x′ to point x. g(x, x′) is a ”geometry” term, e(x, x′)
is related to the intensity of emitted light from x′ to x and
p(x, x′x′′) is related to the intensity of light scattered from
x′′ to x by a patch of surface at x′.

An algorithm such as ray tracing [12] [23] solved the
equation 1 by using Monte-Carlo methods, whereas radiosity
[12] [22] used finite element method to produce near realistic
looking images in the field.

For a Lambertian object illuminated by a light source of
parallel rays, the observed image intensity a at each pixel
is given by the product of the albedo ρ and the cosine of
the incidence angle θi (the angle between the direction of
the incident light and the surface normal) [20]. The above
incidence angle can be expressed as the dot product of two
unit vectors, the light direction l and the surface normal n,
a = ρ cos(θi) = ρ(l · n).

Let us now consider a Lambertian surface patch with albedo
ρ and normal n, illuminated in turn by several fixed and known
illumination sources with directions l1, l2, ..., lQ̃. In this case
we can express the intensities of the obtained pixels as:

ak = ρ(lk · n), where k = 1, 2, ..., Q̃. (2)

We stack the pixel intensities to obtain the pixel intensity
vector
Aa = (a1,a2, ...,aQ̃)

T . Also the illumination vectors are
stacked row-wise to form the illumination matrix L =
(l1, l2, ..., lQ̃)T . Equation (2) could then be rewritten in matrix
form:

Aa = ρLn (3)

If there are at least three illumination vectors which are not
coplanar, we can calculate ρ and n using the Least Squares
Error technique, which consists of using the transpose of L,
given that L is not a square matrix:

LTAa = ρLTLn⇒ (LTL)−1LTAa = ρn (4)

Since n has unit length, we can estimate both the surface
normal (as the direction of the obtained vector) and the albedo
(as its length). Extra images allow one to recover the surface
parameters more robustly.

IV. PROPOSED ITERATIVE RAY TRACING PHOTOMETRIC
STEREO METHOD (IRT-PS)

In nature, when we illuminate a surface, light not only
reflects towards the viewer but also among all surfaces in the
environment. This is always true, with exception of scenes that
consists only of a single convex surface. In general, scenes
include concave surfaces where points reflect light between
themselves. Furthermore, inter-reflections can occur due to the
environment and appreciably can alter a scene’s appearance. In



figure 2, to simulate the inter-reflections the sphere is placed
within the Cornell box [32] and highlights the inter-reflections
i.e sphere receive the colours from its environment.

(a) (Left)Image with no inter-reflection, (Middle) Image with inter-
reflection from Environment only, (Right) Combined Image

(b) (Left)Image with no inter-reflection, (Middle) Image with inter-
reflection from Concavity only, (Right) Combined Image

Fig. 2: Example images of Inter-reflection from environment
and concavity

Existing computer vision algorithms do not account for
effects of inter-reflections and hence often produce erroneous
results. The algorithms that are directly affected by inter-
reflections are the shape-from-intensity algorithms including
Photometric Stereo. Due to the common assumption of sin-
gle surface reflections (direct illumination) and disregarding
higher order (inter-reflections, a subset of global illumination),
photometric methods produce erroneous results when applied
to open scenes.

The first stage of this approach (stage 0), is performed only
once throughout the process and involves the acquisition of
the initial input images. It is assumed that inter-reflections
are present and that the captured surface is within the known
environment. In our case within a Cornell Box.

Moving to the following stage, PS is applied to the images
acquired at stage 0 using equation 4 to obtain the initial albedo
ρt and normals nt. Integrating over the obtained normals a
3D surface Ht is obtained using the M-estimator technique.
This initial surface that is affected by the presence of the
inter-reflections becomes the input to the following stage, that
involves the proposed reverted ray tracing algorithm.

As environment information is known prior to reconstruc-
tion, we can implement our environment. The Cornell Box
was setup as the environment at the following stage 3. More
realistic textures can be used for the walls without affecting
the proposed methodology.

In stage 4, we simulate the environment assuming the
Cornell box is given or estimated. In our case, this approach
can be extended to other realistic environmental projection
such as Hemispherical Dome Projection [39] without affecting

Fig. 3: An overview of the proposed IRT-PS algorithm.

the proposed methodology. Then we place the generated Ht

surface within this environment.
In the following stage, based on equation 7, the reverted ray

tracing algorithm is applied. Since we are only interested in
inter-reflections, only the indirect illumination is calculated.To
implement the ray tracer for Lambertian surface, we solve the
rendering equation by integrating Monte Carlo estimator

L0(p, wo) =

∫
Ω

f(p, w0, wi)Li(p, wi)cosθidwi (5)

Where L0(p, w0) is the total outgoing radiance reflected at
p along the w0 direction. Li(p, wi) is the radiance incident at
p along the wi direction. f(p, w0, wi) determines how much
radiance is reflected at p in direction w0, due to irradiance in-
cident at p along the wi direction. cosθi is from the Lambert’s
cosine law: diffuse reflection is directly proportional to cos(θ)



Fig. 4: Sample images from Stage 0 with inter-reflections due
to the environment

of the normals and the incident illumination (i). Finally,
∫
Ω

dwi

is an integral over a given hemisphere.
As Monte-Carlo approximation is a method to approximate

the expectation of a random variable, using samples.

E(X) ≈ 1

N

n∑
i=1

Xi (6)

where, E(X) is an approximation of average value of
random variable X .N is the sample size. And when we
integrate it to equation 5 we solve the rendering equation.

〈L0(p, wo)〉 =
1

N

N∑
i=1

f(p, w0, wi)Li(p, wi)cosθidwi

p(wi)
(7)

However, Monte-Carlo estimator is affected by noise, the
ray tracer algorithm also inherited such a problem. For exam-
ple, to half the noise in an image rendered by ray tracing, we
need to quadruple the number of samples.

To estimate the environmental colour, we first hit the Ht

surface with rays from each pixel, consider techniques such as
hemisphere sampling and we randomly reflect the rays toward
the environment. As a result, the images of the environment
are captured for the various levels/depths of ray reflection. In
this study, we only use up to 3 reflection rays (1 to 3) with just
a single sampling, as shown in figure 5. Because we are not
calculating all the ray reflections within the environment, we
will have pixel locations without intensity values. An example
can be seen in figure 6. Therefore, we are using a non-uniform
interpolation algorithm [42] to approximate the missing values
in the obtained environmental intensity images Er

t , where r
corresponds to the number of ray reflections.

In figure 6, we see that the more ray reflects, the less bright
the pixels become. The main reason behind this phenomenon
is because of ray tracing algorithm and considering that the
first ray r1 has more influence on the final pixel intensity than

Fig. 5: Extraction of Environment Intensities in 3 different
ways (a) Only extract colour (c1), (b) reflect ray one time and
combine the intensities (c1 * c2), and (c), reflect one more
time and combine all the colours (c3*c2*c1).

(a) Environment Colour extracted for Sphere

(b) The Interpolated images of Environment Colour

Fig. 6: Sample image of Environment colour captured by R1
- R3 rays and their interpolated images

the ray r3. Therefore, when we have more ray reflections, the
intensity of the pixels needs to be reduced, accordingly.

In stage 5, we generate the new input images At+1 = At−
Er

t by subtracting the environmental intensity reducing the
inter-reflections from the original input images. There are three
different sets of images for each ray reflection r1, r2 and r3.

Finally, the obtained images which have fewer inter-
reflections (example difference image is shown in figure 7)
are used for as input to photometric stereo, generating a new
Ht+1 surface. The whole process can be applied iteratively
for a certain number of iterations or until the difference
DH = Ht+1−Ht between a new 3D surface and the previous
one is less than a given threshold.

V. EXPERIMENTS AND RESULTS

In our comparative evaluation study, three different datasets
with ground truth were used. Scan data from the Harvard
PS dataset [13], a dataset with faces [44] and synthetic data
generated by simulated objects (see figures 8 and 11).

We used the photometric stereo approach to reconstruct
the sets of the acquired Ht surface, with and without inter-
reflections considering different numbers (1 to 3) of ray
reflections in the proposed reverted Monte-Carlo ray tracing
algorithm. We then estimate the height-, albedo- and normal-



Fig. 7: (Left) Image with inter-reflections, (Right) estimated
environmental intensity image and (Bottom) obtained image
without inter-reflections.

Fig. 8: Ground truth used for rendering and evaluation purpose.
Synaptic Matlab Sphere, Harvards Photometric data, Scan Dat.

Fig. 9: Image samples with rendered inter-reflections.

error comparing to classic PS method [38] using the available
ground truth.

To calculate the height-error we used the equation,

Herr =
1

n

(
n∑

i=1

|HGT −Ht|i

)
(8)

Herr is the mean for height error. HGT is the height value
of ground truth surface, whereas Ht is the height value of

reconstructed surface. Regarding the albedo-error we use the
equation below,

P r
err = |P r

GT − P r
H |

P g
err = |P g

GT − P
g
H |

P b
err = |P b

GT − P b
H |

P rgb
err =

P r
err + P g

err + P b
err

3

(9)

where P rgb
err is the albedo-error from mean of individual

colour channel; Red P r
err, Green P g

err, and Blue P b
err channel.

Likewise, to calculate normal-error we utilise the following
equation:

Nx
err = |Nx

GT −Nx
H |

Ny
err = |Ny

GT −N
y
H |

Nz
err = |Nz

GT −Nz
H |

Nxyz
err =

Nx
err +Ny

err +Nz
err

3

(10)

Nxyz
err denote the mean normal-error for all the axis x, y, and

z.Where Nx
err is a mean error for X axis, Ny

err is mean error
for Y, and Nz

err is mean error for Z, Nxyz
H is normal from

reconstructed surface.

Fig. 10: Example of the estimated albedo using classic PS
[38], and the proposed IRT-PS method using 1-, 2- and 3-ray
reflections.

From the table 1, and charts in figure 11, we can see that
the overall trend of mean Height, Albedo, and Normal errors
are reduced with our approach than the classic photometric
stereo one. In table 1, text highlighted in red are the average
overall results of the [38] photometric stereo method. Whereas
best results from our IRT-PS approach are highlighted in the
green text. From the charts figure 11, we can see the general
trend of the height error: Results improve with each additional
ray and the best result is achieved by Ray 3. Likewise, the
best result for Albedo and Normal are given by Ray 2. The
indirect illumination captured by Rays R3 and R2 of the



TABLE I: Obtained results for the synthetic data, the Harvard
and the face PS database comparing the [38] method, with the
3 variations of the proposed IRT-PS approach.

Synthetic PS [38] IRTPSr1 IRTPSr2 IRTPSr3
Height 18.653 18.460 18.565 18.436
Albedo 0.082 0.082 0.081 0.087
Normal 0.825 0.824 0.824 0.823
Harvard PS [38] IRTPSr1 IRTPSr2 IRTPSr3
Height 8.150 8.140 8.097 7.296
Albedo 0.522 0.518 0.520 0.521
Normal 0.840 0.839 0.838 0.840
Face PS [38] IRTPSr1 IRTPSr2 IRTPSr3
Height 9.341 9.181 9.272 8.835
Albedo 0.235 0.231 0.230 0.241
Normal 0.823 0.823 0.8221 0.822

Overall PS [38] IRTPSr1 IRTPSr2 IRTPSr3
Height 12.049 11.927 11.978 11.523
Albedo 0.280 0.2772 0.2773 0.283
Normal 0.829 0.829 0.8283 0.8288

environment were able to reduce the inter-reflection effect
from the original images. Furthermore, looking at the overall
table and comparing to PS [38], we again see that our method
improves in all the estimation. The greatest improvement can
be seen in Height, followed by Normal, and finally the Albedo
error. This shows that if we improve the captured indirect
illumination then it should result in more accurate and detailed
reconstructed surfaces.

VI. CONCLUSIONS

In this work, a novel iterative method considering inter-
reflections both due to concavities and the environment
was proposed. The IRT-PS approach iteratively applies
Photometric Stereo and a reverted Monte-Carlo ray tracing
algorithm, reconstructing the observed surface and separating
the indirect from direct lighting. A comparative study was
performed evaluating the reconstruction accuracy of the
proposed solution on three different datasets and the overall
results demonstrate improvement over the classic approaches
that do not consider environmental inter-reflections.
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[42] P. Thévenaz, T. Blu, M. Unser, and philippe. thevenaz. Image interpo-
lation and resampling. 1999.

[43] S. Tozza, R. Mecca, M. Duocastella, and A. D. Bue. Direct differential
photometric stereo shape recovery of diffuse and specular surfaces.
Journal of Mathematical Imaging and Vision, 56:57–76, 2016.

[44] V.Argyriou and M. Petrou. Recursive photometric stereo when multiple
shadows and highlights are present. Proceedings of CVPR, 2008.

[45] R. Woodham. Photometric stereo: A reflectance map technique for
determining surface orientation from image intesit. SPIE, 155:136–143,
1978.


	I Introduction
	II Photometric Stereo
	III Forward Light Propagation
	IV Proposed Iterative Ray Tracing Photometric Stereo Method (IRT-PS)
	V Experiments and Results
	VI Conclusions
	References

