
Towards Virtual Prototyping of Synchronous
Real-time Systems on NoC-based MPSoCs

Razi Seyyedi∗, MT Mohammadat†, Maher Fakih∗, Kim Gruettner∗, Johnny Oeberg†, and Duncan Graham‡
∗OFFIS - Institute for Information Technology, Oldenburg, Germany

Email: razi.seyyedi@offis.de
†KTH Royal Institute of Technology, Sweden

‡Imperas, United Kingdom

Abstract—NoC-based designs provide a scalable and flexible
communication solution for the rising number of processing cores
on a single chip. To master the complexity of the software design in
such a NoC-based multi-core architecture, advanced incremental
integration testing solutions are required. In this presents a virtual
platform based software testing and debugging approach for a
synchronous application model on a 2x2 NoC-based MPSoC. We
propose a development approach and a test environment that
exploits the time approximation within Imperas OVP instruction
accurate simulator and a functional model of the Nostrum NoC,
for both software instructions and hardware clock cycles at larger
time stamps called Quantums that does not sacrifice functional
correctness. The functional testing environment runs the target
software without running it on the real hardware platform. With
the help of Nostrum NoC we can support a synchronous system
execution that is reasonably fast and precise with respect to a global
synchronization signal, called HeartBeat. As work in progress, this
work also discusses several possible timing refinement and their
possible implication on the simulation semantics and performance
and how it is tackled in future work.

I. MOTIVATION AND INTRODUCTION

As chips are becoming more and more densely populated
with cores/processors comprising hundreds of heterogeneous
processing elements, a scalable and flexible communication
structure becomes more demanding. A traditional bus-based
communication does not scale well with the rising number of
processing elements in multi-processor systems-on-chip (MP-
SoCs). Networks-on-Chips (NoCs) have been proposed as an
efficient and scalable solution [1] due to their efficient and
flexible connectivity. Designing and programming a NoC-based
MPSoCs is a complex activity. Even harder is to debug such
systems due to their concurrent many-core nature which makes
observability and functional testing very limited in physical
hardware platforms. Therefore, to enable an early functional
testing of parallel real-time applications running on MPSoCs,
the need for correctly modeling and simulating the system
functional and timing behavior before deploying the software
on a hardware becomes vital.

A desirable simulator would simulate the system relevant
functionalities including the inter-processor communications
reasonably fast while being precise with respect to timing.
In this work, we aim to setup a virtual-platform to test the
functionality and timing of synchronous applications running
on NoC-based MPSoCs. In Synchronous systems, a global
periodic clock governs execution and computation time where
communication time are provided in terms of ticks of the global
clock and the outputs are not visible to other computations
until the next tick. Synchronous Model of Computation (MoC)

simplifies the description, analysis, and testability for real-
time applications which makes it appropriate for embedded
multi/many core design, coping with their rising complexity.

For the experimental setup of this work, we will use the
instruction-accurate Imperas OVP (Open Virtual Platform) as
the simulation platform [2] and Nostrum NoC [3] for the
interconnection. We will show how to model the NoC in the
virtual-platform and enable synchronousness in our model with
the help of so called HeartBeat concept in Nostrum NoC.

The remainder of this paper is structured as follows. Section
II provides the background and reviews related works. Section
III discusses the case study. Sections IV presents our approach
and its implementation. Section V concludes our work with the
future plan.

II. PREVIOUS AND RELATED WORK

A. Nostrum Synchronous NoC

In this work, we use the Nostrum NoC architecture and
design methodology [3], where each Processing Element (PE)
is connected through a Resource Network Interface (RNI) to
a switch of the network. Both 2D and 3D NoC architectures
are supported. Nostrum provides both best effort (BE) and
guaranteed bandwidth (GB) packet delivery, making the plat-
form suitable for performance and real-time oriented embedded
systems [4].

Describing a system using a synchronous model simplifies
the scheduling problem and ensures determinism by making the
system easier to understand and easier to verify. Synchronous
MoC divides time into abstract discrete notion of time, such as
integers. Computation and communication is constrained by the
beginning and end of each time slot. In a synchronous Model
of Computation (MoC) [5], a global pulse triggers computation
for all cores. A system is modeled using the synchronous MoC
if it uses only synchronous signals and processes. Consequently,
they are oriented to model real-time applications.

The HeartBeat model in Nostrum NoC [6], is an intermediate
platform model bridging the abstraction gap between the syn-
chronous MoC and a NoC-based MPSoC platform. It provides
the synchronous communication system and enables the MPSoC
to expose the same semantics of the synchronous MoC. It has
been conceived targeting a generic NoC-based MPSoC, so it can
be applied on different NoC-based MPSoCs independent of the
type of PE and routing technique (deflective, wormhole, etc.).

A HeartBeat (HB) is a global periodic event which is made
visible simultaneously to all PEs of the NoC-based MPSoC.
Similar to a clock in synchronous digital design, a HB can be



represented through ticks (HB ticks) repeated periodically with
period tHB (HB period). Every single received HB tick triggers
a compute cycle on the PE. Processes scheduled on the PEs
start executing once every HB tick and they communicate with
processes on other PEs through the NoC. When a PE sends
data to another PE in a precise HB tick, the receiving PE sees
the value in the next HB tick. The time required for the job
execution (te) and the time it takes for communication (tc) are
two factors that in NoC should be taken into account. When
the condition te + tc ≤ tHB is satisfied, the behavior of the
application executed on a NoC-based MPSoC is equivalent to
the semantics of a sequential system in the synchronous MoC.
The HeartBeat model allows to synthesize high level models
of simply periodic and pipelined signal processing applications
based on synchronous semantics onto a NoC-based MPSoC
platform. The HeartBeat is implemented as a programmable
timer (or clock divider) and provided to the PEs through the
RNIs in the generated NoC. The node generating the HB tick
is called Pacemaker. The tick of the timer sets a register in
the RNIs. This enables the connected PEs to interpret the timer
tick as an HB tick. For each HB tick the PE computes the
input values (through the synchronous processes mapped on
that particular PE), and sends the results through the NoC to
the destination. The received value is stored in the RNI of the
destination PE, and it is made available on the following HB
tick. The HB tick (periodic event) is visible and shared between
all PEs of the MPSoC.

B. Open Virtual Platform Simulation

The OVP processor models are binary equivalent to the real
processors [2]. They are able to execute the real binary compiled
for the actual target CPU. In other words, the executable running
is totally unaware that is running on a simulation platform, so
the same executable can be launched, as it is, on the target
platform without any changes.

A very basic timing model is already included in OVP. The
processor model counts the number of executed instructions.
Together with the annotated nominal processor speed in MIPS
(Million Instructions per Second), the number of instructions
executed in a certain period in the simulation can be calculated.
The execution time is obtained by dividing the number of
instructions executed in all simulation steps by the nominal
processor speed. This level of accuracy is available with in-
struction accurate (IA) simulators. This is enough for many
aspects in software development and test. However, there are
other situations where this is not sufficient, for instance for the
real-time analysis of time critical control systems.

The simulation step (∆) in OVP is called Quantum. A
Quantum, in a multiprocessor simulation, is the number of
instructions each processor executes in each turn. The order
in which the processors are executed is not deterministic, but it
works as it is shown in Figure 1. The Quantum value is set by
the user based on the trade off between accuracy and simulation
time. For example, simulator executes 10,000 instructions in
the first ∆ of P0 (blue arrows). Then it moves to P1 and
executes Quantum number of instructions, then P2, and P30.
After a Quantum for all processors is passed, the simulation
time is advanced. Therefore, the Quantum value defines the
timing granularity of the simulation. Increasing the number of

t

P0

P1

P2

P3

[Quantum]

Fig. 1: Quantum (∆) concept in OVP
Arrows show execution sequences

instructions running on one process in one turn (Quantum), will
reduce the time spent by the simulator for context switching, so
improves simulation speed. However, it will also increase the
chance that interactions between processes will be inaccurate
with respect to the timing, especially if they communicate
through shared memory. As shown in Figure 1, after a Quantum
is passed and the time is advanced, simulator starts the next
round (red arrows). By executing the next Quantum for each
process after another, it moves to the next turns (green arrows,
magenta, etc.).

In this work, we decided to choose OVP simulator for the
following reasons [7]:

1) OVP is commercially proven, provides a rich set of
functional processor models and is one of the fastest
simulators in its class;

2) As for all dynamic binary translation approaches, different
target compilers can be used with all possible optimiza-
tions

3) The target processor debugging tools can be used directly.

C. Related Work

There are other works that try to improve NoC modeling
in complex systems. In both [8] and [9], an OVP extension
in SystemC is presented to simulate NoC-based Multiprocessor
Systems-on-Chip (MPSoCs). In these two works, however, NoC
is modeled outside of OVP using SystemC and the OVP simula-
tor is just used to simulate the processor. One advantage of our
approach is, when integrating the NoC inside the simulation
platform, namely OVP, the simulation speed increases since
no need anymore for synchronization between OVP and the
SystemC module. Also debugging in an integrated environment
is easier and less error-prone compared to the one connecting
two different technologies.

There are other simulation platforms for NoC-based MPSoC,
each targeting different aspect of the simulation. In all [10],
[11], [12], [13], [14], [15], [16], and [17] a different technology
than OVP is used. The main difference to our work is that, by
using OVP as our simulation technology, we can test and debug
the target code as it will be deployed i.e. the real binary that
will be run on the system with the same memory layout as the
real system.

[18] evaluates software energy cost at early stage. This work
is also based on OVP with instruction-driven energy analysis
approach. With the help of Cadence Incisive tool, it performs



P0
getPixel()

P2
GY

P3
ABS()

P1
GX

RNI RNI

RNIRNI

Fig. 2: Processing elements connected via NoC

the gate-level simulation in order to obtain the execution time.
However, they do not consider NoC and Synchronous MoC in
this work.

The main contribution in our work is to introduce syn-
chronous MoC into the virtual platform and make use of extra-
functional properties to boost simulation speed and improve
accuracy. It is suitable for testing of real-time and time-triggered
architecture with respect to time and debugging many cores.

III. CASE STUDY

The following case-study was implemented and will be used
as a motivational example for the proposed approach in this
paper and for future experiments.

The Sobel Filter is used in image processing, particularly
for edge detection. Signal processing applications are nowadays
also used in safety-critical applications for e.g. to detect pedes-
trians crossing the street or to recognize traffic signs. We use
a more complex Sobel filter with a 9 × 9 mask as it is used
in [19]. In this case-study, Sobel filter consists of two 9 × 9
kernels which are convolved with the original image to calculate
approximations of the derivatives. One kernel for the horizontal
changes (GX ), and the other one for vertical (GY ).

For the hardware implementation we use a Xilinx ZC702
evaluation board. Because of Nostrum NoC constraints, the
board should operates at 50MHz. The platform consists of a
NoC size of 2× 2 with 4 bi-directional virtual channels at each
node. The topology as it is shown in Figure 2, is a 2D mesh with
54-bit flit size (32bit data, 22 bit header) and packet size of 128
32-bit words. The routing algorithms are wormhole, deflective,
distributed yx.

The Sobel filter is a good fit for a 2 × 2 NoC. Sobel filter
has four tasks, each of which assigned to one of the 2× 2 NoC
node. Four tasks are as follows, as depicted in Figure 2: getPixel
function that selects the part of image to apply the algorithm
assigned to P0. Two tasks are GX and GY which move on the
X and Y axis and are assigned to P1 and P2 respectively. The
last actor, ABS function that calculates the gradient magnitude
is assigned to P3. The task scheduling is shown in Figure 3.
P0 is implemented on ARM core and the rest is imple-

mented on the FPGA fabric. Utilizing both processing and
programmable logic part of Xilinx Zynq platform helps to better
prove the functionality of the proposed approach by making
a generic interface for processing elements. Results obtained
from hardware implementation is shown in Table I. It shows the
needed time for each processing element to perform its tasks.

t

P0

P1

P2

P3

getP ixel getP ixel getP ixel

[HeartBeat]

GX GX

GY GY

ABS ABS

Fig. 3: Task scheduling per processing node (PX )

The optimum HeartBeat is calculated based on both communi-
cation and computation times. The most time consuming task
(getP ixel) determines the HB period. The HB should be set
equal to WCET1 of getP ixel when executed on P0 plus the
worst-case communication time (WCCT) of getP ixel sending
the needed packet over the NoC. In this case it would be:

8055 + 2 × (40 + ceil(128/4) × 20(cycles)) = 8735cycles

Here the WCET is 8055 cycles. For WCCT, since P0 sends
two messages that have to physically be serialized, the WCCT
would be twice as much as sending of one message. One
packet carries 128 integers (32-bit integer). If HeartBeat <
WCET + WCCT , the messages will not arrive on-time and
the synchronization will not be correct. Then the implementation
does not match the model.

IV. PROPOSED APPROACH

The main challenge towards realizing a framework for virtual-
prototyping of NoC-based MPSoCs is to have a model which
achieves a good trade-off between accuracy and simulation
speed. Both Instruction Accurate (IA) and Cycle Accurate
(CA) simulators can be used for functional verification. In the
following we will take a look into a first approach how to enable
a synchronous execution within OVP and how to model the
Nostrum NoCs.

A. Modeling Nostrum NoC and integration to an OVP MPSoC
Model

In OVP, the Nostrum NoC is implemented using the pe-
ripheral modeling technology and PacketNet interface. It is
implemented as a functional model of the network interface. It
provides the interface as seen by the software and supports the
communication mechanisms used by the software. PacketNet
is used for the abstraction of a packet based Network-on-
Chip. It is a packet based mechanism for broadcasting data to
several possible targets. A packet transaction is modeled as an
instantaneous event. Network speed and latency is modeled in
the sending devices. A PacketNet communicates by callbacks
and shared memory.

The transmitting model creates a packet in its local memory
then calls the transmit function. This causes a notification
function to be called in each receiving model in turn, passing a

1In this case it is the worst-case measured execution time.



t

P0

P1

P2

P3

[HeartBeat]

Fig. 4: Slack/Idle time in each HB period for different core

pointer and number of bytes in the packet. The peripheral model
API can send and receive through the PacketNet interface.
A PacketNet is bidirectional; a model can send and receive
from the same PacketNet (though it does not have to). In
our model, for the sake of simplicity we use one directional
communication as shown in Figure 2. In our approach, the NoC
is created as a virtual platform using a four processor sub-
systems which use a peripheral model to create the network
connection. Nevertheless to maintain performance in the virtual
platform, we do not model the low level network protocols. We
provide the HeartBeat call to the application software to operate
as it would on the hardware while maintaining simulation
performance.

B. Realizing a Heart-Beat Synchronous Execution in OVP Dis-
crete Event Simulation

In a first approach, we propose to set the Quantum of
OVP simulation to be equal to the HeartBeat in terms MIPS.
This is reasonable, since in a synchronous application the
synchronisation of the tasks is always done at the begining of the
global clock tick (in this case at the begining of the HeartBeat).
Consider for e.g. 4 cores connected via a NoC as depicted in
Fig. 2 and the task mapping in Fig. 4. As seen these four cores
are independent of each other and communicate (synchronize)
only at specific time (e.g. Gx and getPixel at HB1), and that is
why the Quantum can be set to the same number of instructions
needed to simulate a HeartBeat.

Since the HeartBeat is computed according to the most time
consuming task (including the communication) in the system
(see case-study in Fig 3), it is gauranteed that the computation
and communication are finished within the HB boundary. By
considering the HB time as the time anchor, the functional result
and the global time (w.r.p.t. number of cycles) is correct.

Yet with this assumption, the exact time indicating when the
execution of a specific task on a specific core is finished within
a HB cycle can not be traced within the simulation. In the future
work, we will take a look how to improve that.

V. FUTURE WORK

For the timing model in OVP, we will use the quasi-cycle-
accurate timing model introduce in [7]. This model improves the
accuracy without involving the simulation slow-down of a really
cycle accurate processor model. This is done by using informa-

tion about the executed instructions on the processor model and
the processor instruction set and its micro-architecture.

Now, in OVP we can detect the HeartBeat and when it is
detected check if the processors/tasks have reached their idle
state. With combination of quasi-cycle accurate timing model,
we can semi-accurately calculate the execution and slack time in
the virtual platform. Slack time are now visible to us by having
a timing model during each HB slot as it is shown in Figure 4.
Also, since we would like to target time-triggered architecture in
safety-critical situations, we plan in the future work, to interface
the Nostrum NoC with a time-triggered network interface.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 687902 (SAFE-
POWER).

REFERENCES

[1] Hemani, Ahmed, et al. “Network on chip: An architecture for billion
transistor era” Proceeding of the IEEE NorChip Conference, 2000.

[2] Open Virtual Platforms (OVP) website http://www.ovpworld.org/
[3] Millberg, Mikael, et al. “The Nostrum Backbone - a Communication

Protocol Stack for Networks on Chip” Proceedings of the 17th International
Conference on VLSI Design (VLSID04), 2004.

[4] Millberg, Mikael, et al. “Network on chip: An architecture for billion
transistor era” Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE04), 2004.

[5] Edward A. Lee, and Alberto Sangiovanni-Vincentelli “A Framework for
Comparing Models of Computation” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 17, No. 12, 1998.

[6] Robino, Francesco, et al. “The HeartBeat model: A platform abstraction
enabling fast prototyping of real-time applications on NoC-based MPSoC
on FPGA.” Reconfigurable and Communication-Centric Systems-on-Chip
(ReCoSoC), 2013 8th International Workshop on. IEEE, 2013.

[7] Schreiner, Soeren, et al. “A quasi-cycle accurate timing model for binary
translation based instruction set simulators.” Embedded Computer Sys-
tems: Architectures, Modeling and Simulation (SAMOS), 2016 Interna-
tional Conference on. IEEE, 2016.

[8] Wehner, Philipp, et al. “MPSoCSim: An extended OVP simulator for mod-
eling and evaluation of network-on-chip based heterogeneous MPSoCs.”
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), 2015 International Conference on. IEEE, 2015.

[9] Real, Maria Méndez, et al. “MPSoCSim extension: An OVP Simulator for
the Evaluation of Cluster-based Multi and Many-core architectures.” Proc.
of the 4th Workshop on Virtual Prototyping of Parallel and Embedded
Systems (ViPES) as part of the International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XVI), Samos, Greece. 2016.

[10] Jain, Lavina, et al. “NIRGAM: a simulator for NoC interconnect rout-
ing and application modeling.” Design, Automation and Test in Europe
Conference. 2007.

[11] Fazzino, Fabrizio, et al. “Noxim: Network-on-chip simulator.” URL:
http://sourceforge. net/projects/noxim (2008).

[12] Jiang, Nan, et al. “A detailed and flexible cycle-accurate network-on-chip
simulator.” Performance Analysis of Systems and Software (ISPASS), 2013
IEEE International Symposium on. IEEE, 2013.

[13] Ben-Itzhak, Yaniv, et al. “Hnocs: Modular open-source simulator for
heterogeneous nocs.” Embedded Computer Systems (SAMOS), 2012 In-
ternational Conference on. IEEE, 2012.

TABLE I: Analysis of computation time of a Sobel filter with
a 9 × 9 mask on a 2 × 2 NoC

phase exec. time [cyc.]
best avg. worst

getP. comp. 7875 7948,5 8055
GX comp. 4575 4575.0 4575
GY comp. 4575 4575,0 4575
ABS comp. 52 52.0 52



[14] Duenha, Liana, et al. “Mpsocbench: A toolset for mpsoc system level
evaluation.” Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XIV), 2014 International Conference on. IEEE, 2014.

[15] Cong, Jason, et al. “MC-Sim: An efficient simulation tool for MPSoC
designs.” Proceedings of the 2008 IEEE/ACM International Conference on
Computer-Aided Design. IEEE Press, 2008.

[16] Renau, Jose, et al. “SESC simulator.” (2005): 6.
[17] Benini, Luca, et al. “Mparm: Exploring the multi-processor soc design

space with systemc.” The Journal of VLSI Signal Processing 41.2 (2005):
169-182.

[18] Rosa, Felipe, et al. “Fast energy evaluation of embedded applications
for many-core systems.” Power and Timing Modeling, Optimization and
Simulation (PATMOS), 2014 24th International Workshop on. IEEE, 2014.

[19] Schlaak, Christof, et al. “Power and Execution Time Measurement
Methodology for SDF Applications on FPGA-based MPSoCs.” arXiv
preprint arXiv:1701.03709 (2017).


