
A Dynamic Ontology Mapping Architecture for a
Grid Database System

Nelson C.N. Chu, Quang M. Trinh, Ken E. Barker and Reda S. Alhajj
Department of Computer Science, University of Calgary

2500 University Dr. NW, Calgary, AB, Canada
{chuncn,qtrinh barker,alhajj}@cpsc.ucalgary.ca

Abstract— Most large-scale heterogeneous distributed
computing systems, such as Grids, rely on Service Oriented
Architectures (SOA) to interact with others in different
platforms and computing languages. However, we still need to
solve the semantic heterogeneity problem of data; we must
interpret the data from different systems in some semantically
related ways. Ontologies are the most common and well-
accepted methodology to handle this problem at multiple
levels of granularities across different systems. Nevertheless,
using ontologies in a dynamic environment, such as a Grid, to
share some common concepts is still a challenge. It is difficult
to keep a static mapping between ontologies; the
corresponding semantic mapping changes must occur
consistently. Therefore, we adopt the concept of Tuple Space
and propose a flexible approach for managing ontologies in a
Grid. It enables systems and users to interoperate semantically
and dynamically by sharing and managing the concepts and
semantic ontology mappings in a flexible approach.

I. INTRODUCTION
Interoperability between data resources or systems in

large-scale distributed environments such as the Grid
must be addressed dynamically for the following three
reasons: (i) a large number of heterogeneous participant
systems; (ii) resources are designed and built
independently; and (iii) interactions and participation
between the resources are dynamic. It implies dynamic
resources existing in the system are irregular and
unpredictable; they could be holding very interesting or
important information about physical resources, such as
data storage. One of the most challenge problems is to
handle semantic heterogeneity of concepts between
autonomous participants in a Grid. In the past, existing
solutions for addressing the interoperability problem
between systems are mainly focused on a small number
of systems that are in static environments so these
solutions are not appropriate for systems in large-scale
environments. In large scale environments, a
compromise is very difficult to achieve between systems
because of a large number of participant systems with
different requirements that are designed and built
independently. For example, semantic heterogeneity is
one such problem. Semantic heterogeneity is a very

difficult problem to address dynamically in large-scale
environments; however, ontologies are keys success
factors for addressing this problem. They are used to
describe the descriptions, meanings, and the semantic
relationships of the data in each system. Ontology
provides effective methods for mapping concepts and
integrating information in a Grid. Furthermore, it
reduces the problems caused by the multiple levels of
concept granularity and hence increases the degree of
information interoperability and collaboration.

Ontology management in large-scale environments is
a challenge for two reasons: (i) ontologies will evolve so
changes in semantic relationships with other ontologies
must be consistent. Ideally, the changes should occur
concurrently and consistently; (ii) dynamic ontology
participation inherited from the participation of systems
in a Grid are dynamic, and ontology participation in a
Grid is as well. This requires the ontology management
approach be flexible enough to accommodate the
dynamic participation of ontologies while maintaining
their scalability, reliability, availability, and versioning
requirements [1]. This would allow systems in a Grid to
interoperate with each other semantically and
dynamically.

Ontology is a well-recognized structure for integrating
information, but managing different ontologies from
different data resources becomes a major challenge in a
dynamic environment. To provide a flexible ontology
managing system the Tuple Space paradigm [3] is a
suitable solution for the dynamic environment. This
paradigm provides a simple but powerful mechanism for
a member to interact with the system. Our approach
applies a Tuple Space paradigm for managing ontologies
and their semantic relationships while allowing them to
evolve. Tuple Spaces is appropriate for managing
ontologies and their semantic relationships in large-scale
environments because [5]: (i) a Tuple Space's
architecture provides fully autonomous and flexible
communication between systems; (ii) Tuple Spaces can
easily combine with a database system to provide

Fourth International Conference on Semantics, Knowledge and Grid

978-0-7695-3401-5/08 $25.00 © 2008 IEEE
DOI 10.1109/SKG.2008.49

343

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on March 30, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

transactional-database-like contexts that ensure the
changes are concurrent and consistent.

The contributions of this paper are two fold: (i)
proposes a Tuple Space based architecture to resolve the
semantic problem of information, multiple levels of
granularity, by using ontology in a Grid database system.
(ii) It resolves dynamic participation issues of the
ontologies in such system. The rest of the paper is
organized as followed. Section 2 provides a summery of
two key concepts in this research: Ontology and Tuple
Space. We proposed an efficient and flexible
architecture in Section 3 to manage ontologies in a Grid
environment. An implementation of the proposed
architecture is described in Section 5.

II. RELATED WORK

A. Ontology
A multiple domain system is very difficult to maintain

in a federated way. The reason is the differences
between the policies of each domain. For each domain,
they have their own guideline for authentication,
authorization, access control, etc. To join a federation,
all of these issues must agree on a set of rules that
satisfies everyone's need. The main idea of a Grid is
resources sharing with emphasize on interoperability and
collaboration. To achieve this goal, finding a simple and
flexible mechanism in a dynamic environment is the key
milestone.

In general, an ontology is a document that contains
the explicit and formal descriptions of concepts and the
relationships that are defined and used in a single system
or domain [4]. Three of the goals of ontologies are: (i)
provide a high degree of abstraction so that concepts can
be resolved at multiple levels of granularity; (ii)
enabling common “understanding” of data provided by
different systems between humans and across computer
systems [6, 9]; and (iii) provide consistency checking of
concept definitions defined in multiple systems [6].
Ontologies play an important role in database
interoperability because they can bridge the “semantic
gaps” between database systems so they provide
database interoperability with capabilities beyond the
thesauri and define an “entity-relationship model”-like
description for complex and diverse data types in
different systems.

B. Tuple Space
Tuple Space [3] is a shared memory system with

tuples that are ordered-sets of typed constants, variables,
and parameters, which are accessible to all processes in
the system. The Tuple Space paradigm is suitable for
Grids for several reasons. It is an asynchronous

paradigm with no assumptions about timeliness,
ordering, or synchronization [2]. The scalability of a
space is easier to achieve because no strict order of tuple
matching is required. The Space operations are fully
anonymous communications (destination uncoupling)
[9]. Tuple spaces decouple processes with respect to
time and space. The life cycle of a tuple is independent
(time uncoupling) of the tuple generation and
consumption. Tuple Space is able to provide a globally
shared data space to all processes, regardless of machine
or platform boundaries (space uncoupling).

III. DYNAMIC ONTOLOGY MAPPING ARCHITECTURE
ONMAS is a Tuple Space based architecture for

managing ontologies. The Tuple Space acts as a
communication hub and, therefore, the negotiation of
communication between consumers (users) and service
providers can be eliminated. This approach simplifies
the communication process and provides flexibility of
participation of all participants. The dynamic
participation exactly describes the situation in a Grid
system. Some users or services providers constantly
participate in the system and some other participants
may exist in the system on an irregular basis. ONMAS
provides a flexible management mechanism for an
ontology based information integration system to handle
this dynamic environment. On one hand, an information
resource produces, stores, and maintains an ontology in
the Space to describe its structure and service for
authorized consumers. On other hand, a consumer can
simply get the ontology that met its requirements from
the Space. On top of the basic structure, the leasing
structure is a promising mechanism implemented to
permit dynamic participation and guarantees the stability
and accuracy of the ontologies in the system.

The Tuple Space paradigm is suitable for Grids for
several reasons. It is an asynchronous paradigm with no
assumptions about timeliness, ordering, or
synchronization [10, 11]. The scalability of a space is
easier to achieve because no strict order of tuple
matching is required. The Space operations are fully
anonymous communications (destination uncoupling).
The tuple producer does not require knowledge about
the future usage and destination of a tuple. A tuple
persists in the tuple space until it is consumed. This
persistence property also enables tuple spaces to
decouple processes with respect to time and space. The
life cycle of a tuple is independent (time uncoupling) of
the tuple generation, out operation, and consumption, in
operation. Tuple Space is able to provide a globally
shared data space to all processes, regardless of machine
or platform boundaries (space uncoupling).

344

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on March 30, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

As described above, the interoperability of data
resources or systems in a Grid has been greatly affected
by the number of participant systems, independently
designed and maintained resources, and dynamic
interactions and participation in such system. The
proposed architecture adapts ontology and Tuple Space
concepts to resolve the semantic problem of information
with multiple levels of granularity, and to handle
dynamic participation of the resource providers and/or
users in such environments. The rest of this section
gives the details of the proposed architecture.

A. Elements in ONMAS
User: is a data consumer in the system.
Ontology tuple: provides meta-information and

descriptions of the corresponding data resource. It also
gives a mapping of subsequent data or concepts in the
system. The mappings are implemented with a lease list
mapping resources and services to requests.

Resource: responsible for generating and updating the
ontology that describes the data resource. It maintains
the services promised to the users listed in the lease list
of the ontology.

Resource list(s) tuple: a Register collects data in the
space and publishes a resources list, which provides
information and statistic of available resources in the
system. The list could be divided in different categories
based on the nature of the resources to minimize
unnecessary scanning of a single long list.

Tuple Space Register/Server (SR): is a Tuple Space
manager providing system cooperatation. It is
responsible for registering all other entities in the system,
managing all leases between entities and the Space,
supplying data for Grid Information Service, providing
event notification service and transition service, and
communicating with other domains in the Grid.

B. Entity Registration
Registration is a mandatory process for all entities

which participate in the system. The registration allows
the Register to update the resources list in the Space and
activates other features, such as event notification. Every
resource or ontology registration will be responded to
with a new lease to indicate a time period defining the
visibility of the entity.

C. Leasing Structure for Dynamic Participation
In a dynamic Grid environment, there are many

factors affecting the availability of the resource, such as
network connection failure, congestion, and hardware
failure. The leasing mechanism in ONMAS eliminates
this kind of uncertainty that affects the quality of
services in the system by limiting the impact in the

leasing period. The leasing mechanism sets the time
contract between the service provider and consumer.
During the time period, consumer can assumes the
service or resource is available in the system. Any lease
must be renewed before it expires, otherwise, the service
or resource will be considered unavailable in the served
domain. A lease will be issued for each resource
registration or ontology entity. The lease between user
and resource is an agreement to indicate the interest of a
user to use the corresponding ontology, and the
willingness of the resource to provide and maintain the
information or services specified in the ontology. The
lease is recorded in the lease list of an ontology. The
lease between resource and space is a contract between
the system and data resource; in that it designates the its
existence and willingness to serve as a system resource.

IV. MANAGING ONTOLOGIES
In ONMAS, the basic operations are inherited from

the original Tuple Space concepts [3]. The three basic
operations (Read, Write, and Take) are implemented in
two modes of the tuple accessing primitives: blocking
and non-blocking. For example, a read operation in
blocking mode waits until a matching tuple is found in
the space, while a non-blocking operation returns empty
tuple to indicate no matching tuple in the space.

A. Ontology Generation
Ontologies are generated dynamically by using the

RDB2ONT tool [7]. The RDB2ONT tool uses the meta-
data and structural constraints of the underlying
relational data model to generate ontologies with the
Web Ontology Language (OWL) [8] to describe the
generated ontologies. Formally, relations are
transformed into OWL classes, non-foreign key
attributes are transformed to OWL data properties, and
foreign key attributes are transformed into OWL object
properties. The RDB2ONT tool preserves the structural
constraints of the underlying relational model by
transforming these structural constraints into OWL
restrictions and enforces them on the classes, data
properties, and object properties in the generated
ontologies. The detail descriptions of the generation
process in RDB2ONT can be found elsewhere [7].

B. Ontology Mapping
Ontology mappings are important since they relate

semantically related resources from multiple data
sources together. In general, mappings are not
bidirectional, so for example, if one also wishes to say
that the Staff from CompanyY is semantically the same
as the Employee in CompanyX, then this mapping needs
to be explicitly defined in the CompanyX ontology. In a

345

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on March 30, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

Grid, resources are dynamic so mappings between
ontologies are also dynamic. It implies that mapping
management between ontologies is necessary. Our
framework uses a mapping manager called Mapper to
keep track of the mappings between ontologies (see [7]
for more details of how the Mapper works). A Mapper
of an ontology issues a contract with an expiration time
from itself to the Mapper of another ontology. The
contract for the mapping between a pair of resources
guarantees that the resource specified in the ontology
will remain unchanged until the expiration time.
Contracts can be renewed before their expiration times
but it is up to the resource mapper to issue the renewals
dependent on any existing contract.

C. Ontology Manipulation
Insert: An ontology will be registered with SR and

hosted in the space for users to access. The Registrar
keeps tracks all ontologies and maintains the resource
list in the system.

Update: When updating the entire ontology must be
unused so the resource waits for all leases listed in the
lease list in the ontology entity to expire and then
removes the ontology from the space. The new ontology
can then be activated immediately. In a situation
requiring updating attributes in an ontology, resources
adds the new attribute into the ontology and marks the
old attribute as dated. All users listed in the lease list are
still able to access the dated attributes until the lease
expires. Other users will obtain a lease based on the new
set of attributes.

Delete: To terminate the service (a resource tuple) of
the resource or the service of some information, a
resource needs to wait until all related leases expire.

Search: The first scenario, the Space returns a tuple
that match the template provided by the entity which
issued the search. The second scenario, the search is
caused by referencing the mapping of an ontology. The
ontology engine also assists in mapping the
corresponding definition of a concept.

V. IMPLEMENTATION
A scenario that uses an ontology for data integration

has been created and an application of the proposed
architecture has been developed to illustrate the whole
process to manage ontologies for concept integration.
We implemented the proposed system and simulate an
inter-university network for sharing staff information. In
this simulation, ontologies are used to describe the
terminologies/concepts (such as {Staff, Faculty,
Instructor} vs. {Employee, Teaching Staff, Lecturer})
that used in each university. The application also

provides users the functionalities as discussed in
pervious sections to manipulate (insert, update, delete,
and search) the ontologies.

VI. CONCLUSION
There are two major contributions in this research.

First, the proposed architecture resolve the semantic
problem of information, multiple levels of granularity,
by using ontology in a large distributed database system,
particularly in Grid computing environment. In much
scientific research, such as bioinformatics and physics,
the nature of data is heavily depending on the linkage
between each source but the amount of the data is huge.
Our architecture provides an effective and efficient
mechanism to manage ontologies and to integrate the
data without losing their characteristics. Second, the
proposed Tuple Space based architecture resolved
dynamic participation of the resource providers and/or
users in a Grid. It is an unavoidable problem and causes
the availability of the services/resources to become
unstable. Our system provides a flexible structure to
guarantee the quality of services with dynamic
participation of the participants. This is one of the most
significant issues in such system with the concerns of
quality of services.

REFERENCES
[1] A. Das, W. Wu, and D. L. McGuinness. Industrial Strength

Ontology Management. In I. Cruz, S. Decker, J. Euzenat, and
D. L. McGuinness, editors, The Emerging Semantic Web. IOS
Press, 2002.

[2] A. Friday, S. P. Wade, N. Davies, and G. S. Blair. The tuple
space: An old solution to a new problem?

[3] D. Gelerner. Generative Communication in Linda. In ACM
Transactions on Programming Languages and Systems 7, 1985

[4] T. Gruber. A Translation Approach to Portable Ontology
Specifications. Knowledge Acquisition, 1993.

[5] T. J. Lehman, S. W. McLaughry, and P. Wyckoff. T Spaces:
The Next Wave. HICSS '99: Proceedings of the Thirty-second
Annual Hawaii Intl’ Conference on System Sciences-Volume 8.
IEEE Computer Society, 1999.

[6] D. L. McGuinness. Ontologies Come of Age. In D. Fensel, J. A.
Hendler, H. Lieberman, and W. Wahlster, editors, Spinning the
Semantic Web: Bringing the World Wide Web to Its Full
Potential. MIT Press, 2002.

[7] Q. Trinh, K. Barker, and R. Alhajj. RDB2ONT: A Tool for
Generating Ontologies From Relational Database Systems.
Technical report, University of Calgary, Sept 2004.

[8] W3C. Web Ontology Language (OWL), February 2005.
[9] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford.

T Spaces. IBM Systems Journal, Nov 1998.

346

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on March 30, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

