
Towards a Principled and Evolvable Approach to Software Development for Future
Wireless Sensor Networks

Michael R. Poppleton, Geoff V. Merrett
Electronics and Computer Science

University of Southampton, Southampton SO17 1BJ, UK
{mrp,gvm}@ecs.soton.ac.uk

Abstract—Due to the operational demands and requirements
diversity in wireless sensor networks (WSNs), great improve-
ments in the software engineering process are required. As
WSNs increasingly become essential, even critical, components
in systems-of-systems (SoSs), the case for verification in the
development process is strong. In this position paper we present
our vision for a principled formal software development and
verification process for WSNs within SoSs.

Keywords-complexity, formal, refinement, simulation, soft-
ware engineering, wireless sensor network

I. INTRODUCTION AND MOTIVATION

WSN deployments and applications have many dimen-
sions of variability, for example heterogeneity of purpose
and functionality, communication patterns, fault tolerance
and safety, and performance requirements. These challenges
- along with the well-known constraints of node software
- lead to the fact that software development is currently
a “code-and-fix process” [1] using APIs provided by sim-
ple WSN OSs and middleware (although, from our own
experiences in low-power WSN design, these are often
avoided, in favour of coding monolithic programs to obtain
the desired effect). OS and middleware platforms have been
proposed [2] but so far only exploited in isolated ways. In his
position paper, Picco [1] stresses the need for collaboration
between SE and WSN communities to develop principled
SE development processes for WSNs. The current lack of
progress in this area threatens to hinder further progress,
and certainly the much-prophesised mass commercial ex-
ploitation, of WSNs. [1] identifies the need - with which we
agree - for improved development practices and confidence
in correctness and reliability, and advocates addressing these
through engineering processes for middleware abstractions.

In this position paper we argue that a need for structured
development, which encourages code reuse and ensures
correctness and reliability, cannot be solved by middleware
or programming abstractions alone. Instead, we propose a
principled SE process driven by formal modeling and design
with built-in simulation, test and verification support.

Compounding all the above is the vision of truly pervasive
computing, in which individual WSNs are a part of a larger
system-of-systems (SoS), interacting with other proprietary
and heterogeneous systems [3]. Such a SoS may exhibit

complex and emergent behaviours, and its components may
need to adapt, reconfigure, or retask accordingly. Design,
simulation, operation and maintenance of the SoS will rely
on various infrastructural assumptions on its components; it
might impose assumptions on the WSN such as latencies be-
tween sensing and actuation, bandwidth, reliability, or power
consumption. Thus the gathering, modelling and verification
of these assumptions represents an evolving requirements
engineering process for the WSN through time.

II. FORMAL SOFTWARE DEVELOPMENT FOR WSNS
WITH BUILT-IN SIMULATION, TEST AND VERIFICATION

Our vision for a principled software engineering process
is one based on formal software technology; Picco [1] makes
a succinct case for the increasing importance of “provably-
correct behaviour” of WSNs, and thus the integration of
Formal Methods technology in the SE process. Event-
B [4] is a leading formal modelling language by J.-R.
Abrial and its RODIN toolkit [5] provides formal modelling,
animation, model-checking, verification, and proof. A rich
set of tools serves as foundation for current FP7 project
DEPLOY1 which is scaling methodology and tooling for
Event-B. In software development with Event-B, refinement
is the central method by which initially small, abstract
models of high-level requirements are elaborated through
the addition of lower-level requirements during architectural
and detailed design, down to code generation. Refinement
removes implementation-freedom and adds data and algo-
rithmic structure. Event-B allows us to formally encode
requirements as correctness properties for models and their
refinements, and to prove these properties formally.

Our visionary concept for this new software development
process is depicted graphically in Figure 1. Initial require-
ments are drawn from the SoS (1), dictated by the WSN
application being delivered, and formally modelled and
refined at network level (2). This network modelling drives
the automated production of conventional WSN network-
level simulation models (3). This interaction is central to

1DEPLOY - Industrial deployment of system engineering methods
providing high dependability and productivity: FP7 Project 214158 http:
//www.event-b.org

http://www.event-b.org
http://www.event-b.org


Re
fin

em
en

t

Formal 
Development

Formal 
Development

Si
m
ul
at
io
n

Si
m
ul
at
io
n

Re
fin

em
en

t

N
O
DE

 L
EV

EL
N
ET
W
O
RK

 L
EV

EL

Ev
ol
ut
io
n

Re
fin

em
en

t

Formal 
Development

Formal 
Development

Si
m
ul
at
io
n

Si
m
ul
at
io
n

Re
fin

em
en

t

N
O
DE

 L
EV

EL
N
ET
W
O
RK

 L
EV

EL

Re
fin

em
en

t

Formal 
Development

Formal 
Development

Si
m
ul
at
io
n

Si
m
ul
at
io
n

Re
fin

em
en

t

N
O
DE

‐L
EV

EL
N
ET
W
O
RK

‐L
EV

EL

Re
fin

em
en

t

Different Platforms

SYSTEM‐OF‐SYSTEMS
(ALSO PERVASIVE, COMPLEX ADAPTIVE, OR UBIQUITOUS SYSTEMS)

e.g. Systems delivering:
Patient monitoring and pervasive/tele health

Intelligent traffic management
City‐wide monitoring and control

Re
fin

em
en

t

Formal 
Development

Formal 
Development

Si
m
ul
at
io
n

Si
m
ul
at
io
n

Re
fin

em
en

t

N
O
DE

 L
EV

EL
N
ET
W
O
RK

 L
EV

EL

Requirements Abstraction

Emergent 
Behaviours

Code 
Generation

Multi‐system 
Interaction

Node‐level simulation/emulation evaluates the 
operation of the generated code for functionality, 
including energy, timing and reliability

Pl
at
fo
rm

 In
de

pe
nd

en
t

Pl
at
fo
rm

 D
ep

en
de

nt

Platform dependency may produce different 
refinement paths for code generation. Branches are 
‘pushed down’ as far as possible to maximise re‐use.

Interactions between the individual systems within a 
complex systems‐of‐systems are consideredRequirements are provided 

from the system‐of‐systems, 
and formal development refines 

the design. Abstractions are 
returned to model and analyse 

emergent behaviours and multi‐
system interactions

Network‐level simulation evaluates latency, bandwidth 
and throughput for a small number of defined scenarios.

Verification of requirements 
and model checking over a 

complete (but limited by state 
explosion) state space

1

2 3

4
5

6

7
8

9

Figure 1. Our Vision for Formal Software Development for WSNs

any principled software engineering process; while func-
tional properties of the WSN can be proved, nonfunctional,
timing and performance properties in general cannot. Formal
animation (manual symbolic execution of single test cases)
and model-checking (exhaustive state-space evaluation via
constraint-checking of required properties) can validate be-
haviour, and verify deadlock and simple temporal properties
within the usual state explosion limits. A long-running
WSN, with ranges of configuration data and sensed data,
requires conventional simulation, i.e. efficient large-scale
test scenarios to evaluate behaviour and performance. As
formal verification and simulation confirm satisfaction of
requirements, (2 - 3) will be an iterative cycle.

Similarly, the formal design output from the network
phase, is input to an iterative cycle of formal de-
sign/refinement (4) and simulation (5) at the node level,
where microcontroller code is generated from the end of the
refinement chain and emulated. The network-level models
impose requirements at the node level - on top of intrinsic
node requirements such as energy-awareness, power effi-
ciency - which are verified in this cycle.

Requirements to implement on different hardware or
code-generate to different middleware platforms, will gener-
ate forks in the refinement tree (6), which will be “pushed-
down” to maximise reuse. This will, effectively, represent
product-line working for WSN.

Ultimately, our vision includes interaction through the
SoS with other WSNs (7), existing or developed as above.

Also, the complexity of the SoS may produce emergent
behaviours (8) - perhaps discovered through SoS simulation
- necessitating evolution of the high-level requirements (9)
of the SoS.

III. CONCLUSION

In this position paper we propose a principled SE process
for WSNs, driven by formal modeling and design with built-
in simulation, test and verification support. This principled
process combines best practice in formal, middleware and
broader SE technology. Our vision is timely, as recognition
of the need for efficient SE processes becomes widespread
in the WSN community, and as WSNs are increasingly seen
as components of SoSs of the future.

REFERENCES

[1] G. Picco, “Software engineering and wireless sensor networks:
Happy marriage or consensual divorce,” in FoSER 2010, 2010.

[2] L. Mottola and G. Picco, “Programming wireless sensor net-
works: Fundamental concepts and state of the art,” ACM
Computing Surveys, vol. 43, no. 3, April 2011.

[3] J. A. Stankovic, “Wireless sensor networks,” IEEE Computer,
vol. 41, no. 10, pp. 92–95, 2008.

[4] J.-R. Abrial, Modeling in Event-B - System and Software
Engineering. Cambridge University Press, 2010.

[5] J. R. Abrial, M. Butler, S. Hallerstede, and L. Voisin, “An open
extensible tool environment for Event-B,” in ICFEM 2006, ser.
LNCS, Z. Liu and J. He, Eds., vol. 4260, Macau, 2006.


	Introduction and Motivation
	Formal Software Development for WSNs with built-in Simulation, Test and Verification
	Conclusion
	References

