
HAL Id: hal-01780248
https://laas.hal.science/hal-01780248v1

Submitted on 27 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multi-function Error Detection Policy to Enhance
Communication Integrity in Critical Embedded Systems

Amira Zammali, Agnan de Bonneval, Yves Crouzet

To cite this version:
Amira Zammali, Agnan de Bonneval, Yves Crouzet. A Multi-function Error Detection Policy to
Enhance Communication Integrity in Critical Embedded Systems. 2014 IEEE 8th International Con-
ference on Software Security and Reliability-Companion (SERE-C), Jun 2014, San Francisco, United
States. �10.1109/SERE-C.2014.18�. �hal-01780248�

https://laas.hal.science/hal-01780248v1
https://hal.archives-ouvertes.fr

A multi-function error detection policy to enhance communication integrity
in critical embedded systems

Amira Zammali(1),(2)
(1) CNRS, LAAS, 7 avenue du colonel

Roche, F-31400 Toulouse, France
(2)Univ of Toulouse, UPS, LAAS,

F-31400, Toulouse, France
Email: zammali@laas.fr

Agnan de Bonneval(1),(2)
(1) CNRS, LAAS, 7 avenue du colonel

Roche, F-31400 Toulouse, France
(2)Univ of Toulouse, UPS, LAAS,

F-31400, Toulouse, France
Email: agnan@laas.fr

Yves Crouzet(1),(2)
(1) CNRS, LAAS, 7 avenue du colonel

Roche, F-31400 Toulouse, France
(2)Univ of Toulouse, LAAS,
F-31400, Toulouse, France

Email: crouzet@laas.fr

Abstract—We present, in this paper, ongoing work that inves-
tigates a new error detection policy aiming at enhancing com-
munication integrity in the presence of permanent errors (single
and multiple). We consider critical embedded systems which are
based on complex networks including active interstage nodes.
This property increases the occurrence probability of permanent
errors. The novelty of the proposed policy lies in the fact that
unlike classical policies using a single error detection function,
it is based rather on a set of different error detection functions.
The different used functions must be complementary in terms
of detection capability in order to increase the resultant error
detection capability. Our reference application to illustrate the
proposed concepts is the Flight Control System (FCS). However,
our objective is also to apply the proposed approach to other
application domains sharing similar features and characteristics.

Keywords-communication integrity; multiple permanent er-
rors; critical embedded systems; error detection codes; safety;
flight control system;

I. INTRODUCTION AND CONTEXT

In critical embedded systems, the occurrence of errors in
exchanged messages could lead to a system failure resulting
in damages and even in fatalities. So, ensuring the communi-
cation integrity is crucial.

Nowadays, these systems are based on complex networks
that are vulnerable to binary errors affecting the transmitted
data. Different causes could lead to such errors, e.g., perma-
nent faults in interstage nodes, noise, etc. In this work, we
address the particular case of permanent errors (single and
multiple) affecting communicated messages.

To deal with errors in communications, the usual integrity
approach consists in using a single error detection function
based on an error detection code (e.g., Cyclic Redundancy
Check “CRC”) and if it is necessary to increase the detection
capability, the usual way is to increase the number of check
bits (e.g., increasing the generator polynomial degree of the
used CRC). This approach is efficient for many applications
but in others, it is not sufficient, particularly if permanent
errors are targeted. Let us give an example of one of these
applications. It is an industrial case study that was studied
in the context of a project involving our research team and
an aerospace company: the Flight Control System (FCS).
FCS controls the airplane trajectory by exchanging control-

command messages with the actuators controlling the movable
surfaces. Commands are calculated periodically and sent via
a digital network (Fig. 1).

Control &
Command

Nodes

Controlled
Systems

!
!

Command

Control

Feedbacks

The Target Part

Digital
Communication

Systems

Fig. 1. The targeted part in the Flight Control System

In this previous case study [1], CRC was used to detect
errors and it was noticed that if a permanent error is not
detected once by the used CRC code, it will never be detected
since the same CRC was used in all refresh cycles. So, it
was proposed to use a different CRC in each transmission.
The used CRCs are based on different generator polynomials.
As known, CRC fails to detect an error when the erroneous
data is a multiple of its generator polynomial. Accordingly,
the approach proposed in [1] selected generator polynomials
sharing a minimum of common factors, so if the erroneous
data is not detected by the first code, there is a chance that
the second CRC detects the error. It was proven that the use
of different CRCs increased the error detection capability.
In this context, the communication integrity is ensured at
the application layer. The approach proposed in [1] to deal
with the problem of permanent errors was exclusively based
on CRCs. Yet, the computation of CRC codes implies a
significant performance overhead, about 10% of the refresh
cycle duration.

Based on the preliminary work presented in [1], we pro-
pose in this paper a significant extension that consists in
using a multi-function error detection policy that instead of
using a single error detection function, uses a different error
detection function in each refresh cycle. The used functions
are complementary, this latter property means that the used
codes cover different sets of errors. Our approach is not
based exclusively on CRC codes, it uses rather different
code families (e.g., Fletcher checksum and Adler checksum).

Our ultimate goal is to meet the integrity requirement while
reducing the computational cost and the redundancy in terms
of check bits. In this paper, we present the basic concepts of
the proposed multi-function error detection policy. Section II
presents related work and points out our main contribution
compared to existing approaches sharing with us the same
core objective to meet the required integrity level in critical
embedded systems. Section III describes the systems we target
and the assumptions. Section IV presents our proposed policy
and section V presents our simulations and results. Finally,
section VI concludes this paper.

II. RELATED WORK

Given the importance of ensuring communication integrity
in critical embedded systems, many works have been devoted
to this issue. The proposed approaches are different due to two
reasons: i) the fact that each case study has its own specificity
(e.g., some systems do not permit redundancy) and ii) the
progress of technologies that enables the use of some tech-
niques used to be too complicated to be deployed (e.g., recent
advances in computer-based systems offer the possibility to
use error detection techniques with heavy computations).

The first lesson that we have learnt from related work is
the significant impact of problem assumptions on the integrity
policy. In fact, paper [2] details assumptions taken explicitly
or implicitly by most of existing works and shows that they do
not reflect sometimes the real system requirements. Unrealistic
assumptions are likely to result in an inefficient policy. So, we
must select reasonable and valid assumptions in order to define
an efficient error detection policy.

We noticed that many approaches are based on CRC codes.
The designers usually think that choosing the CRC code,
which is defined by its generator polynomial, is a matter of
conventional wisdom [3]. So they use conventional CRC codes
used in common protocols and standards (e.g., CRC-32 poly-
nomial used in the IEEE 802.3). However, as pointed out in
[4], relying on the conventional wisdom to select the generator
polynomial of CRC is not the right strategy of selection. They
demonstrate, via exhaustive experimentations, that there are
non-standard generator polynomials that provide much better
performances in terms of detection capability. It was also
shown that the choice of generator polynomials is closely
dependent on the data size to be protected (experimentations
are done on data packets from 8 to 2048 bits).

Some works proposed approaches using non-CRC codes
and providing good performances. In [5], authors rely on
Adler and Fletcher codes in their error detection approach.
Their results show that good error detection capabilities can
be obtained with these codes which are more lightweight
than CRC. Moreover, the work presented in [6] provides also
interesting insights about the distribution of errors and their
impact on the error detection capabilities. It is assumed that
different areas in the message packet do not exhibit the same
bit error rate (BER). So, a new integrity approach is proposed
to deal with this problem. This approach relies on flexible

unequal error control codes that meet the different integrity
requirement of each packet area.

Other approaches not based on codes have been also in-
vestigated. The work presented in [7] proposes a double-bus
architecture that guarantees the availability and the integrity of
exchanged messages by duplicating the communication links
between every pair of nodes and comparing the transmitted
data. An other way to enhance the error detection is the
concept of “data diversity”. This concept is usually used to
enhance integrity in software or in data storages. It consists in
diversifying the data inputs in order to avoid failures-causing
inputs. Paper [8] adopts this concept to ensure integrity in data
storage.

From all described possibilities, we decide to further explore
the benefits of using proposed lightweight codes in the context
of a multi-function error detection policy. We could consider
later the flexible unequal error control codes since we target
permanent errors and the occurrence of such errors means
that there are some areas of the data packet that are more
vulnerable than others. So, these vulnerable areas need much
stricter protection. In our future works, we could also consider
the “data diversity” and the double-bus architecture to enrich
our integrity approach but right now we focus on error
detection codes and we assume no communication channels
redundancy in our work.

III. TARGETED SYSTEMS AND GENERIC ASSUMPTIONS

We present here our reference application which is the
Flight Control System and we detail the key properties and
generic assumptions of other targeted systems.

A. Reference application: the Flight Control System

A Flight Control System (FCS) is a critical system. In
fact, a failure in such system could lead to fatalities. So,
FCS is characterized by a set of strict safety requirements
namely the integrity requirements. FCS relies on the fly-by-
wire technology and the control is made by a set of control-
command signals transmitted by Flight Control Computers
(FCC) to the controlled actuators. Digital networks make
communications faster and more accurate but increase the
vulnerability in communications. They increase particularly
the probability of occurrence of permanent errors since inter-
stage nodes have memory and processing capabilities. Hence,
memory faults could induce permanent errors in all messages
memorized and relayed by the considered interstage node. In
civil aviation, events are classified according to their severity
which is defined by the level of damages caused by the event
occurrence. The most common classification [9] defines four
severity levels which are “Minor”, “Major”, “Hazardous” and
“Catastrophic”. Since erroneous control-command messages
could cause, if not detected and recovered, a system failure
(crash), the occurrence of erroneous and undetected messages
is considered as “Catastrophic” and its rate must be less than
10−9 per hour.

FCS belong to a class of systems that we call slow-dynamic.
In fact, we classify systems into two classes [1]: i) fast-

dynamic; ii) slow-dynamic as shown in Fig. 2. The “slow-
dynamic” property means that the duration of the interval be-
tween two successive significant changes (a significant change
means for example the variation of the value of data to be
transmitted) is much larger than the refresh cycle duration
(the refresh cycle duration is the duration between two suc-
cessive transmissions). So, the transmitted data (e.g., control-
command messages) remains the same (the same value) during
a set of refresh cycles before a significant change occurs.
In the example of Fig. 2, the same message (Data 1 in
Case 2 of Fig. 2) is sent several times. Yet, in fast-dynamic
systems, the duration of this interval is very close to the
duration of the refresh cycle so the message can be sent only
once. Considering the example of FCS, airplane surfaces are
designed to move slowly and the result of the calculation of
the trajectory remains the same in a set of calculation refresh
cycles so the same message is sent during this time. In slow-
dynamic systems, the fact that the message is sent several
times induces that some undetected erroneous messages can
be tolerated before error detection and recovery.

D1 F

1 - Fast-dynamic system

2 - Slow-dynamic system

D1 F D1 F D1 F

F D 1

Refresh cycle

Duration of the interval between
two successive significative changes

F D2 F D3 F D4

 Refresh cycle

Duration of the interval between
two successive significant changes

D1 F

F D5

D: Data
F: check bits generated
by a control function F

1 2 3 4 5

1 2 3 4 5

Fig. 2. Comparison between fast-dynamic and slow-dynamic properties

B. Other targeted systems: key properties and generic assump-
tions

Aiming at applying our proposed approach in other ap-
plication areas (e.g., automotive systems), we define the key
properties and the generic assumptions required to apply our
proposed approach.

1- High criticality: this property induces strict safety re-
quirements. In fact, in such systems, failures may lead to
catastrophic events. Typically, the failure rate must be less
than a threshold to be set according to the system specificity
(10−9 to 10−7 failures per an hour of system service).

2- Embedded and limited resources: we particularly focus
on the fact that many embedded systems do not include
huge amounts of resources (e.g., memories and processors).
Moreover, communications are based on short messages (e.g.,
100 bits for the FCS). So, we cannot rely, in such systems,
on an error detection policy with a high redundancy in terms
of check bits since this increases performance overheads and
computational costs.

3- Complexity: communications in our targeted systems
are based on complex networks including a large number of
nodes (e.g., calculators, actuators and sensors). There are not
only sources and sinks but also intermediate nodes which are
active (with memory and processing capabilities). The “active”

feature increases the occurrence probability of permanent
errors.

4- Repetitive transmission: this property consists of sending
each message N times (N > 1). So, up to some undetected
erroneous messages among the N transmitted messages can
be tolerated and the goal is to detect the permanent error in
at least one message among the N messages (N to be set
according to the system specificity). Despite the fact that this
latter property seems to be restrictive, we can notice that many
systems transmit messages repetitively for different reasons:
i) by design like in the case of slow-dynamic systems; ii) to
make communications reliable and to deal with the problem of
packet loss or to enhance the message integrity by applying the
packet comparison strategy that consists in considering correct
the copy of message having the maximum occurrences among
received copies.

IV. AN OVERVIEW OF THE MULTI-FUNCTION ERROR
DETECTION POLICY

We now describe with details our policy. We first present
our specific assumptions, then we detail our proposed policy.

A. Specific assumptions

Since the error detection policy depends closely on the prob-
lem assumptions [2], we detail here our specific assumptions
which are: 1) our policy is implemented in the application
layer so it is independent of the network architecture, 2)
a calculation refresh cycle of some ms (10 ms for FCS),
3) no redundancy of the communication channels and 4)
communication channels are i) memoryless (output at the time
t depends only on the input at the time t and not on previous
ones); ii) binary (two symbols 0 and 1) and iii) symmetric (the
error probability is independent of the transmitted symbol).

B. Proposed approach

Our approach is based on error detection codes. Yet, the
idea is to take profit of the fact that, in the targeted systems,
every message is transmitted N times (N > 1). This latter
property allows us to adopt a fault-tolerant approach. In fact,
our targeted systems do not consider the occurrence of one
erroneous undetected message as a dangerous event to be
avoided but rather the worst case is when the message is
erroneous and the error is permanent and not detected in all
N transmissions of the message. Thus, our goal is to detect
the error at least once among the N transmissions. If the same
error detection function is used in all transmissions and it fails
to detect the permanent error once, it will never be able to
detect it. So, the idea is to use diverse error detection functions
to increase the likelihood to detect at least one erroneous
message among the N transmitted messages. Logically and
by design, error detection codes are not vulnerable to the
same error patterns (an example of error pattern is the set
of errors multiple of the generator polynomial of a CRC). In
other words, error detection codes have different weaknesses.
The question now is how to select the set of different codes

to be used. The selection of such functions is not an easy task
and raises a set of challenges that have to be taken up.

1- A good intrinsic detection performance: to select relevant
error detection codes, we rely mainly on their intrinsic error
detection capabilities that are described in many papers. Ac-
cording to existing works evaluating the performance of these
codes, the most adequate codes to be used to detect errors on
exchanged data in embedded systems are CRC, Fletcher and
Adler. In the paper [5], it is confirmed that theoretically the
Adler checksum has roughly the same detection performance
properties as those of the Fletcher checksum (e.g., using 16
check bits, they detect both all burst errors less than 8 bits
long) but experimentations show that Fletcher checksum is
lightly superior to Adler checksum in almost all cases. Yet,
if Fletcher is compared to CRC [10], it is clear that for short
messages (typically exchanged in embedded networks), using
a CRC can bring better error detection performance for a factor
of about four performance penalty (e.g., for burst errors, CRC
with 16 check bits detect up to 16 bits burst errors). Thus, we
can conclude that in terms of detection performance, CRC,
Adler and Fletcher are adequate to enhance the communication
integrity in our targeted systems. CRC has the best intrinsic
capability outperforming Fletcher which outperforms Adler.
However, this is not the single criterion to be taken into
account in order to select codes to be used.

2- The trade-off of computational cost and error detection
performance:it is true that CRC, Adler and Fletcher are the
three potential codes to be used by our approach according
to their error detection performances in embedded systems.
But, as described in the section III, because of limited re-
source, our policy is not based exclusively on the intrinsic
error detection performance criterion but we consider also the
computational cost to select codes to be used. In related work
on error detection codes, authors confirm that CRC has the
highest computational cost compared to other error detection
codes. CRC outperforms Fletcher and Adler in terms of error
detection effectiveness in return for a factor of two to four of
computational cost [10].

3- Complementarity property: the real challenge of our
policy is not how to find appropriate codes but rather it consists
in the way how to define the multi-function error detection
policy that requires complementary codes. Two error detection
functions are complementary means that if the permanent error
is not detected by the first error detection function, there is a
chance that it will be detected by the second function. This can
be formalized as follows: (F1 and F2 are complementary)
iff (ND1 ∪ ND2 6= ND1 and ND1 ∪ ND2 6= ND2),
where F1 and F2 are two error detection functions. ND1
and ND2 are the set of errors not detected respectively by
F1 and F2.
To guarantee the complementarity property, previously[1],
used CRCs were defined by different generator polynomials
having the fewest factors in common in terms of primitive
polynomials (each generator polynomial can be decomposed
into a set of primitive polynomials). So, if an error is not
detected by the first CRC, there is a a chance that it could be

detected by the second CRC. We are inspired of this way to
find complementarity between the used error detection codes.
Indeed, it was noticed that Fletcher and Adler checksums are
vulnerable to burst errors that invert bits from all zeros to
all ones [11], Fletcher is vulnerable to some 2 bits errors
where the two bits have different values not both 0 or both
1 and CRC fails to detect errors that are multiple of its
generator polynomial. We notice that CRC, Adler and Fletcher
are vulnerable to different error patterns. So, they could be
complementary.

Thus, we propose a multi-function policy that uses CRC
jointly with Adler or/and Fletcher. The use of non-CRC codes
in some refresh cycles makes the approach more lightweight
compared to using CRC codes in all refresh cycles. Moreover,
this approach takes profit of the high intrinsic detection
effectiveness of CRC codes and deal with their weaknesses
by using other lightweight codes.

C. Example of a multi-function error detection policy

Fig. 3 gives an example of a multi-function error detection
policy. We assume, in this example, that: 1) the message is
transmitted N = 5 times, 2) all transmitted messages are
erroneous and the error is multiple and permanent, 3) F1, F2
and F3 are three complementary error detection functions, 4)
F1 is vulnerable to the considered error pattern so it does not
detect it, F2 and F3 detect the error. In the first case, since
F1 is not able to detect the permanent error and is used in all
transmissions, the error is never detected. In the second case,

F1 D1 F1 D1 F1 D1 F1 D1 F1 D1

F1 D1 F2 D1 F1 D1 F3 D1 F2 D1

2 - Repetitive transmission using
three complementary error detection functions

 1 - Repetitive transmission using a single error detection function

D2

D2

ND ND ND ND ND

ND ND D D D

ND: Non Detection
D: Detection
F1, F2, F3: Error
Detection Functions

Refresh cycle

Duration of the interval between
two successive significant changes

Fig. 3. An example of a multi-function error detection policy

we change cyclically three error detection functions (F1, F2,
F3, F1...). Since F2 and F3 are able to detect the error, the
multi-function error detection policy deals with the problem
of permanent error.

V. SIMULATIONS AND RESULTS

We describe, in this section, our current simulations and
results to prove the effectiveness of our proposed approach.
We first describe our simulation methodology. Then we present
some results for illustration.

A. Simulation methodology

To evaluate the performance of our proposed approach, our
experiments were based on simulated fault injection via Monte
Carlo simulations. The main idea of Monte Carlo simulation
is to use random samples (values) of parameters or inputs to

explore the behaviour of a complex system and to perform
sensitivity analyses. This particular method is used when the
exhaustive approach is prohibitively slow in terms of simula-
tion duration which is the case of our simulations if all data
patterns and errors patterns are considered. Every simulation
consists in a set of iterations, every iteration includes these
following four steps.

1- Data generation: we generate the data packet randomly.
2- Error generation: the packet formed above is subjected

then to an error. The error is generated either randomly or
with a selective manner (e.g., injecting all 2-bits errors or all
single errors).

3- Evaluation of the detection capability of each error
detection function: for each used error detection function, we
calculate the check bits of the erroneous data and we compare
it to the existing control part (which could be erroneous too).
If they match, the error is not detected. We sum the number
of undetected erroneous frames and the non detection rate.

4- Evaluation of the detection capability of the multi-
function error detection policy combining all single functions:
we consider the error detection result of the K used single
control functions (detection or non detection). If there is, at
least, one function that detects the error so the multi-function
policy detects the error. Otherwise (all functions do not detect
the error), the multi-function policy fails to detect the error.

B. Simulation platform and considered scenarios

We are using the Matlab-Simulink platform which provides
tools to model and simulate communications in critical em-
bedded systems. We define a Simulink model that is based
on blocks allowing to generate data and errors and evaluate
the error detection performance of used codes (Fig. 4). For
CRC codes, Simulink offers a specific blocks allowing to
evaluate the performance of CRC. But, to consider Adler or
Fletcher codes, it was necessary to develop ourselves specific
new blocks. To generate data, we use a random binary data
generator based on a Bernoulli process which is a discrete-
time stochastic process that takes only two values: 0 and
1. We generate a 116-bits packet, 100 bits of data and 16
check bits. We consider one communication channel and we
generate 108 data packets. To evaluate the error detection
capability of considered error detection functions, we consider
the non-detection error rate metric. It is the ratio of the
number of undetected erroneous packets to the number of all
transmitted packets. In order to conform to the assumption that
we target permanent errors, all considered control functions
have simultaneously the same erroneous data as input.

In order to simplify the simulation model, we just consider
refresh cycles using different error detection functions (we
assume here that K = N , the realistic case was described
in section IV). This assumption does not impact the results
since a function used more than once does not cumulate the
error detection performance. In our model, if the error is not
detected, the output of the considered single control function
is equal to 1. For multi-functions policy, we sum the outputs
of the used K functions. If the result is equal to K then all

the functions fail to detect the error. Thus, the multi-function
policy fails to detect the permanent error. We increment then
the number of undetected error and we update the rate of non
detection.

In our experiment, we simulate the following scenarios of
error detection policy: i) using a single function based on
CRC code, ii) using a single function based on Fletcher, iii)
using a single function based on Adler, iv) a multi-function
error detection policy combining CRC and Adler, v) a multi-
function policy combining CRC and Fletcher, vi) a multi-
function policy combining CRC, Fletcher and Adler. In Fig.
4, we highlight the different simulation steps: 1) corresponds
to the data and error generation and 2) to 5) correspond to a
subset of the considered simulation scenarios.

It is noteworthy that, in our simulation, the used CRC is
defined by its generator polynomial G(x) such that G(x) =
(x + 1)G′(x), G′(x) is a primitive polynomial so that it is
divisible only by itself and by P (x) = 1. Thus, it can not
be decomposed into other polynomials. We generate selective
errors that change the data to make it multiple of G′(x) in
order to simulate a case where CRC is vulnerable. We test then
the ability of other code families to deal with CRC weaknesses
if they are used jointly with CRC.

1

5
1

1

2

Data'and'error'
genera.on'
'
Only'Fletcher''
'
Only'Adler''
'
Only'CRC''
'
CRC'and'Fletcher'

FER N-detected!
Errors N-detected!
Total Errors!

4.6300e-06!
4.6300e+02!
1.0000e+08!

2

9.2800e-06!
9.2800e+02!
1.0000e+08!

FER N-detected!
Errors N-detected!
Total Errors!

3

FER N-detected!
Errors N-detected!
Total Errors!

45.0015e-01!
5.0015e+07!
1.0000e+08!

3

4

2.3100e-06!
2.3100e+02!
1.0000e+08!

5

Fig. 4. A part of the Simulink model of our experimentation

C. Results and discussion

We remind that these experiments targeted a particular error
pattern and do not reflect the real intrinsic error detection
capability of used codes when considering all possible error
patterns. Rather, we aim to show that these codes could
be complementary and if the first code is vulnerable to the

considered error pattern, the other codes can detect a part
of theses errors. The non detection rate of CRC is equal
to 5 ∗ 10−1, this result is predictable given the considered
error pattern. The non detection rate of Adler is equal to
9.2 ∗ 10−6 and the non detection rate of Fletcher is equal to
4.6∗10−6. We conclude that Fletcher and Adler are obviously
less vulnerable to this particular error pattern. So, they can
deal with the weaknesses of CRC if they are used jointly
with CRC in a multi-function error detection policy. Yet, this
does mean that Fletcher and Adler outperforms CRC if other
error patterns are considered. This conclusion is proved by
the experimentation result which shows that the multi-function
error detection policy combining CRC and Adler improves
the detection capability with a non detection rate equal to
4.8∗10−6. The multi-function error detection policy combining
CRC and Fletcher improves also the detection capability with
a non detection rate equal to 2.3 ∗ 10−6. Finally, the multi-
function error detection policy combining CRC, Adler and
Fletcher detects all injected erroneous packets and gives a non
detection rate equal to 0.

This is a promising result proving that if we use jointly CRC
with Adler or/and Fletcher, we can deal with a significant part
of the errors not detected by CRC. This result does not prove
that these three codes are totally complementary. In fact, we
can not conclude that for all possible errors, the multi-function
policy combining CRC, Adler and Fletcher detects all errors.
It rather increases the detection capability compared to the
single error detection function using CRC.

To sum up, our proposed approach improves the error
detection rate (Fig. 5). It uses CRC that guarantees a good error
detection performance since this code is intrinsically efficient
(described in section IV), it uses also Adler or/and Fletcher to
complement the effectiveness of CRC by covering a significant
part of the errors not detected by CRC. The use of Fletcher
and Adler makes also the approach more lightweight compared
to the case when CRC is used in all refresh cycles. Results
seem promising. However, to confirm the effectiveness of our
approach, more future theoretical proofs and simulations are
needed. In fact, more scenarios must be considered to prove
that this policy is practical for targeted critical embedded
systems and to show that it is efficient for different error
patterns (e.g., single, burst, etc).

VI. CONCLUSION

The usual use of error detection codes in digital networks
is a proven approach to detect errors. However, using a
single error detection fails to detect some errors. So, we
propose to deploy an error detection policy using a different
error detection function in each refresh cycle. The used error
detection functions are complementary so that the resultant
detection capability could be increased. Our approach targets
mainly Flight Control Systems but could be deployed in other
different applications. It uses different codes and aims at
increasing the error detection capability for permanent errors
with low redundancy and computational cost. In this paper,
we have described the problem assumptions and the proposed

policy with the set of challenges arising from it. Then we have
presented our ongoing simulations and preliminary results.
Future work will focus first on validating this approach by
more simulations and, if possible, formal proofs. Our goal
will be also to define a strategy for scheduling the different
used error detection functions.

1,0E%06'

1,0E%05'

1,0E%04'

1,0E%03'

1,0E%02'

1,0E%01'

1,0E+00'

Non'detec4on'rate'

CRC'

CRC%Adler'

CRC%Fletcher'

Fig. 5. The error non detection rates of different error detection policies

REFERENCES

[1] A. Youssef, Y. Crouzet, A. de Bonneval, J. Arlat, J. J. Aubert and
P. Brot, Communication Integrity in Networks for Critical Control
Systems. The European Dependable Computing Conference (EDCC),
Coimbra, Portugal, pp.23-34, 18-20 Oct. 2006.

[2] M. Paulitsch, J. Morris, B. Hall, K. Driscoll, E. Latronico and
Ph. Koopman, Coverage and the use of Cyclic Redundancy Codes in
Ultra-Dependable Systems. The international Conference on Dependable
Systems and Networks (DSN), Yokohama, Japan, pp.346-355, 28 Jun-1
Jul. 2005.

[3] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes in C (2nd ed.), Cambridge Press, 2002.

[4] Ph. Koopman and T. Chakravarty, Cyclic Redundancy Code (CRC)
Polynomial Selection For Embedded Networks. The international
Conference on Dependable Systems and Networks (DSN), Florence,
Italy, pp.145-154, 28 Jun-1 Jul. 2004.

[5] T. Maxino, Revisiting Fletcher and Adler Checksums. The international
Conference on Dependable Systems and Networks (DSN) Student
Forum, Sheraton Society Hill, Philadelphia, PA, USA, 25-28 Jun. 2006.

[6] L. J. Saiz-Adalid, P. J. Gil-Vicente, J. C. Ruiz-Garcia, D. Gil-Tomas,
J. C. Baraza and J. Gracia-Moran, Flexible Unequal Error Control
Codes with Selectable Error Detection and Correction Levels. The
International Conference on Computer Safety, Reliability and Security
(Safecomp), Toulouse, France, 24-27 Sep. 2013.

[7] M. Paulitsch and B. Hall, Insights into the Sensitivity of the BRAIN
(Braided Ring Integrity Network) -On Platform Robustness in Extended
Operation. The international Conference on Dependable Systems and
Networks (DSN), 2007.

[8] P. E. Ammann and J. C. Knight, Data diversity: an approach to software
fault tolerance. IEEE Transactions on Computers, vol. 37, no.4,
pp.418-425, Apr. 1988.

[9] Federal Aviation Administration, System Safety Handbook- chapter
3: Principles of System Safety, 19 pages, Dec. 2000. Available
at: http://www.faa.gov/regulations policies/handbooks manuals
/aviation/risk management/ss handbook/media/Chap3 1200.pdf

[10] T. Maxino and Ph. Koopman The effectiveness of checksums for
embedded control networks. IEEE Transactions on dependable and
secure computing, vol. 6, no. 1, January-March 2009.

[11] A. Nakassis, Fletchers Error Detection Algorithm: How to Implement
It Efficiently and How to Avoid the Most Common Pitfalls. Computer
Comm. Rev., vol. 18, no. 5, pp. 63-88, Oct. 1988.

