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Abstract—This paper examines the security provided
by different implementations of Address Space Layout
Randomization (ASLR). ASLR is a security mechanism that
increases control-flow integrity by making it more difficult for
an attacker to properly execute a buffer-overflow attack, even
in systems with vulnerable software. The strength of ASLR lies
in the randomness of the offsets it produces in memory layouts.
We compare multiple operating systems, each compiled for two
different hardware architectures, and measure the amount of
entropy provided to a vulnerable application. Our paper is
the first publication that we are aware of that quantitatively
compares the entropy of different ASLR implementations. In
addition, we provide a method for remotely assessing the efficacy
of a particular security feature on systems that are otherwise
unavailable for analysis, and highlight the need for independent
evaluation of security mechanisms.

I. INTRODUCTION

When configuring secure systems, it is important to consider
the assurances that can be guaranteed by the mechanisms
that enforce security. Buffer-overflow attacks are one of the
most common classes of exploits against the control-flow
integrity of computer systems. With increased reliance
on embedded cyber-physical systems and software-defined
networking, buffer-overflow attacks can damage much more
than the individual system exploited [1], [2]. This threat is
further complicated by the general reliance of organizations
on third-party and closed-source software. Not only would
the process of identifying and patching such vulnerabilities
in source code be timely and costly, but the source code is not
always available to patch.

A buffer-overflow vulnerability is a flaw in software written
in memory-unsafe programming languages such as C [3].
These flaws occur when programs do not properly check
the bounds on data that they write to memory [4]. The
vulnerability becomes a bug when more data is written
to memory than the amount of memory allocated for that
data. Comparing the length of the data to be written with
the length of the memory buffer allocated and throwing
an exception, or otherwise handling the issue when the
data will overflow the buffer, protects against this class
of vulnerabilities. However, as with many error-handling
issues in software engineering, bounds-checking is sometimes
overlooked or handled incorrectly by programmers.

Address Space Layout Randomization (ASLR) is a class of
computer security defense techniques designed to reduce the
impact of buffer-overflow vulnerabilities. It adds a random

offset to the virtual memory layout of each program, making it
harder for an attacker to predict the target memory address that
they wish the vulnerable program to return to. If the attacker
overwrites the return address with a bad memory address, the
probability of a successful exploit decreases.

In this paper, we evaluate the randomness that ASLR
provides in different operating systems. We do this by
quantitatively comparing the number of bits of entropy that
each implementation produces and qualitatively comparing
how the memory offset affects the return address over
hundreds of executions of a vulnerable program. We note that
there are other means of enhancing integrity [5], [6], [7] and
other forms of measurement have been performed [8], [9],
[10]. However, our focus in this paper is exclusively on an
analysis of current ASLR implementations. Our contributions
include a quantitative comparison of the effective entropy
provided by different implementations of ASLR, and a
technique for remotely evaluating the security of ASLR on
computing systems that lack local access to the system or
access to the operating system source code.

II. RELATED WORK

The term Address Space Layout Randomization originally
referred to a kernel patch for Linux developed by
the PageEXec (PaX) Team, designed to protect against
buffer-overflow attacks [11] and first released in 2001. ASLR
quickly became a target for attackers interested in bypassing
security [12], [13] and for researchers interested in improving
the technology [14], [15].

Alternate methods for protecting the control-flow integrity
on computers quickly followed. Some techniques aimed to add
such security through a modified compiler [16] while others
developed programs to automate the injection of memory
protections into individual applications [17]. Though ASLR
is the most well-known protection against buffer-overflow
attacks, PaX is just one implementation of what has become
a common kernel modification.

Microsoft first added ASLR to their Windows Vista
operating system [18] and Apple’s Mac OS X received an
implementation of ASLR with version 10.5 in 2007 [19]. Since
their initial releases, both operating systems have been updated
with enhancements to their memory protection features.

ASLR is relied on by a vast array of systems, from
corporate servers to mobile devices. Even Apple’s iOS



and Google’s Android1 mobile operating systems have
implemented ASLR [20], though Android’s low entropy has
been found to be ineffective against all but the simplest of
attacks [21]. With so many operating systems and therefore
such a large portion of users relying on ASLR, it is important
to investigate how well such implementations secure their
environments.

ASLR has typically been implemented to protect against
return-to-libc attacks [22]. With the advent and gradual
adoption of ASLR in several operating systems, variations
of these attacks were developed and can be categorized
under the generic term of return-oriented programming
(ROP) attacks [23] with different techniques adding various
features [24], [25], [26]. Defenses from these enhanced attacks
have also been developed [26], [27], but these solutions are
often not as “turn-key” as ASLR, requiring developers to
expend significant time and effort to obtain the benefits, so
these security techniques are unlikely to become as widespread
as ASLR.

Bittau et al. at Stanford developed an automated
attack process for finding buffer-overflow vulnerabilities,
even when ASLR is enabled. Their work on Blind
Return-Oriented Programming (BROP) [28] demonstrates
how even high-entropy ASLR-protected services, if not
configured properly, can be attacked quickly and efficiently.
The effectiveness of the BROP attack lies in its attack strategy:
rather than brute-force the target’s memory address, BROP
discovers the current location in memory byte-by-byte, and
from there, it can quickly search for useful ROP gadgets [24]
to change the system’s control flow. This method reduces the
computational resources required to exploit a buffer-overflow
vulnerability by orders of magnitude.

We perform an experiment which leverages this work, using
the BROP attack’s byte-by-byte technique for discovering
vulnerable and hidden memory addresses. However, instead
of measuring the number of ROP gadgets accessible from
different programs or the number of requests required to
exploit a buffer-overflow as Bittau does, we measure and map
the bits that ASLR affects, giving us a quantitative value for
the strength of each operating system’s implementation of
ASLR. When run hundreds of times, the attack program used
in our experiments reveals the amount of entropy provided
by the ASLR implementation of each operating system that
is probed. Though this work measures the entropy of only
BSD and Linux variants of ASLR, the program developed to
measure entropy can be adapted to evaluate the effectiveness of
ASLR implementations on other operating systems. It can also
potentially be modified to measure alternative buffer-overflow
mitigation techniques.

III. EXPERIMENTAL PROCEDURE

The motivation for these experiments is that there
may be some systems that can benefit from ASLR, but

1Security Enhancements in Android 1.5 through 4.1: https://source.android.
com/security/enhancements/enhancements41.html

due to limitations in their processing power, architecture,
licensing, or otherwise, they are incapable of compiling and
running programs that are hardened to the recommended
specifications [29]. We modify program compilation
parameters to reflect such an environment, but first we describe
how our program can be affected by a buffer-overflow.

Our vulnerable program, referred to as server.c, was
developed to accept input from users through a network socket,
copy it to a buffer of limited length, and then inform the user
that the request has been serviced. The standard operation of
this program is diagrammed below:

main() daemonize() getstr()

return
return

Fig. 1: Standard operation of the program server.c.

As the figure above illustrates, when the binary compiled
from server.c executes, function daemonize() is called from
main(), causing the process to fork for robustness against
crashes. The program waits for a network message, at which
point getstr() is called to copy the message into a buffer.
Afterwards, getstr() returns execution to daemonize(), which
promptly returns execution to main(). The infinite loop in
main() continues to fork the process using daemonize() and
wait for the next network request. However, due to the
limited length of the buffer used in function getstr() and lack
of bounds-checking, server.c contains a buffer-overflow
vulnerability. If this vulnerability is exploited, the program’s
control flow can be manipulated, as in the following diagram:

main() daemonize() getstr()

return

Fig. 2: Control flow of server.c during a buffer-overflow.

The program defined by server.c executes nominally,
forking to service requests, until a string is submitted that
exceeds the length of the buffer. After getstr() processes this
string, one of three things can happen: the function can return
execution to daemonize(), as is standard, it can attempt to
return to an “invalid” address, causing the process to crash, or
it can successfully return to another memory address, altering
the program’s control flow.

As alluded to above, we wish to produce an environment in
which the security features of a device are limited. Therefore,
the vulnerable program server.c was compiled with the
following command to support basic ASLR defenses:
gcc -fPIE -pie -fno-stack-protector

-O0 server.c -o server
The command above compiles the source code in server.c

as a position-independent executable (parameters -fPIE and
-pie) to take advantage of ASLR’s features. Parameter
-fno-stack-protector prevents the use of stack canaries
that provide additional security against buffer-overflows [30]

https://source.android.com/security/enhancements/enhancements41.html
https://source.android.com/security/enhancements/enhancements41.html


but may not be supported by specialized computer systems.
Parameter -O0 prevents the compiler from optimizing the
hidden function away [31] and parameter -o server
indicates that the executable file generated will be named
server.

The figures in Section IV were generated by running
an attack program client.c. The attack program targets
the vulnerable server, sending it strings that incrementally
approach the memory address of a hidden function. When
this memory address is discovered by the attack program,
it is logged. For each operating system analyzed, the attack
program exploited the vulnerable server’s buffer-overflow flaw
over 700 times.

IV. RESULTS

The following figures provide two types of visualizations to
compare the randomness of memory addresses among several
different operating systems. The first set of figures shows
how each byte of memory changes with each run of the
vulnerable server. The second set of figures provides a clear
distinction between each byte of memory. It is important to
show both visualizations because the first set of plots can
reveal deterministic patterns over time whereas the second set
allows for easier counting of the number of distinct values
for each byte of memory. Knowing how many values a
memory address can hold, as revealed by the second set of
visuals, is not sufficient for determining its robustness against
buffer-overflow attacks. The memory address can vary among
trillions of values for a 64-bit operating system that allows
ASLR to randomize 48 bits of the memory offset. However,
if the memory address changes in a predictable way from one
execution to the next, exploiting such a weakness would be
simple.

Due to external constraints, we are unable to present the
visualizations of all operating systems tested. However, we
have tabulated the quantitative results, available in Section V,
for all implementations of ASLR that we have evaluated for
this work. The following figures display how the memory
address of function hidden() in the vulnerable program
varies with each execution, as discovered by our automated
attack program.

Figure 3 below shows the memory layout over time of
our vulnerable program when run on 32-bit OpenBSD. The
most significant byte, represented by the orange circle, remains
constant with a decimal value of 207 (11001111)2. The second
byte of the memory address, represented by the green triangle,
varies among only five consecutive values in the upper half
of the address space. Specifically, this byte varies among all
values between 187 (10111011)2 and 191 (10111111)2. The
third byte, represented by the blue square, varies greatly across
the entire address space, but the least significant byte, shown as
a purple diamond, varies among only sixteen constant values.
Those values are listed below:[

0 16 32 48 64 80 96 112 128
]

144 160 176 192 208 224 240

We suspect that the lack of entropy in the least significant byte
is due to paging requirements within all processes, including
position-independent executables that support the features of
ASLR.

Figure 4 shows the memory layout over time of our
vulnerable program when run on 64-bit Debian Linux.
The orange circle, the green triangle, and the blue square,
representing the first, second, and third byte of memory,
respectively for our target function, vary greatly across the
entire address space. However, we observe again that the least
significant byte of memory holds only sixteen unique values,
distributed uniformly across the entire address space. The same
sixteen values observed in 32-bit OpenBSD are observed in
64-bit Debian.

In figures 3 and 4, we plotted the value of each byte of
memory over time, which can reveal patterns in the ASLR
implementation’s random number generator. Figures 5 and 6
visualize the same data in a different way. For each byte
of memory, a dedicated column is used to plot every value
observed by our attack program. Though any temporal pattern
is lost, it is now easier to enumerate the values that each byte
of memory can be assigned.

For the two operating systems that we have showcased,
the least significant byte of memory varied among the same
sixteen values. When viewed as decimal values, we observe
that the least significant byte varies from 0 (00000000)2 to 240
(11110000)2 every 16 points. When represented in binary, we
observe that the top four bits can hold any combination of 0
and 1, but the bottom four bits remain set at 0. Considering
the binary representation of each byte can reveal the true
limitations of each ASLR implementation.
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V. EVALUATION

Section IV provided visualizations of the security that each
implementation of ASLR provides. In this section we provide
the objective values for each operating system. The following
table shows which bits of memory vary and the collective
number of bits that can vary among each operating system
tested.

Entropy of Each Operating System

Operating System Changing Bits Total Entropy

64-bit Debian 11111111111111111111111111110000 28 bits

64-bit HardenedBSD 00011111111111111111111111110000 25 bits

32-bit Debian 00000000111111111111111111110000 20 bits

64-bit OpenBSD 00000000000001111111111111110000 15 bits

32-bit OpenBSD 00000000000001111111111111110000 15 bits

32-bit HardenedBSD 00000000000000000000111111110000 8 bits

TABLE I: Comparison of ASLR implementations in various
operating systems. The entropy and the specific bits of memory
address affected are measured.

The table above lists the operating systems tested in
order from the strongest to the weakest defense against
buffer-overflow attacks. Also displayed are the specific bits
that vary in separate runs of the vulnerable server. In each
bitmap, bits designated 1 were observed to vary while bits
designated 0 remained constant throughout the hundreds of
attacks performed.

From a black-box testing perspective, the implementations
of ASLR for 32-bit and 64-bit OpenBSD are identical.
The same bits vary and remain constant in both operating
systems. The figures generated by the data obtained in
each OpenBSD environment are also remarkably similar.
Although we observe that 64-bit operating systems generally
have stronger defenses against buffer-overflow attacks, it is
important to note that 64-bit OpenBSD is an exception to
this trend. Its implementation of ASLR is weaker than that
of 32-bit Debian. This is contrary to expectations, as 64-bit
operating systems have more bits of memory address available
to vary. The fact that 64-bit OpenBSD does not take advantage
of its architectural advantage and provides less entropy than
some 32-bit operating systems supports our argument for
independent testing of security features.

64-bit Debian and 64-bit HardenedBSD had the two best
implementations of ASLR, with 64-bit Debian having just
slightly more entropy than 64-bit HardenedBSD. Although
the values of entropy differ by only 3 bits, this corresponds
to orders of magnitude greater robustness in the presence of
buffer-overflow vulnerabilities. 32-bit Debian has a slightly
weaker implementation of ASLR than its 64-bit counterpart:
the most significant byte of memory does not vary between
executions in 32-bit Debian.

Finally, 32-bit HardenedBSD, with an implementation of
ASLR that provides only 8 bits of entropy, is the most
vulnerable to buffer-overflow attacks. Only the bottom two
bytes of memory varied during runs of the vulnerable server,
indicating that it would take very few attempts to successfully

exploit a buffer-overflow vulnerability in 32-bit HardenedBSD.
Development of ASLR and hardware-dependent security
mechanisms for 32-bit systems is considered a low priority
for the developers of HardenedBSD, as most servers have
transitioned to 64-bit platforms according to download
statistics.

Each operating system tested has its own implementation
of ASLR. The differences of each implementation are evident
when comparing all operating systems of equivalent hardware
architectures: all 64-bit operating systems have a different set
of varying bits; similarly, all 32-bit operating systems have
a different set of varying bits. However, an in-depth analysis
of the cause for differences between each implementation is
outside the scope of this work.

VI. DISCUSSION

In general, when examining the memory layout of computer
programs, we expect to see patterns related to powers of 2:
the binary configuration of computers dictates this. However,
in running the experiments above, some bytes of memory
exhibited variation among a number of values that were
slightly off from the power of 2 that we should observe.
On 32-bit HardenedBSD, the third byte of memory took on
9 unique values. On 32-bit OpenBSD, the second byte of
memory took on 5 unique values.

Could these anomalies be due to bit-flipping? This seems
unlikely, as the least common value taken on by each byte
corresponded to 2.64% and 4.41% of all values observed,
respectively. Though less common than the other values, this
frequency is far too high to be explained by a bit-flipping
error. The more likely explanation is that unique properties of
the pseudorandom number generator (PRNG), or of the ASLR
code that uses the PRNG’s output, results in unexpected values
of memory used and certain numbers being more likely to be
observed than others.

VII. LIMITATIONS

In performing this research, there were factors that
prevented ideal analysis of each ASLR implementation’s
entropy. This section documents those limitations, how they
might affect our results, and what we did to minimize any
negative impact.

These experiments examined only variants of BSD and
Linux. It would be useful to expand the study to variants
of Apple’s macOS and Microsoft’s Windows operating
systems. Comparing ASLR in more variants provides a
better understanding of which operating systems best resist
buffer-overflow attacks.

Our work focused on black-box penetration testing of
these operating systems with almost no investigation into the
differences in the source code that may be responsible for the
differences in entropy that is observed. Though some operating
systems such as macOS and Windows do not provide the
source code required to adequately investigate the cause of
these differences, this can be done for all operating systems
that have already had their ASLR implementation profiled.



Initially, we had attempted to use a pre-existing piece
of software with a well-known buffer-overflow vulnerability,
documented as a CVE.2 However, there were challenges in
obtaining old variants of such software for each operating
system that we chose to investigate. For compatibility reasons
and so that the comparisons being made are with the same
software, we decided to develop our own vulnerable software.
This allowed us to ensure that the vulnerability being measured
is the same across all platforms and it gives us a better
understanding of the source code running on both the attacker
and the victim system.

VIII. FUTURE WORK

We hope to enhance this work by measuring the effective
entropy of the ASLR implementations in other mainstream
operating systems, particularly versions of Apple’s macOS
and Microsoft’s Windows. Google’s Android mobile operating
system would be another interesting platform to compare. Due
to the closed nature of Apple’s iOS environment, it may be
difficult to run our measurement software on that operating
system.

As mentioned in Section VII, performing source code
analysis would be useful to determine which differences in
each ASLR implementation are responsible for the differences
in entropy that we observe. Such analysis is beyond the scope
of this current research, but would certainly provide greater
insight into which techniques provide the greatest entropy and
how to augment the randomness in weaker variants.

IX. CONCLUSION

This work quantitatively compares the ability of Address
Space Layout Randomization implementations to defend
against buffer-overflow attacks. We rank the security of
operating systems and their architecture based on the amount
of entropy provided by their ASLR implementation. This is
measured by running a vulnerable program and attacking it
multiple times, recording each memory address that results
in successful manipulation of the program’s control-flow. By
performing hundreds of measurements on the random memory
address assigned to a specific target function, we are able to
determine the amount of effective entropy observed in various
implementations of Address Space Layout Randomization.

We find that among the operating systems profiled, 64-bit
Debian Linux has the strongest defense against buffer-overflow
attacks while 32-bit HardenedBSD has the weakest defense.
In the case of OpenBSD, using the 64-bit variant provides no
additional security for this attack scenario.

Although there are myriad choices for desktop operating
systems, several of which have adequate security mechanisms,
the realm of embedded systems offers far fewer options as
far as security goes. With the rapid increase in popularity
of Internet-of-Things devices, one may be wary of the
compromises made in terms of security in order to achieve
increased compatibility and power efficiency. It is our hope

2Common Vulnerabilities and Exposures: https://cve.mitre.org/cve

that this analysis can be a first step in evaluating the
control-flow integrity of such embedded operating systems.
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