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Abstract—In software engineering, system construction nor-
mally starts from a requirements specification that has been
engineered from raw requirements in a natural language. Such
a specification is derived from intermediate requirements models
such as use case models. These models at best only approximate
the raw requirements. In this paper we propose a component-
based approach that maps raw requirements directly into archi-
tectures, with a view to maximising the match between the final
system and the raw requirements. Our approach is based on a
component model that supports incremental composition.

I. INTRODUCTION

In software engineering, system construction normally does
not start from raw requirements (in a natural language). Rather,
raw requirements are usually ‘engineered’ into a requirements
specification, which then provides the starting point for the
system construction process. The requirements engineering
process typically defines intermediate requirements models
such as use case models. Intermediate requirements models
have to be constructed manually, using human knowledge,
experience and ingenuity. Such models at best only approxi-
mate the raw requirements. Therefore the same is true of the
requirements specification that results from the requirements
engineering process.

To maximise the chance of achieving a better match between
the final system and the raw requirements, it would seem
sensible to map raw requirements directly into elements of the
desired system, and thereby construct the system. The question
is whether such an approach is feasible and practicable. We
believe it is, if it is based on a suitable component model. In
this paper we propose an approach based on a component
model that is an extension of a model that we defined
previously.

Our approach is founded on the premise that an individual
raw requirement can be mapped to a partial (component-based)
architecture containing appropriate components and (compo-
sition) connectors. Furthermore, a partial architecture can be
extended in an incremental manner such that the extended
(partial) architecture satisfies additional requirements, as well
as those already satisfied in the initial partial architecture.
Thus our approach can process requirements one by one
and incrementally construct partial architectures that satisfy
the requirements cumulatively; and when all the requirements
have been processed, we have the complete architecture that
satisfies all the requirements.

II. RELATED WORK

Since our starting point is requirements in a natural lan-
guage, there is a lot of existing work in linguistic analysis
that is relevant, e.g. [4], [24], [18], [1], [29], [7], [15], [31],
[12], [28]; in particular, techniques for extracting information
that pertains to system or architecture design. For lack of space
we will not survey these techniques, but instead will briefly
summarise how we adopt and adapt them for our own use in
Section III-C.

Having extracted relevant information from the require-
ments, the next step is to map them to architectures. There is
another class of related work here. Our approach is incremen-
tal, and deals with one requirement at a time. This is in contrast
to work that takes into account all the requirements at once
(e.g. [32]), including incremental architecture design, which
incrementally adds behaviour or properties to an architectural
skeleton (e.g. [3]). Our work is also different from work
that incrementally develops requirements hand-in-hand with
architectures (e.g. [27]).
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Fig. 1: Behaviour Trees.

The work that
is most closely
related to our
work is the
Behaviour Tree
approach [10],
[9], [13], [11].
This translates
individual (raw)
requirements
into behaviour
trees. A
behaviour tree
is a graph that
represents the
behaviour of a set of entities (called components) which
realise or change states, make decisions, respond to or cause
events, and interact by exchanging information and/or passing
control . Behaviour trees for all the individual requirements
(called requirements behaviour trees (RBTs)) are merged into
a behaviour tree (called the design behaviour tree (DBT)) that
describes the required behaviour of the whole system. Fig. 1
shows the RBTs for requirements R1 and R2 of Example 1
(Section III-E) and their merged RBT. From the DBT of the
whole system, a component interaction network is extracted,



together with the behaviour of individual components.

III. OUR APPROACH

It is better to use a component model as the basis of an
approach to constructing systems directly from requirements.
The behaviour tree approach does not use a component model:
it builds the behaviour tree of the desired system, extracts a
system structure from the behaviour tree, and then generates
code for the system. It is therefore not a component-based
approach. In particular, it does not have the notion of pre-
existing components, but instead generates all the code for
every system from scratch.

A component-based approach is better not only because
it can re-use pre-existing components, but also because it
can actually construct the system’s architecture incrementally.
The behaviour tree approach builds the behaviour tree for the
system incrementally, but not the system itself. In this section
we discuss the elements of our approach.

A. Incremental Composition

To use a component-based approach for building systems
directly from requirements, we need to choose a suitable
component model, in particular one that supports incremental
composition. In a component model, a composition corre-
sponds to an architecture, and by incremental composition
we mean composition that (i) allows the addition of more
components, as well as the addition of further compositions,
to an existing architecture; and (ii) preserves the behaviour
(and hence properties) of the existing architecture within the
incremented architecture.

By preserving the behaviour of the existing architecture,
incremental composition supports an incremental approach to
mapping requirements directly to systems. Requirements can
be successively mapped one at a time into a partial architecture
by adding further components and/or compositions. Initially,
we start with an empty architecture, and increment it with a
partial architecture such that it satisfies one requirement. Then
for each of the other requirements, we successively increment
the current partial architecture (by adding more components
and compositions) such that, each time, the new architecture
satisfies the new requirement, as well as all the previous ones,
by virtue of behaviour preservation. The complete architecture
is the final architecture when all requirements have been
mapped in this way.
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Fig. 2: Incremental
composition.

The semantics of incremental com-
position with respect to requirement
mapping can be expressed as the rela-
tions in Fig. 2, where Rs are require-
ments, Ss are partial architectures, and
v denotes the ‘subset of’ or ‘is con-
tained by’ relation. We use v loosely:
{R1, . . . , Rn} v S means partial architecture S satisfies the
set of requirements R1, . . . , Rn; S1 v S2 means partial
architecture S2 contains partial architecture S1.

B. A Component Model with Incremental Composition

We have formulated a component model that supports incre-
mental composition. We will first describe the basic elements
of our model, and then we will explain how the model supports
incremental composition.

In our component model [20], [19], [21] computation and
control are encapsulated separately. This separation and encap-
sulation enables us to map requirements to partial architectures
in our model, by identifying computation and control specified
in requirements and mapping them to corresponding elements
in our model.

In our model, components are encapsulated: they encapsu-
late control, data as well as computation. Our components have
no external dependencies, and can therefore be depicted as in
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Fig. 3: Our component model.

Fig. 3(a) and
(c), with just
a lollipop
(provided
service), and
no socket
(required
service).
There are two basic types of components: (i) atomic and (ii)
composite. Fig 3(a) shows an atomic component. This consists
of a computation unit (U) and an invocation connector (IU).
A computation unit contains a set of methods which do not
invoke methods in the computation units of other components;
it therefore encapsulates computation. An invocation connector
passes control (and input parameters) received from outside
the component to the computation unit to invoke a chosen
method, and after the execution of method passes control
(and results) back to whence it came, outside the component.
It therefore encapsulates control. A composite component
is built from atomic components by using a composition
connector. Fig. 3(b) shows a composition connector. This
encapsulates a control structure, e.g. sequencing, branching,
or looping, that connects the sub-components to the interface
of the composite component (Fig. 3(c)). Since the atomic
components encapsulate computation and control, so does the
composite component. Our components therefore encapsulate
control (and computation) at every level of composition.1

Clearly, composition in our model is hierarchical, and it
preserves encapsulation at every level.

Fig. 3(d) shows a simplified bank system with two compo-
nents ATM and GA, composed by a sequencer composition
connector SEQ. Control starts when the customer keys in his
PIN (and maybe also the operation he wishes to carry out).
The connector SEQ passes control to ATM, which checks the
customer’s PIN; then it passes control to GA (get account),
which gets hold of the customer account details (and possibly
perform the requested operation). Control then passes back to
the customer.

Other composition connectors in our model include pipe for

1They also encapsulate data at every level of computation [22]. For
simplicity we omit this here.
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sequencing (it is the same as sequencer except a pipe passes
the results from one component as input to the next), and
selector for branching (it selects one component). We also
have unary connectors which act as adaptors for composition
connectors: loop for looping,2 and guard for passing or
inhibiting control flow to a composition connector.

In order to support incremental composition, (i) we allow
composition connectors to be open in arity, thus allowing any
number of components to be added to an existing composition
connector; (ii) we allow composites to be open, i.e. to have
open or incomplete interfaces, as shown in Fig. 4. A composi-
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Fig. 4: Incremental composition in our model.

tion connector is open by default; the ‘. . . ’ adjacent to an open
composition connector in Fig. 4 denotes available composition
points, i.e. points where more components or compositions
can be added. A closed composition connector (e.g. the one
in Fig. 3) by contrast does not have any available composition
points. An open composition connector can be closed (i.e. can
become a closed connector) by simply removing its available
composition points; this is a change in property, and can be
introduced manually. By contrast a closed connector cannot
become open.

An open composition connector creates an open composite
with an open interface ((a)(i), (b)(i), (c)(i) and (c)(ii) in
Fig. 4). whereas a closed composition connector yields a
closed composite with a closed interface ((a)(ii), (b)(ii) and
the composite of C and D in (c)(ii) in Fig. 4).

An open composite can be closed by closing its composition
connector, but only if all its sub-components are closed. In
Fig. 4, (a)(ii) and (b)(ii) are closed when the composition
connectors in (a)(i) and (b)(i), respectively, are closed (all
their sub-components are already closed). Thus closing a
composition is done hierarchically, from the bottom up. In
(c)(i) in Fig. 4, the top open interface can only be closed after
the open interface for the composite containing C and D has
been closed (as in (c)(ii)).

Due to encapsulation in components, and hierarchical com-
position that preserves encapsulation, the composition in Fig. 4
satisfies the relations in Fig. 2 (considering open composites as
partial architectures), i.e. it is indeed incremental composition.
Encapsulation ensures that newly added components do not
alter the behaviour of existing components, and hierarchical

2All loops must be finite, except for a loop at the top level of a system.

composition preserves requirements that have already been
satisfied by the current partial architecture.

Finally, in current component models [23], only Koala [26]
supports a form of incremental composition by preserving
properties defined in diversity interfaces of sub-components. In
other component models, the entire system is designed and/or
constructed in one step, either in design phase (as in Enterprise
JavaBeans [8] and UML2.0 [25]) or in deployment phase (as
in JavaBeans [14]).

C. Extracting Information from Natural Language Require-
ments

Since we intend to map requirements to architectures in
our component model, we wish to identify elements in re-
quirements that correspond to the key semantic concepts in
our model, and identify words (in requirements) that represent
these concepts. Most object-based mapping approaches rely
largely on identifying nouns and verbs because the object-
oriented computational model supports only operands and
operators [6]; object-oriented software development [5] uses
the rule that nouns correspond to objects or classes whereas
verbs correspond to messages between objects.

As we have seen, the key semantic concepts in our compo-
nent model are computation and control. Computation means
data transformation or function evaluation, whereby values or
functions are computed and variables may be updated. Control
means the flow of execution of pieces of computation. Thus
the result of a piece of control invoking a computation is a
piece of behaviour.3

We summarise what we extract from natural language
requirements in the following tables. The main elements that
we identify are verbs. Verbs generally refer to actions, events
and processes [17]. We adopt and adapt Saeki’s [29] and
Roland’s [28] rules for identifying verbs and mapping them
into our component model elements.

(attribute values of components)
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withdraw,deposite,

cooking

ExamplesDenotesverbs
Category of 

press,cancel,push

keep,remain

(that can trigger computation)
Events

Internal state of components

(data transformation)
Computation

Event

State

Fig. 5: Elements that can be extracted from
verbs.

Figure 5
shows what
we can extract
from verbs.
In Figure 5,
Computation
is adopted
from Action
[29], [28], State is adopted from State [29], [28] and Event
is adopted from Emergence [28].

A computation verb, e.g. withdraw, denotes a data transfor-
mation, which takes data as input, performs some function
evaluation and outputs data, in order to achieve a specific
objective. In general, data transformations can involve data
access operations i.e. input/output operations; however, we do
not use computation verbs to denote such data transformations.

A state verb, e.g. keep, maintain, cooking, denotes compu-
tations that realise states, i.e. change the attribute values of
components.

3For simplicity we assume that data follows control.
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An event verb, e.g.press, denotes an event that can trigger
computations.

Computation
Computation

(data transformation)
registration,tranmission,

movement

State Attribute name and state closed,open

1,c,integerValue or set of valuesData

authentication
power tube,Conceptual hooks for

componentscomponent
Conceptual

nouns ExamplesDenotesCategory of 

Fig. 6: Elements that can be extracted from
nouns.

Figure 6
shows what
we can extract
from nouns.
In Figure 6,
Conceptual
component is
adopted from
Class [29], Data is adopted from Value [29], State is adopted
from Attribute [29] and Computation is adopted from Action
[29].

A conceptual component noun, e.g. power tube, denotes an
abstraction of a candidate component that can be identified
from nouns such as devices (e.g. power tube, auto-teller
machine, etc.).

A state noun, e.g. closed, denotes an attribute name of a
state.

A data noun, e.g. the number 1, denotes a value that may
need to be stored and retrieved. These values may represent
status, grade, result of computation, etc.

A computation noun, e.g. registration, denotes data
transformation provided by a component such as pro-
cesses(authentication, initialisation).

or computations
May denote components

is enabled,is invalid

date or compareDate( )
"the earlier date" may denote

if,then,else,while,

iterate,loop,after
Control structure

structure
Control

that can be true/false
Computations - operations
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expression
Descriptive

phrases ExamplesDenotesCategory of 

Fig. 7: Elements that can be extracted from
phrases.

Table 7
shows what
we can extract
from phrases.
In Figure 7,
Descriptive
expression is
adopted from Descriptive expression [1], Predicate is adopted
from Predicate [1] and Control structure is adopted from
English control structure [1].

A descriptive expression phrase, e.g. the earlier date, may
denote computations. Abott [1] specifies that a descriptive
expression describes a possible object whose identity (and
possibly even whose existence) must be determined by some
computation. In our work, we are more concerned with
computations rather than identifying objects. For example, “If
the PIN is incorrect, the card is ejected ”. The expression
“..the PIN is incorrect.. ”must some how be determined by
a computation to verify the PIN, hence we say that the
expression is associated with a verification computation.

A control structure phrase denotes flow of control such
as if..then..else, while, iterate, loop, after, selection. Some
constraints identified from requirements can also determine
control structures.

A predicate phrase denotes operations that can be return
true or false such as checking status or state(e.g., isEnabled,
isValid).

D. Mapping Individual Requirements to Partial Architectures

Starting with raw requirements, we construct systems di-
rectly from them. Our approach iterates over the individual

requirements, one at a time. For the first requirement we deal
with, we analyse it using the tables in the previous section
and map it into a partial architecture in our component model.
This partial architecture is the initial system architecture. Then
for each subsequent requirement we deal with, we analyse
and map it into a partial architecture and use incremental
composition to compose this partial architecture with the
current system architecture. When the last requirement has
been processed, the final system architecture is obtained. In
this section, we explain the steps of this process.

1) Step 1: Identify computations and choose components.
For the current requirement, we analyse it and look for verbs,
nouns or phrases that denote computation.

For example, in the following requirement R1 (from Exam-
ple 1, Section III-E):

R1 A customer will be required to insert an ATM
card and enter a personal identification number
(PIN).

we can identify candidate computations ‘insert card’ and ‘enter
PIN’. So we know we need to provide components with ‘read
card’ and ‘read PIN’ operations .

For each computation, we have to choose a candidate com-
ponent, which is either an existing component in a repository
or a new conceptual component identified from a noun in the
requirement. Of course we can group many computations into
one component. Conversely, we can split a single computation
between several components.

For R1, we decide to separate the computation into two
candidate components, CardReader and PinReader. For lack
of space, we do not discuss how to identify these components
in a repository; rather we assume that if they cannot be found
in a repository, then we will develop them.

2) Step 2: Identify control flow and choose composition
connectors. Whenever we identify more than one component,
the next step is to identify the flow of execution between those
components.

In R1, we map the word ‘and’ to a sequential control flow
between the two computations.

The results of Steps 1 and 2 so
far for R1 are summarised as follows:
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Fig. 8: Results of Steps 1 and 2 so far for
R1

We add an
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it provides.
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Based
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control flow
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we can decide the type of composition connector that
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is appropriate: use a sequencer to sequence between
computations; use a pipe if data from one component is
needed to be piped to the other components; use a selector
for branching. In addition, we can use guard or loop for
adapting a composition connector. Of course, we can use a
combination (i.e. composition) of composition connectors
(and adaptors).

For R1, the appropriate composition connector is clearly a
sequencer.

3) Step 3: Create partial architecture. The results of Steps
1 and 2 should be sufficient to enable us to construct a partial
architecture for the requirement.

For R1, the partial architecture is shown in Fig. 9(a).
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Fig. 9: Partial architectures for R1, R2 and {R1,R2}.

4) Step 4: Compose this partial architecture with the
current system architecture. This is done using incremental
composition.

Suppose in addition to R1, we also have R2 (also from
Example 1, Section III-E):

R2 A customer must be able to make a cash with-
drawal from the linked account. Approval must be
obtained from the bank before cash is dispensed.

Then using Steps 2 to 3 we can map R2 to the partial
architecture shown in Fig. 9(b). Step 4 composes this with
the current system architecture (the partial architecture for
R1 (Fig. 9(a)), to yield the new system architecture shown in
Fig. 9(c). The details for Fig. 9(b) and (c) will be explained
later in Example 1 (Section III-E).

5) Step 5: Finalise the system architecture. When all the
requirements have been mapped, we have an architecture
for the whole system. This architecture still has available
composition points, and can therefore be refined, adapted
or optimised. Components could be combined into larger
composites; a set of connectors could be optimised to a single
connector; connectors could be adapted by adaptors to add
behaviour that is implicit in the requirements. The last step of
the finalisation process is to remove any remaining available
composition points, thus closing the whole (final) architecture.

The incremental composition step, Step 4, may not be
possible if the partial architecture of the current requirement
cannot be related to the current system architecture. This can
easily happen since the requirements document is unstructured.
When this happens, we have to postpone the incremental
composition for this requirement until it becomes possible.
If it never becomes possible, then as with all requirements,
there may be problems with the requirements themselves, and

we may need to consult the client to resolve any ambiguities,
inconsistencies or incompleteness in the requirements.

In each incremental composition, there may be many pos-
sible composition points (denoted by ‘. . . ’ in an open com-
position connector) associated with many open composition
connectors. A correct composition point must be chosen in
order for the composition to achieve the behaviour that is
stated in the requirement. In particular, once we have chosen
the composition connector, we need to decide whether a new
component can be added at any composition point in the
connector, or whether it must be added before or after any
of the other existing components composed by the connector.
This decision of course depends on the expected behaviour
stated in the requirement. We adopt the following rule:

[Rule 1] Choosing a correct composition point. If the
requirement states that the new component does not alter
the existing control flow, then the new component can be
added anywhere. For example, if the composition connector
in question is a selector, then new components can be added
anywhere. We will see examples of correct composition points
in Example 1 (Section III-E).

E. A Complete Example

We demonstrate our approach on a complete example, a
simplified Automated Teller Machine (ATM) system.4

Example 1.: The requirements for ATM are as follows:
R1 The ATM will service one customer at a time. A customer

will be required to insert an ATM card and enter a personal
identification number (PIN).

R2 A customer must be able to make a cash withdrawal from
the linked account. Approval must be obtained from the
bank before cash is dispensed.

R3 A customer must be able to deposit cash to the linked
account that can be inserted to the cash slot. Approval must
be obtained from the bank before physically accepting the
cash.

R4 A customer must be able to make a transfer of money be-
tween any two accounts originated from the linked account.

R5 A customer must be able to make a balance enquiry of the
linked account.

R6 If the customer fails to be authenticated, the card will be
rejected.

R7 After each transaction, the ATM will display and print a
receipt containing the transaction information.

We have already shown how to map R1 to a partial
architecture (Fig. 9(a)). This is our initial system architecture.

Consider R2. We identify the computation verbs (Table 5)
approve, and dispense cash, and the computation noun (Ta-
ble 6) cash withdrawal as computations. So we identify
Authentication (for approve), Withdraw and DispenseCash
components. The result of the approve computation has to be
checked before we allow the cash withdrawal and dispense
cash computations to be performed. So we use a pipe connec-
tor to compose Authentication with a composite of Withdrawal
and DispenseCash. The latter composite is the result of another
pipe connector. The partial architecture for R2 is as shown
in Fig. 9(b). We need a guard adaptor for the composite

4Taken from http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Requirements.html
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of the Withdraw and DispenseCash components, because we
only allow control to reach it if the result of invoking the
Authentication component is positive.

Now we try to use incremental composition to compose the
partial architecture for R2 with the current system architecture
(partial architecture for R1). The results of the computations in
R1 are needed for those in R2. Therefore we need to use a pipe
to compose the two partial architectures. The top-level pipe in
the partial architecture for R2 provides a suitable composition
point for the partial architecture for R1. This is in accordance
with Rule 1. The partial architecture that results from this
incremental composition is shown in Fig. 9(c).
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deposit() accept
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WD DC
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Cash()
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deposit()

(a) R3 (b) {R1,R2,R3}
Fig. 10: Partial architectures for R3 and {R1,R2,R3}.

In
R3,
we
iden-
tify
com-
pu-
ta-
tion
verbs
deposit and accept cash as computations; and a pipe to pass
data between them. The prior authentication that is required
is provided by the same Authentication component in the
partial architecture for {R1,R2}. Thus the partial architecture
for R3 is as shown in Fig. 10(a).

To compose the partial architecture for R3 with the current
system architecture (partial architecture for {R1,R2}), we need
not duplicate the Authentication component in the latter, which
means that the top-level pipe in the latter provides a suitable
composition point for the partial architecture for R3. This
is in accordance with Rule 1. The result of this incremental
composition is the partial architecture in Fig. 10(b).

approved?approved?
approved?approved?

accept
Cash()

AC

rove()
app-read

Card()
read
PIN()

CR PR

SEQ

Cash()draw()
with

AUTAUT

PIPE

PIPE

WD DC

approved?

dispense
DP

deposit()

PIPE

TF
transfer
Fund()

reject
Card()

RCBI
enquire

Balance()
print
Receipt()
display()

PRT

Fig. 11: Partial architecture for
{R1,R2,R3,R4,R5,R6,R7}.

In
R4,
R5,
R6,
R7
prior
au-
thentication is also required, and is provided by the existing
Authentication component. In each case, the top-level
pipe connector in the current system architecture provides
the correct composition point. Therefore, incremental
composition for R4,R5 and R4 is carried out in the same
manner as for R3. Omitting the details, the partial architecture
for {R1,R2,R3,R4,R5,R6,R7} is as shown in Fig. 11. In R7,
we identify computation verbs display and print receipt as
computations. We decide to put these two computations into
a single component PrintReceipt.

The remaining step is to finalise the system architecture.
In Fig. 11, we can see that the guards used are checking the
same values, i.e. the approval status and the transaction type.
These constraints can be encapsulated in a selector connector
whereby the constraints can be checked only once and the

result determines which component receives the control flow.
Another refinement we can make is to add a loop connector to
the top-level connector. This makes the ATM system always
ready for the next customer. This is not explicitly stated in
the requirements, but is always required for on-line systems.
Finally we close all the open compositions, and thus closing
all the open interfaces. The final system is shown in Fig. 12.
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Fig. 12: Final system architecture.

F. Implementation

At present we do not have a tool for editing and analysing
requirements, and we map requirements to partial architectures
manually. However, we do have a tool that implements incre-
mental composition. The value of such a tool is obviously that
it enables us to construct systems and then execute them. Thus
it allows us to validate a final system architecture with respect
to the system’s requirements. By running suitable test cases,
we can show that the system satisfies its requirements. The
success of the tool in general also experimentally validates our
approach of system construction directly from requirements in
a natural language.

We have used the tool to build the ATM system from
Example 1. Fig. 13(a) shows the partial architecture for R1. It
corresponds to Fig 9(a). Fig. 13(b) shows the result of com-

(a) R1 (b) {R1,R2}
Fig. 13: Partial architectures for R1 and {R1,R2}.

posing the partial architectures for R1 and R2. It corresponds
to Fig. 9(c).

The final system architecture for Example 1 after the
finalisation step is depicted in Fig. 14(a). It corresponds to
Fig. 12.

We have also used the tool to validate the ATM system with
respect to its requirements. Fig. 14(b) shows sample results
produced by executing the ATM system. We do not have the
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(a) Final system architecture. (b) Sample runs.

Fig. 14: Final system architecture for ATM and its execution.

space to show the details of the test cases, but the results do
indeed validate the ATM system.

Our tool facilitates experimenting with case studies, and
thus allows us to test our approach on case studies of arbitrary
size and complexity. In addition to the ATM example, we
have experimented with a number of case studies from the
literature. One of the non-trivial examples is the Steam Boiler
case study [2]. This contains thirty requirements specifying
the control of the water level in a steam-boiler. The system
comprises the steam-boiler, a water level measurement device
(WLMD), four water pumps, four pump controller devices
(PCD), a steam measurement device (SMD), and a message
transmission system (MTS). The program operates in several
modes of operation: initialisation, normal, degraded, rescue
and emergency stop. We have used our tool to compose a
steam boiler system from its requirements. The final archi-
tecture is shown in Fig. 15, with 24 components and 11
composition connectors (with 6 guards).

Fig. 15: Final system architecture for the Steam Boiler system.

IV. DISCUSSION AND CONCLUSION

We have presented an approach for constructing component-
based systems directly from raw requirements. Our primary
concern is to have an architecture that satisfies all the require-
ments. Clearly the architecture that our method produces may
not be the best possible design according to various criteria.
For example, the corresponding system may not be efficient
in terms of execution speed.

Our approach is based on a component model, and in this
regard, is different from the behaviour trees approach, which

is the approach that is most closely related to our work.
Furthermore, our component model supports incremental com-
position, which again distinguishes our work from existing
related approaches. We have defined incremental composition,
and demonstrated how it works for incremental system con-
struction using individual requirements. Such an incremental
approach allows us to deal with any number of requirements,
and therefore it should scale up to arbitrarily large require-
ments documents. To demonstrate that this is the case, we need
to implement a tool for editing and automatically analysing
requirements and mapping them to partial architectures. We
intend to do so in future.

Our approach is basically heuristic, and requires human
guidance and decision making. Nonetheless we have defined
the steps and rules we follow, for the sake of consistency. The
biggest challenge, especially when dealing with a large number
of requirements, arises when we fail to find a suitable compo-
sition point in the current system architecture for composing
it with the partial architecture for the current requirement.
Our current strategy is to put the current partial architecture
‘on hold’ and try and compose it with the (current) system
architecture when it becomes possible (which is what the
behaviour trees approach does). In the examples we have
experimented with, this strategy has worked. For example,
in the Steam Boiler example, this problem arises, probably
due to the fact that the set of requirements for the case
study is ordered according to the operation modes of the
program. Eventually, however, we manage to compose the
partial architectures of all the requirements (Fig. 15). In this
regard, it is interesting to note that conceptual components
(Table 6) can be used for as yet unknown computations, which
can be determined from subsequent requirements.

On the other hand, we have non-determinism when there
are more than one possible composition point. This is bound
to arise when dealing with a large number of requirements.
There cannot be hard and fast rules here, and human guidance
is the only practical solution.

In our analysis of natural language requirements, many other
elements could be identified than at present. We have only
focused on computation and control so far. Our component
model can be refined to incorporate these elements, e.g. active
components, data flow, etc., and indeed different versions of
our model are being constructed to accommodate them.

Another important issue to be investigated in future is
architecture refactoring, and when and how it is possible. Our
present approach clearly may not work for generic software
systems, since it is predicated on the belief that all key con-
cepts derived from the requirements can be encapsulated. The
latter will only be true for systems with restricted behaviours
or for highly compositional domains. In order to overcome
this handicap, we need to be able to refactor an architecture,
specifically the connector hierarchy, such that the behaviour
demanded by a new requirement can be correctly added to the
architecture. We plan to investigate techniques like [16].

Finally, clearly the main aim of our future work has to
be to experiment with our approach on large requirements
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documents. For this we will need to implement an editor
and analyser for requirements. Such a tool will also allow
us to map individual requirements to partial architectures,
and to carry out incremental composition, automatically as
far as possible. It will also provide support for recording and
managing partial architectures that are ‘on hold’, as well as
matching them with possible composition points in the current
system architecture. When this tool is ready, we will be able
to compare our approach with the behaviour trees approach,
which already has such a tool for mapping requirements to
behaviour trees but not directly to architectures.

REFERENCES

[1] R.J. Abbott. Program design by informal English descriptions. Comm.
ACM, 26(11):882–894, 1983.

[2] J.-R. Abrial, E. Börger, and H. Langmaack. The Steam Boiler Case
Study. In Formal Methods for Industrial Applications. Springer-Verlag,
1996.

[3] O. Barais, L. Duchien, and A.-F. Le Meur. A framework to specify in-
cremental software architecture transformations. In Proc. EUROMICRO
Conference, pages 62-69. IEEE, 2005.

[4] C. Ben Achour. Linguistic instruments for the integration of scenarios
in requirements engineering. In Proc. 3rd Requirements Engineering:
Foundation for Software Quality (REFSQ’97), pages 93–106, 1997.

[5] G. Booch. Object-oriented development. IEEE Trans. Software Eng.,
12(2):211–221, 1986.

[6] N. Boyd. Using natural language in software development. JOOP,
11(9):45–55, 1999.

[7] P.P. Chen. Entity-Relationship diagrams and English sentence structure.
In Proc. 1st Int. Conf. on ER Approach to Systems Analysis and Design,
page 1314. North-Holland, 1980.

[8] L. DeMichiel and M. Keith. Enterprise JavaBeans, Version 3.0. Sun
Microsystems, 2006.

[9] R.G. Dromey. Architecture as an emergent property of requirements
integration. In Proc. 2nd Int. Software Requirements to Architectures
Workshop, pages 77–84, 2003.

[10] R.G. Dromey. From requirements to design: Formalizing the key steps.
In Proc. of the 1st Int. Conf. on Software Engineering and Formal
Methods, pages 2–11, 2003.

[11] R.G. Dromey. Engineering large-scale software-intensive systems. In
Proc. 18th Australian Software Engineering Conf., pages 4–6, 2007.

[12] N.E. Fuchs, U. Schwertel, and R.Schwitter. Attempto Controlled English
language manual, version 3.0. Tech. Rep. 99.03, Dept. of Computer
Science, University of Zurich, 1999.

[13] B. Henderson-Sellers, and R.G. Dromey. A metamodel for the behavior
trees modelling technique. In Proc. 3rd Int. Conf. on Inf. Tech. and
App., vol. 1, pages 35–39, 2005.

[14] G. Hamilton, editor. JavaBeans Specification. Sun Microsystems, 1997.
[15] S. Hartmann and S. Link. English sentence structures and EER

modeling. In Proc. 4th Asia-Pacific Conf. on Conceptual Modelling,
pages 27–35. Australian Computer Society, 2007.

[16] I. Ivkovic and K. Kontogiannis. A framework for software architecture
refactoring using model transformations and semantic annotations. In
Proc. Software Maintenance and Reengineering, pages 135–144. IEEE
2006.

[17] H. Jackson. Analysing English. 2nd Ed. Pergman Press, 1982.
[18] L. Kof. An application of natural language processing to domain

modelling two case studies. International Journal On Computer Systems
Science Engineering, 20:37–52.

[19] K.-K. Lau, M. Ornaghi, and Z. Wang. A software component model
and its preliminary formalisation. In Proc. 4th FMCO, pages 1–21.
Springer-Verlag, 2006.

[20] K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors
for software components. In Proc. 8th CBSE, pages 90–106. Springer-
Verlag, 2005.

[21] K.-K. Lau, L. Ling, and Z. Wang. Composing components in design
phase using exogenous connectors. In Proc 32nd EUROMICRO Conf.
on SEAA, pages 12–19. IEEE, 2006.

[22] K.-K. Lau and F. Taweel. Data encapsulation in software components.
In Proc. 10th CBSE, pages 1–16. Springer-Verlag, 2007.

[23] K.-K. Lau and Z. Wang. Software component models. IEEE Trans. on
Software Engineering 33(10):709-724, 2007.

[24] K. Li, R.G. Dewar, and R.J. Pooley. Object-oriented analysis using natu-
ral language processing. Tech. Rep., Heriot-Watt University, Edinburgh,
Scotland, 2005

[25] OMG. OMG Unified Modeling Language Specification, Version 2.1.2.
2007.

[26] R. van Ommering, F. van der Linden, J. Kramer and J. Magee. The Koala
component model for consumer electronics software. IEEE Computer
33(3):78-85, 2000.

[27] L. Rapanotti, J.G. Hall, M. Jackson, and B. Nuseibeh. Architecture-
driven problem decomposition. In Proc. Int. Conf. on Requirements
Engineering, pages 80–89, 2004.

[28] C. Rolland and C. Proix. A natural language approach for requirements
engineering. In Advanced Information Systems Engineering, pages 257–
277. 1992.

[29] M. Saeki, H. Horai, and H. Enomoto. Software development process
from natural language specification. In Proc. 11th ICSE, pages 64–73.
ACM, 1989. ACM.

[30] R.N. Taylor et al. A component- and message-based architectural style
for GUI software. In Proc. 17th ICSE, pages 295–304. ACM, 1995.

[31] A.M. Tjoa and L. Berger. Transformation of requirement specifications
expressed in natural language into an EER model. In Proc. 12th Int.
Conf. on ER Approach, pages 206–217. Springer-Verlag, 1994.

[32] A. van Lamsweerde. From system goals to software architecture. In
Formal Methods for Software Architectures, LNCS 2804, pages 25–43.
Springer-Verlag, 2003.

8


