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ABSTRACT

InfiniBand is the de facto networking technology for commodity HPC clusters and has been widely
deployed. However, most production large-scale InfiniBand clusters use simple routing schemes
such as the destination-mod-k routing to route traffic, which may result in degraded communication
performance. In this work, I investigate using the OpenFlow-style Software-Defined Networking
(SDN) technology to overcome the routing deficiency in InfiniBand. I design an enhanced InfiniBand
with OpenFlow-style SDN capability and demonstrate a use case that illustrates how the SDN
capability can be exploited in HPC clusters to improve the system and application performance.
Finally, I quantify the potential benefits of InfiniBand with OpenFlow-style SDN capability in
balancing the network load by simulating job traces from production HPC clusters. The results
indicate that InfiniBand with SDN capability can achieve much better network load balancing than
traditional InfiniBand for HPC clusters.
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CHAPTER 1

INTRODUCTION

InfiniBand is an established interconnection networking technology that has been widely deployed
in High Performance Computing (HPC) systems. In the November 2015 top 500 Supercomputer
list, 235 out of the 500 fastest supercomputers in the world use InfiniBand as their interconnects [1].
As HPC systems continue to increase in size towards exascale, addressing issues with performance,
scalability, cost, and resilience poses a major challenge for InfiniBand and other HPC interconnect
technologies. A fundamental trade-off among these competing factors must be achieved in order to
develop efficient future extreme-scale HPC systems.

The emerging Software-Defined Networking (SDN) technology represents a vantage point in the
design space of HPC interconnects that has not been fully explored. SDN has several features that
make it attractive for exascale HPC interconnects as it potentially provides the ideal combination

of performance, cost, scalability, and resilience for the future extreme-scale HPC systems:

e Performance: SDN allows for dynamic reconfiguration of the network to provide per-flow
resource management and routing, which is significantly more flexible than the deterministic
routing scheme that is widely employed in the current InfiniBand-based HPC clusters. The
ability to manage traffic at the flow level potentially enables network resources to be utilized

much more effectively.

e Cost: SDN is designed for Internet and data center applications with large numbers of in-
stallments. The economics of scale dictates that SDN technology will be more cost-effective

as the technology matures.

e Scalability: The network operations in an SDN are simpler than those in networks with
advanced adaptive routing schemes such as the global adaptive routing in the Cray Cascade
system [2]. Hence, SDN is more scalable than interconnects with advanced adaptive routing
schemes and may strike the ideal balance between the network complexity and capability for

future exascale HPC systems.

e Resilience: The flexible system reconfiguration in a SDN facilitates resilience management at

the network level, which has become increasingly important as the system size increases.



HPC systems and applications can take advantage of SDN features to maximize their effec-
tiveness. HPC systems commonly observe repeating data workflows such as those for analytics,
visualization, and 1/O data flows to storage systems or gateway nodes with the data flows sharing
many well-utilized traffic patterns. SDN functionality provides ample opportunities both at the
application level and the system level to optimize for such workloads by providing custom adaption
for the traffic patterns.

Current SDN development is mainly based on OpenFlow [3], which is standardized for Ethernet
based networking infrastructure. However, such infrastructure, does not support the low latency
communication that many traditional HPC applications require. On the other hand, InfiniBand
offers low latency and high bandwidth communication as well as many other features that are attrac-
tive to HPC applications. However, InfiniBand does not support the per-flow resource management
and routing in an OpenFlow-style SDN; almost all production large-scale InfiniBand clusters use a
simple deterministic single-path routing scheme such as the destination-mod-k routing [4], which
can result in degraded communication performance. Adaptive routing has been proposed for In-
finiBand [5]. However, I am unaware of any production InfiniBand cluster that utilizes adaptive
routing.

In this work, I investigate using the OpenFlow-style SDN technology with per-flow resource
management and routing to overcome the routing deficiencies of InfiniBand. I design an enhanced
InfiniBand with the per-flow resource management and routing capability, which will be called
SDN-enhanced InfiniBand. A use case for SDN-enhanced InfiniBand is described where the
job scheduler interacts with the SDN controller during job allocation, which allows custom routes
to be used for each application. The use case illustrates how the SDN capability can be exploited
in HPC clusters to improve system and application performance. I further quantify the potential
benefits of SDN-enhanced InfiniBand in improving network load balancing by simulating job traces
from production HPC clusters. The results indicate that the proposed SDN-enhanced InfiniBand
can achieve much better network load balancing in comparison to conventional InfiniBand.

The rest of the paper is structured as follows: the background is discussed in Chapter 2;
Chapter 3 introduces the design of SDN-enhanced InfiniBand; Chapter 4 describes a use case;
Chapter 5 reports the results of my study on the potential benefits of SDN-enhanced InfiniBand.



Chapter 6 presents related work; Chapter 7 outlines work being done in the future; and Chapter 8

concludes the thesis.



CHAPTER 2

BACKGROUND

2.1 SDN and OpenFlow

The key idea of SDN is to separate the network control plane from the network data plane. This
decoupling allows for the network control (e.g. routing) to be performed by third-party software
independent of data-forwarding equipment vendors. SDN supports layers of abstractions for the

network control, and promises various degrees of network flexibility and scalability including:

e High-level virtual representation of networks
e Scalable architecture that provides flexible routing at the flow level

e The ability to add new network features via open, industry-standard interfaces

The structure of SDNs [6] is depicted in Figure 2.1. There are three layers in an SDN: the
infrastructure layer, the control layer, and the application layer. The infrastructure layer consists
of network elements that perform the simple data plane function of packet forwarding. At the
control layer, the SDN controller controls and interacts with network elements through the SDN
southbound interface. The SDN northbound interface above the SDN controller interacts with the

SDN applications that determine the behavior of the SDN.

SDN application | ® @ ® | SDN application Application layer

(application plane)
SDN northbound interface (NBIs)

Control layer
SDN controller (control plane)

SDN southbound interface

Infrastructure layer
Network Network | @ @ @ | Network (data plane)
element element element

Figure 2.1: SDN Abstraction



OpenFlow [3] is the enabling technology for SDN. It is a realization of the SDN southbound
interface for Ethernet and TCP /IP-based networking infrastructure that defines the interface be-
tween network elements and the SDN controller. OpenFlow specifies the protocols and packet
formats for the SDN controller to control the network elements and for network elements to report
their status to the SDN controller. This allows the SDN controller to obtain the global view of the
network, therefore providing per-flow resource management and routing for individual flows. In
addition, OpenFlow also specifies the necessary functionality in the network elements to support
the OpenFlow standard.

The most remarkable new function in an OpenFlow-style SDN is the dynamic per-flow resource
management and routing using the global view of the network. An OpenFlow switch maintains
a flow table that can be dynamically updated to change the packet forwarding behavior on-the-
fly. This, coupled with the global network view, presents significant opportunities for optimizing
network resource utilization and efficiency.

To support diverse Internet applications, the “flow” concept in OpenFlow is very generic. A
flow can be defined by any bit pattern in headers of typical Internet packets including the source
and destination addresses (IP and Ethernet), source port, destination port, protocol and some
other Internet packet header fields. Communication in HPC applications is likely to have fewer
varieties than that in Internet applications. Therefore, the flow concept for SDN-enhanced HPC

interconnects should be much simpler than those defined in OpenFlow.

2.2 InfiniBand and SDN

InfiniBand is an open standard interconnect specification developed by the InfiniBand Trade As-
sociation [7] and is currently the dominating networking technology for high-end commodity HPC
clusters. InfiniBand was designed with many features that make it very attractive for HPC intercon-
nects. InfiniBand provides high bandwidth (up to 300Gb/s with 12xEDR) while having low latency
(700 nanoseconds end-to-end latency [8]) which is desired by many HPC applications. InfiniBand
supports functionality that closely matches the requirements of HPC applications, including remote
direct memory access (RDMA), multicasting, and operating system kernel bypassing. Additionally,

InfiniBand was designed to scale to thousands of nodes, making both small networks that desire



high speed connections as well as large networks, such as those within supercomputers, possible
with the same technology.

The current InfiniBand standard already supports some SDN functionality [9]. In particular, the
InfiniBand standard [7] requires each InfiniBand subnet to have a centralized controller called the
Subnet Manager (SM), which is responsible for the overall operation of the subnet. The SM’s tasks
include collecting the network topology information, computing routes, and setting up forwarding
tables in the network elements. Each network element in an InfiniBand subnet, such as a switch, is
required to have a control plane agent called Subnet Management Agent (SMA). The SMA allows
a network element such as a switch to report its status to the SM and to perform the required
actions from the subnet manager, such as adding an entry in its forwarding table. SM and SMA
communicate with the Subnet Management Protocol using Subnet Management Packets (SMPs),
which is a special type of InfiniBand Management Datagrams. Hence, the SM in an InfiniBand
network performs the functionality of the network controller and the network application in an
SDN: the SM has the global view of the network and oversees the operation in the network. The
InfiniBand protocol governing the interaction between SM and SMAs is similar to OpenFlow in an
SDN that implements the southbound interface.

With these mechanisms, the network abstraction in SDN can be supported in the current
InfiniBand [7]. Figure 2.2 shows how the SDN network abstraction in Figure 2.1 can be mapped
to InfiniBand: InfiniBand switches correspond to network elements in the infrastructure layer in
an SDN. The InfiniBand SM corresponds to the combined SDN controller and SDN application.
The InfiniBand subnet management protocol corresponds to the SDN southbound interface. Note
that InfiniBand also has more sophisticated controllers such as the InfiniBand virtual network
controller. Such entities can be considered as an SDN application that is built over the basic

network abstraction provided by the subnet manager.

2.3 Routing in SDN and InfiniBand

While InfiniBand provides some SDN functionality as discussed, it does not support the per-
flow resource management in an OpenFlow-style SDN. As mentioned earlier, production InfiniBand
clusters mostly use a simple deterministic single path routing scheme such as the destination-mod-k

(DmodK) routing. Such a routing scheme cannot balance the network traffic and often result in
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Figure 2.2: SDN Abstraction Mapping to InfiniBand (IB)

degraded communication performance for some common HPC traffic patterns [10, 11]. SDN on
the other hand is able to provide globally optimal routes through routing with a global view of
the interconnect. By directing traffic based on the global network view, routes that achieve better
overall load balancing can be computed in an SDN. This paper focuses on the potential benefits of
SDN routing over the deterministic single path routing in InfiniBand.

Adaptive routing has also been proposed for InfiniBand [5]. To be scalable, such an scheme
adapts traffic based on local traffic conditions, which results in local optimizations. Moreover,
deploying adaptive routing in InfiniBand requires the software communication stack to be updated.
Although adaptive routing in InfiniBand has been proposed for many years, due to the difficulties, I
am not aware of any production InfiniBand cluster that utilizes adaptive routing. I do not consider

InfiniBand adaptive routing in this paper.

2.4 Related InfiniBand Concepts

The design of SDN-enhanced InfiniBand minimizes the modifications to the current InfiniBand
standard. SDN-enhanced InfiniBand utilizes some header fields of the data packets and the Man-
agement Datagrams. Next, I will briefly introduce the related InfiniBand concepts. Readers should
refer to the InfiniBand standard [7] for more details.

Figure 2.3 depicts the InfiniBand data packet format. An InfiniBand data packet contains an
8-byte Local Routing Header (LRH), an optional 40-byte Global Routing Header (GRH), a 12-byte
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Figure 2.3: InfiniBand Data Packet Format

Base Transport Headers (BTH), one or more optional variable sized extended Transport Headers,
an optional 4-byte immediate data or R_Key field, the message payload, and a 4-byte invariant
CRC and 4-byte variant CRC. The SDN-enhanced InfiniBand will perform operations based on
select fields in the Local Routing Header (LRH) and Base Transport Header (BTH), which are
both present in all InfiniBand packets. Among the fields in LRH: The design uses the Service
Level (SL) field that is used to determine the Quality-of-Service level of the packet, Destination
Local ID (DLID), and Source Local ID (SLID). The related fields in BTH used in this work
include OpCode that determines the packet type, the Destination QP (DestQP) that can be used
to identify a flow, and Packet Sequence Number (PSN).

SDN-enhanced InfiniBand introduces a new class of InfiniBand Management Datagrams (MADs)
that is used for management tasks and realizing management protocols such as the subnet man-
agement protocol in InfiniBand [7]. The format of the InfiniBand MAD is shown in Figure 2.4.
The subnet management reporting and controlling data are carried in the data field in the MAD.
The SM and SMA are required to support a number of MAD classes as defined in the InfiniBand

specification [7].

byte bits 31-24 bits 23-16 bits 15-8 bits 7-0
0 BaseVersion | MgmtClass | ClassVersion R Method
(1) (0x09) (1) (0/1) (0)
4 Status (0) ClassSpecific (0)
8 TransactionID (#)
12
16 AttributeID (0) ‘ Reserved (0)
20 AttributeModifier (0)
24 Data (OpenFlow control packet)
252

Figure 2.4: InfiniBand Management Datagram format and the values for the new Open-
Flow class in SDN-enhanced InfiniBand (values in parentheses)



CHAPTER 3

THE DESIGN OF SDN-ENHANCED INFINIBAND

SDN-enhanced InfiniBand incorporates the dynamic per-flow resource management and routing
capability into the existing InfiniBand. To support the dynamic per-flow control capability in
InfiniBand, related components in the InfiniBand control plane must be modified and/or enhanced.
The components include: InfiniBand switches, InfiniBand subnet management entities (subnet
manager and subnet management agents) and protocols, and InfiniBand data packet processing
logic. The main design objective is to support dynamic per-flow routing while minimizing the
modifications to the current InfiniBand standard. Next, I will discuss important design choices and
describe the modifications in InfiniBand components in order to support dynamic per-flow resource

management.

3.1 Flow Table and Pre-establishment of Flow Table Entries

In an OpenFlow network, a packet will be matched against the flow entries in the flow tables
in a switch. If a match is found, the actions specified in the flow table will be performed to process
the packet. If a match is not found, the packet is sent to the controller, which will decide how to
handle the packet. In the current InfiniBand network, packets are routed by a static forwarding
table that is indexed by the DLID field in the LRH header to decide an output port. To support the
dynamic per-flow resource management capability, a flow table with similar functionality as that
of an OpenFlow switch must be added to each InfiniBand switch in the SDN-enhanced InfiniBand
so that flow specific actions can be applied to packets belonging to different flows.

One important design choice is the timing when the flow table entries should be populated.
In an OpenFlow network, a flow table entry may be reactively installed by the controller after a
flow table miss. For a typical HPC application, this would be very undesirable since a flow-table
miss will result in a packet latency that is orders of magnitude larger than without a flow-table
miss. Moreover, such penalty will be propagated through all processes due to the relatively frequent

synchronization operations in the HPC application. To alleviate this problem, the proposed SDN-



enhanced InfiniBand maintains the forwarding table in the current InfiniBand and uses it to realize
default routes for packets with flow-table misses. In SDN-enabled InfiniBand, flow table entries for
a flow are pre-established. Due to the providing of default routes through the forwarding table,
SDN-enabled InfiniBand removes the necessity to reactively setup the flow table entry when a flow
table miss occurs

The packet processing operations are as follows: a packet will be matched against flow entries
in the flow table in the switch. If a match is found, the actions specified in the flow table will
be performed to process the packet. If a match is not found, the default route determined by the
forwarding table will be used. This avoids the potential significant performance penalty for HPC
applications when flow table misses occur. HPC systems/applications may utilize SDN-enhanced
InfiniBand as the traditional InfiniBand by not using flow tables. To utilize the per-flow resource
management functionality, HPC systems and applications can pre-establish the flow-table entries
at the job allocation time or during the execution of the application before the communication
happens.

In summary, each switch in an SDN-enhanced InfiniBand network will be equipped with a
flow table that is similar to the flow table in an OpenFlow switch in addition to the forwarding
table in the traditional InfiniBand switch. The forwarding table will support default routes for all
packets while more optimized per-flow routes will be realized by the flow table, whose entries are
pre-established (e.g. at job allocation time) before the packets that utilize the flow table entries are
communicated. Note that many HPC applications have phased behavior with communication and
computation alternating during program execution. The flow table can also be set-up before each
communication phase. Note also that the forwarding tables will also be required for the InfiniBand
initialization and for routing management packets.

Although requiring flow table entries to be pre-established reduces the per-flow resource man-
agement flexibility in comparison to the OpenFlow-based SDN, it exposes the per-flow resource
management capability to each parallel application and/or the system, allowing for customized
routing mechanisms to be used for each application or even each communication phase within an
application. Studies have shown that using application specific routing scheme can significantly
improve the performance of the communication infrastructure for HPC applications over the widely-

deployed system-wide deterministic single-path routing in the current InfiniBand [12, 13].

10



This design also addresses another important problem that exists in the current OpenFlow-
based SDN: the limited size of a flow table. With the current technology, the size of a flow table
is limited to a few thousand entries [14]. As such, flow tables will not be able to support all
communications in large-sized networks. By having flow tables in addition to the forwarding table,
the design allows flow tables to be used to direct traffic for the most important flows while other

packets can follow default routes.

3.2 The Flow Concept

SDN-enhanced InfiniBand does not require any modification to InfiniBand data packets. The
“flow” in the SDN-enhanced InfiniBand is defined using the existing header fields in the current
InfiniBand data packets. Depending on the level of control that the SDN-enhanced InfiniBand
would provide, a selection of potential choices with increasing complexity is described below. The
selection of the flow definition is a design choice, depending on the functionality required as well
as the hardware constraints. The terminology used is described in Section 2.4 and [7].

e A flow may be defined by the bit pattern in the DLID field. In this case, the flow-table

functionality will be similar to the forwarding table. However, application specific routing is
enabled.

e A flow may be defined by the bit pattern in the DLID and SLID fields. This allows per-

application routes based on both source ID and destination ID to be used in the system.

e A flow may be defined by the bit pattern in the DLID, SLID, and the SL (service level) field.
This allows per application routes based on source ID, destination ID, and service level to be

used in the system.

e A flow may be defined by bit patterns in the DLID, SLID, SL, and DestQP fields. This allows
different communications within an application between the same source and destination

nodes to follow different routes.

e A flow may be defined by bit patterns in the DLID, SLID, SL, DestQP, PSN fields. This

allows different packets for the same message to follow different routes.

3.3 Switches in SDN-enabled InfiniBand

To support per-flow resource management functionality, enhancements must be made to Infini-

Band switches. Figure 3.1 shows the block diagram of an InfiniBand SDN switch and its interaction
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with the enhanced SM in SDN-enabled InfiniBand. The switch distinguishes between data packets
and control packets. The enhancement is only used to process data packets. The processing of
control packets is the same as the current InfiniBand. First, a flow table similar to that of an
OpenFlow switch is added that will match flow entries and perform the specified actions. Second,
the packet processing logic must be modified such that if a packet matches a flow in the flow table,
the actions specified in the flow table will be performed on the packet. If the packet fails to match
any flow such as with traditional InfiniBand or jobs with dynamic traffic patterns, the routing will
be determined by the forwarding table. Third, the SMA software must be enhanced with the added
functionality to understand the enhanced subnet management protocol. In addition to performing
the traditional subnet management protocol that mainly relates to managing the forwarding table,
the enhanced subnet management protocol also performs OpenFlow-like functions that relate to

managing the flow table.

Enhanced SM

Enhanced subnet management protocol

Enhanced SMA ‘
S o )

IB SDN
switch

packet
in

normal processing

packet out

Figure 3.1: InfiniBand SDN Switch

3.4 Control Packet Modification

For the purposes of integrating per-flow resource management into InfiniBand, a new class of

subnet management packet is defined by using one of the InfiniBand vendor values for OpenFlow.

12



The current InfiniBand specification defines several classes of management packets, such as the
subnet management classes and the performance management class [7]. The new class assumes
that the forwarding tables have been setup and is routed based on DLID. Despite functionality of
the new MAD class being very similar to the LID routed MAD class [7], creating a new class was
chosen over using the LID routed MAD class since the LID routed MAD class has already been
defined for other purposes. A new type allows for more flexibility in the values used in each field,
rather than having to work around existing values.

The OpenFlow class of MAD packets also preserves the formats of both InfiniBand and Open-
Flow control packet structures. The 256 byte InfiniBand MAD packet has a 232 byte data
field, of which the first 56 bytes will be used by the fixed fields of the OpenFlow structure
ofp_flow mod. The remaining 176 bytes will be used for the variable length OpenFlow ofp_match
and ofp_instruction_header structures (refer to [3] for more details of the OpenFlow structures).
This space should be sufficient for OpenFlow matches and actions, since InfiniBand has signifi-
cantly fewer definitions for flows than Ethernet does. While this may not be the most effective use
of space, it allows for this design to keep up with the development of OpenFlow and potentially
reuse software developed for OpenFlow in SDN-enhanced InfiniBand.

Figure 2.4 shows the new class of management packets that is created for SDN-enhanced In-
finiBand. The value in the parenthesis in each field is the value set for the new OpenFlow class of
management packets. Among the header fields are the BaseVersion with a value of 1, MgmtClass
with a value of 0z09, ClassVersion with a value of 1, and TransactionID with a variable value.
The BaseVersion and ClassVersion fields are required for the current version of MAD packets. The
MgmtClass value identifies the packet class. The value 0x09 is the first value available to developers
to add new functionality, which will be used for the new OpenFlow class. The response bit, R, may
have a value of 0 or 1, depending on whether the OpenFlow control packet requires a response.
The Transaction ID field will be generated from LRH and BTH fields to identify the transaction.
Finally, the data field will contain the whole OpenFlow control packet.

The existing InfiniBand already has the capability to collect network state information to the
SM. With this design, the flow-table entries are pre-established. Thus, only OpenFlow control
packets are needed to allow the SM to manipulate the flow table entries in switches within its

domain. In the OpenFlow standard, such packets are ofp_flow mod packets [3]. Since SDN-
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enhanced InfiniBand only uses a subset of control functions in OpenFlow, not all fields in the
standard Openflow control packets are necessary. The most important field used is the match field

that specifies flows and the corresponding actions.

3.5 Enhanced Subnet Manager to Control the New Switches

The main change to the subnet manager (SM) software (e.g. OpenSM[15]) will be the additional
functionality to handle OpenFlow operations, performing the functions that are performed in Open-
Flow controllers. Since the existing InfiniBand already obtains the network topology information,

the additional functionality mainly includes the following:

e Maintaining global information on jobs and the network state.

e Interacting with SDN applications and switches, computing the flow table entries for each

application, and setting up flow table entries on each switch.

These are a subset of the functionalities supported by a typical OpenFlow controller. There are
two options to implement these functionalities. The first option is to integrate OpenFlow controller
operations into the SM. The SM will send MAD packets to set up the flow tables in the switches
under its control.

The other option is to separate the OpenFlow controller functions from the InfiniBand SM. In
this case, a separate entity will implement the OpenFlow controller functions and will interact with
SM to provide the functions. This would require the design of a protocol for the SM to communicate
with the SDN controller. This method may allow SDN-enhanced InfiniBand to directly interact

with peering OpenFlow-based SDN.
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CHAPTER 4

A USE CASE

Here I describe a use case of SDN-enhanced InfiniBand. The use case illustrates the operations in
a cluster with SDN-enhanced InfiniBand and shows how OpenFlow-style per-flow resource man-
agement capability can be exploited to achieve high communication performance.

Consider an HPC cluster whose interconnect has a fat-tree topology with our proposed SDN-
enhanced InfiniBand. Let a flow be defined by SLID and DLID, which allows a per-flow routing
to be decided by the source and the destination. To ease exposition, we will assume that the SM
and the SDN controller are logically separated. Additionally, we assume that the cluster uses an
augmented version of a job scheduler, such as the widely used SLURM scheduler with the tree
plugin [16] to allocate compute nodes for jobs. The scheduler is slightly enhanced so that it can
interact with the SDN controller by informing the SDN controller about the job to be allocated
and deallocated, and the logical communication patterns of the jobs, and starting a job only after
the interconnect has been configured for the job. The SDN controller allocates paths for all of the
communications of a new job and informs the scheduler that the network is ready for the job. The
SDN controller deallocates network resources after a job completes.

We will assume that the logical pattern for important communications for a job is known. Note
that this is not an unreasonable assumption: studies have shown that the logical communications of
most scientific applications are easily analyzable [12, 13]. In addition, for applications with unknown
communication patterns, one can either use the default routes or assume the worst-case all-to-all
logical communication for all processes of a job. Also, since SDN-enhanced InfiniBand provides
default routes, the logical communication pattern does not have to support all communications,
but rather just the important ones.

Since the SDN controller maintains the global network link usage, the cluster can provide custom
routing for each application that optimizes for network load balancing. The SDN controller can
employ a simple heuristic to allocate the path for each communication in a job by selecting the

least loaded path among all possible shortest paths for each application or even each communication
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phase within an application. Our evaluation with job traces from production HPC clusters indicates
that with this simple heuristic, the network load balancing is greatly improved over the widely-used
DmodK routing for fat-trees in the current InfiniBand.

Let us now turn to the system operations. For system initialization, SDN-enhanced InfiniBand
keeps the forwarding table and does not modify the initialization sequence. The SM collects the
topology information, allocates LIDs for each device, computes the paths (e.g. using the DmodK
routing) for each source-destination pair, and installs the forwarding table entries to realize the
routes. By setting up forwarding table entries, the default routes for the SDN-enhanced InfiniBand
are established.

Once the system is initialized, job requests can be submitted and processed by the augmented
job scheduler. Figure 4.1 shows the operations in the use case. When a job request arrives,
the scheduler will allocate a set of compute nodes to the job. The scheduler informs the SDN
controller about the job allocation and communication pattern, which at this time can be mapped
to a physical communication pattern. The SDN controller then computes a custom route for each
communication in the pattern. The custom routing is job specific. The computation of the custom
routing takes into consideration various constraints such as the availability of flow table entries in
each switch and optimizes load balancing in the network. Once the paths are determined, the SDN
controller then computes the flow-table entries that realize the allocated custom paths for the job.
The SDN controller sets up the flow table entries in a switch by sending OpenFlow MAD packets
to switches. When an OpenFlow MAD packet is received by a switch, the switch extracts the entry
and places it into the flow table. After all of the flow table entries are established for a job, the
SDN controller can inform the job scheduler that the job can now be launched.

During the job execution, messages are split into packets. When a packet enters a switch, it
will be matched against the entries in the flow table. Should the packet match with an entry, the
switch processes the packet according to the entry’s actions. If the packet does not match with any
entry, it will be routed through the default path.

When a job finishes execution, the scheduler informs the SDN controller the completion of the
job. If custom routing was established for the job, the SDN controller issues commands to remove

the associated flow table entries in the affected switches, and update the flow table status.
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Figure 4.1: Operations in the use case
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CHAPTER 5

PERFORMANCE EVALUATION

In this chapter, I evaluate the potential benefit of using SDN-enhanced InfiniBand in the setting
described in the use case by simulating the job traces from production HPC clusters. Load balancing
metrics are compared between systems with traditional and SDN-enhanced InfiniBand. The results
indicate that SDN-enhanced InfiniBand achieves significantly better network load balancing. Next,

I will describe the settings and methodology for the performance comparison, and report the results.

5.1 Job Traces

The job traces that I used in the study are maintained in the Parallel Workloads Archive [17].
They are in the Standard Workload Format (SWF) [18]. Each entry of a trace contains 18 fields,
but I only used the job id, submit time, wait time, run time, number of allocated nodes, and status
fields.

I used three job traces from production HPC systems in the study: CEA! Curie [19], LLNL?
Thunder [20], and LLNL Atlas [21]. The traces have different workload characteristics. The Curie
supercomputer has general-purpose scientific computing workloads [19]. Thunder was designated
as a “capacity” cluster for small to medium jobs [20], while Atlas was a “capability” cluster [21]
for larger jobs. Table 5.1 lists the general information for the traces and the systems, including
the number of compute nodes, the number of CPUs per node, the number of jobs, the duration of
the trace logs, and the average utilization of the system. The original traces had been filtered by
Feitelson [22, 23]. In the simulation, I further remove uninteresting jobs that had run times of 0,
were canceled while waiting in the queue (status value of -1), or requested more than the number
of nodes in the system. In this study, I choose to present the results for the first 1000 jobs from
the filtered traces, because they are representative for the full-trace simulations runs. These 1000

jobs spans over 5 to 16 days, depending on the trace.

!Commissariat & I’énergie atomique et aux énergies alternatives
2Lawrence Livermore National Laboratory
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Table 5.1: General information about the job traces and the supercomputers that the job
traces were collected

Machine CEA Curie | LLNL Thunder | LLNL Atlas
Nodes 5904 1024 1152
CPUs/Node 2 4 8
Number of Jobs 773,138 128,662 60,332
Time (months) 20 5 8
Utilization (%) 29.3 87.9 64.1

5.2 Interconnect Topology and Routing

The interconnects are assumed to be fat-tree topologies. More specifically, for the CEA Curie
trace with 5904 compute nodes, I set the topology as a 30-port 3-level full bisection bandwidth
extended generalized fat-tree, XGFT(3; 15, 15, 30; 1, 15, 15) using the notation in [4]. This tree
supports 15 * 15 % 30 = 6750 compute nodes, of which, the first 5904 nodes are used.

For LLNL Thunder, the topology is set to be a 16-port 3-level full bisection bandwidth extended
generalized fat-tree, XGFT(3; 8, 8, 16; 1, 8, 8), supporting 8«8% 16 = 1024 nodes, the exact number
of nodes present in Thunder. For Atlas, the topology is a 18-port 3-level full bisection bandwidth
extended generalized fat-tree, XGFT(3; 9, 9, 18; 1, 9, 9) with 9% 9% 18 = 1458 compute nodes. The
first 1152 continuous compute nodes are used for simulation, the other ports are unused.

For traditional InfiniBand, I assume DmodK routing is used [4]. For SDN-enhanced InfiniBand,
the routes are allocated as follows: I assume that the important logical communication within each
job is known. Each logical communication within a job is assigned a weight for the load that it
introduces. The SDN controller maintains the usage weight for each link in the network. When
allocating a path for a logical communication in a job, the SDN controller selects the path with
the smallest maximum weight along its links from among all possible shortest paths. The SDN

controller updates the global network state when the link usage state changes.

5.3 Job Allocation

Both traditional InfiniBand and SDN-enhanced InfiniBand are assumed to use the same SLURM
scheduler with the tree plugin [16]. In this job scheduling scheme, compute nodes are selected to

be as contiguous as possible to minimize the interference among jobs. More specifically, compute
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nodes are allocated by first identifying the nearest common ancestor switch that can satisfy a job
request. After that, the best-fit algorithm is used to allocate compute nodes of the underlying leaf
switches beneath the selected nearest common ancestor switch, while minimizing the number of

segments used and fragments created.

5.4 Logical Communication in Each Job

Let N be the number of ranks in a job. To quantify network load balancing, the communication
information of each job is needed. Studies have shown that the vast majority of HPC applications
that run at scale have low-dimension stencil patterns [24, 25] such as 2-dimension nearest neighbor
(2DNN). Another important class of HPC application has irregular communication patterns. To
mimic these HPC communication workloads, the study considers the following patterns:

e Ring: In the ring pattern, process ¢+ communicates with processes ¢ + 1 and ¢ — 1 with wrap

around.

e 2-dimension nearest neighbor (2DNN): In this pattern, first generate a 2D [v/N] x [v/N]
grid. If N < [V/N] x [V/N], there may have some un-occupied points in the last row of the
grid. Process (i,j) communicates with four neighbor processes in the grid ((i —1, 7), (i+1, j),

(¢i,7 — 1), and (i,7 + 1)) with wrap around.

e 3-dimension nearest neighbor (3DNN): In this pattern, first generate a 3D [V/N] x [V/N] x
[VN] grid. If N < [/(N)] x [&/(N)] x [¢/(N)], there may have some un-occupied points
in the last plane of the grid. Each process communicates with six neighbor processes in the

grid with wrap around.
e Random4 pattern: each process communicates with 4 other randomly selected processes.

e RandomS8 pattern: each process communicates with 8 other randomly selected processes.

In some of the experiments, I assume that all jobs have the same logical communication pattern
(one of the above). In others, I consider situations when each job can have a different pattern

selected randomly from the set of patterns (dynamic).

5.5 Performance Metrics

The network load balancing is quantified with two metrics: per job mazimum load (PJML) and

system wide mazimum load (SWML). At the high level, per job maximum load (PJML) is defined as
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the maximum link load that a job experiences during its execution while the system wide maximum
load (SWML) is the maximum link load in the system at a given time. More specifically, the PJML
for each job and SWML at a given time is computed by first estimating the link load of each
communication from process s to process d in the logical communication pattern for the job, which
is then mapped to physical nodes allocated. For each communication (s, d), I assume that the source
node s will introduce at most 1 unit of traffic among all communications in the job whose source is
s. Similarly, each destination node d can receive at most 1 unit of traffic among all communications
whose destination is d. Let s,,+ be the number of outgoing communications from source s and d;;,
be the number of incoming communications to destination d in the communications for the job.
Communication (s, d) will be assigned a weight

1 1

M
Sout  din

)

W(s,q) = min(

During the job execution, this amount (w,4)) of communication is assumed to occur in every
link along the path from s to d. Based on this, the traffic incurred by each job and the whole

system is simulated. SWML and PJML captures both intra-job and inter-job network contention.

5.6 Simulation

Each job trace provides the start and end time for each job. During the simulation, the simulator
maintains the traffic load on all links. When a job starts, the traffic load for that job is added to the
links used by the job, and is removed when the job finishes. Furthermore, the simulator monitors
and updates the PJML for each job and the SWML for the whole system. Note that the network
state changes only when a job starts or finishes. Hence, to simulate M jobs, only 2M updates to
the SWML are needed.

Figure 5.1 shows the pseudo-code of the simulation to compute the performance statistics for
SDN-enhanced InfiniBand. For traditional InfiniBand systems, it can be computed by replacing
the SDN routing with the DmodK routing. The simulator takes three sets of input parameters:
the job trace file, the system topology, and the type of logical communication pattern for the jobs
in the given trace. The type of logical communication parameter may be one of the types listed

earlier (Ring, 2DNN, 3DNN, Randomj, and Random8). In this case, all jobs have the same logical
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communication pattern. The parameter may also be dynamic, in which case, each job uniform-
randomly selects its communication pattern among Ring, 2DNN, 3DNN, and Random4.

The simulator reads through each job record in the job trace and creates two entries: a job
start entry and a job finish entry. A job entry contains the job id, the number of allocated nodes,
and a timestamp. The job start entry timestamp indicates the start time, which is the sum of
the submit time and the wait time. The job finish entry timestamp represents the corresponding
start time plus the job’s run time. The entries are sorted by the timestamps for simulation. For a
job start entry, the simulator computes the node allocation, generates the logical communications
for the job, converts the logical communications to physical communications, decides the path for
each communication, and adds load to the links in the path (lines 7 to 11). After the network
load for this job is added to the network, the simulator updates the PJML for each active job and
recomputes the SWML. For a job finish entry, the simulator removes the network traffic for the job
that finished, records the PJMLs and recomputes SWML. The simulation completes when all jobs

are simulated or the number of jobs simulated reaches a target.

Data: Job trace, Interconnect topology(XGFT), type of logical communication pattern
Result: SWML during the trace time, PJML for each job

1 while (job trace is not empty) do

2 Get an entry from the job trace;

3 if (the entry is job start entry) then

4 Run job allocation algorithm to determine its compute node allocation;

5 Generate the logical communication pattern for this job;

6 Convert logical communications to physical communications;

7 for each communication in the job do

8 Compute the weight for the communication;

9 Compute the SDN route according to the current network usage state;
10 Add the weight for the communication to each link along the route;
11 end
12 Recompute the updated PJML for each active job;

13 Recompute the SWML, record the time and change;

14 end

15 if (the entry is job finish entry) then

16 Remove the traffic for this job from the network;

17 Record PJML for this job;

18 Recompute and update the SWML, record the time and change;
19 end

20 end

Figure 5.1: Computing SWML and PJML for SDN-enhanced InfiniBand
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For each trace, I simulated and recorded the SWML over the duration of all of the jobs and the
PJML for each job over six patterns (Ring, 2DNN, 3DNN, Random4, Random8, and dynamic).
The simulation is done using TopSim [26], a topology simulator developed jointly by Los Alamos
National Laboratory and FSU. Next, I will show two representative results for the first 1000 jobs

in each trace. Other results as well as the plots for the whole traces have a similar trend.

5.7 Simulation Results

Figure 5.2 shows the SWML for the Curie trace assuming all jobs have the 3DNN logical
communication pattern. Figure 5.3 shows the results of the dynamic communication pattern (each
job randomly selects a pattern from Ring, 2DNN, 3DNN, Random4). Machines under the dynamic
traffic pattern are more prone to network congestion due to the randomness of the communication
pattern. Using the current InfiniBand with the system-wide DmodK routing scheme, the maximum
SWML value goes up to 1.67 for the 3DNN pattern and 2.80 for the dynamic pattern. Using
the SDN-enhanced InfiniBand with application specific routing that optimizes load balancing, the
SWDML is consistently close to 1 throughout the simulation. The one day gap in the Curie trace

was a result of system upgrades.
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Figure 5.4 and Figure 5.5 show the results for 3DNN and dynamic patterns for the LLNL
Thunder trace, respectively. The DmodK routing results in up to 1.95 SWML for the 3DNN
pattern and 2.47 for dynamic patterns while SDN-enhanced InfiniBand significantly reduces the
SWML value to 1.00 for 3DNN and 1.20 for dynamic. This trace has a two day period where the
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utilization is 0% for unknown reasons. Additionally, there are many jobs requesting a single node

in the trace, which did not contribute to the SWML value.
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Figure 5.6 and Figure 5.7 illustrate that SDN routing continues to outperform DmodK routing.
DmodK routing resulted in SWML of 1.83 with the 3DNN pattern and 2.86 for the dynamic pattern.
SDN routing resulted in SWML of 1.00 for the 3DNN pattern and 1.17 for the dynamic pattern.

Since Atlas was designed to run large jobs [21], resulting in bursts of high utilization.
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Table 5.2 presents the average and maximum PJML of the first 1,000 jobs in the Curie, Thunder,
and Atlas traces. The maximum PJML is equivalent to the SWML as both capture the maximum
link load observed among all jobs. § is defined as the percentage difference between the DmodK and

SDN routing in terms of PJML. For the 3DNN pattern, the § of the average PJML with DmodK
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and SDN-enhanced routing ranges from 2.1% to 8.0% while the maximum PJML rises significantly
t0 95.0% for Thunder. Similarly for the dynamic pattern, the ¢ of the average PJML with DmodK
and SDN-enhanced routing ranges from 6.7% to 20.0% while the maximum SWMLs reaches 154.5%
for Curie. From the table, it is clear that SDN-enhanced routing results in PJML values that are
lower than those of conventional InfiniBand. Note that average PJML can be less than 1 because
the traces have many jobs that request a single node, resulting in a PJML value of 0.

These results demonstrate that SDN-enhanced InfiniBand improves load balancing across dif-
ferent HPC workloads. Per-flow resource management is an effective mechanism for improving the

communication performance in HPC clusters.

Table 5.2: Per Job Maximum Load (PJML) for the traces

. 3DNN pattern Dynamic pattern
Trace | Metric 5 IR TSDNs (%) [ DmodK [ SDN3 (%)
Curie Avg. PJML| 096 [0.94| 2.1 1.04 094 10.6
Max. PJML| 1.67 |1.00| 67.0 | 2.80 |1.10|154.5
Thunder Avg. PJML| 0.93 [0.90| 3.3 0.96 |0.90| 6.7
Max. PJML| 1.95 1.00 | 95.0 2.47 11.20105.8
Atlas Avg. PJIML| 0.95 |0.88| 8.0 1.07 ]0.89| 20.0
Max. PJML| 1.83 |1.00| 83.0 | 2.86 |1.17|1444
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CHAPTER 6

RELATED WORK

Since the concepts of SDN and OpenFlow have been introduced, SDN has been widely accepted in
industry and the research community. Extensive research and development has been carried out
in this area. Most results, however, are not in the HPC domain. The HPC community has also
started to explore SDN and OpenFlow capabilities for effective MPI communications through new
MPT libraries that can take advantage of SDN capabilities [27]. Arap [28] investigated techniques
to explore SDN capability for efficient MPI collective communications; Takahashi [29] evaluated the
performance of MPI-allreduce operation on an SDN cluster. Similarly, Dashdavaa [30] implemented
and evaluated MPI_bcast with SDN enhancements. In industry, Mellanox has produced switches
that can be configured as either InfiniBand switches or OpenFlow switches [31]. However, such
a switch does not provide OpenFlow functionality when it is configured as an InfiniBand switch.
To my knowledge, this is the first paper that investigates introducing the OpenFlow-style SDN

capability into InfiniBand and evaluates the potential benefits.
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CHAPTER 7

FUTURE WORK

In order to further validate the results of the simulations, more research has been planned. Simula-
tions of systems more closely resembling real-life systems will be done. This work ran simulations
on only one topology. Similarly, SDN routing was compared against only one other routing algo-
rithms. Additionally, the traces used in the simulations of this research had job level granularity,
forcing many assumptions to be made. The results of the simulations are a unitless metric that
does not directly correlate with real-world values. All of these inaccuracies caused by these issues
can be reduced by running more fine-grained simulations. Work is being done to integrate SDN
capabilities into the SST/macro simulator in order to leverage the large number of components

that can be simulated with.

27



CHAPTER 8

CONCLUSION

I have investigated schemes to incorporate OpenFlow-style per-flow resource management into the
current InfiniBand, illustrated a use case, and evaluated the potential benefits of the SDN-enhanced
InfiniBand. I have shown that with limited modifications to the current InfiniBand standard, the
per-flow resource management capability can be introduced to overcome the routing deficiency in
the current InfiniBand and significantly improve the communication performance. A strong case has
been made for the introduction of OpenFlow-style capability into InfiniBand for building efficient
HPC clusters.
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