
Large-Scale Evaluation of Method-Level
Bug Localization with FinerBench4BL

Shizuka Tsumita
Tokyo Institute of Technology

Tokyo 152–8550, Japan
tsumita@se.c.titech.ac.jp

Shinpei Hayashi
Tokyo Institute of Technology

Tokyo 152–8550, Japan
hayashi@c.titech.ac.jp

Sousuke Amasaki
Okayama Prefectural University

Okayama 700–0961, Japan
amasaki@cse.oka-pu.ac.jp

Abstract—Bug localization is an important aspect of soft-
ware maintenance because it can locate modules that need
to be changed to fix a specific bug. Although method-level
bug localization is helpful for developers, there are only a
few tools and techniques for this task; moreover, there is no
large-scale framework for their evaluation. In this paper, we
present FinerBench4BL, an evaluation framework for method-
level information retrieval-based bug localization techniques, and
a comparative study using this framework. This framework was
semi-automatically constructed from Bench4BL, a file-level bug
localization evaluation framework, using a repository transfor-
mation approach. We converted the original file-level version
repositories provided by Bench4BL into method-level repositories
by repository transformation. Method-level data components
such as oracle methods can also be automatically derived by
applying the oracle generation approach via bug-commit linking
in Bench4BL to the generated method repositories. Furthermore,
we tailored existing file-level bug localization technique imple-
mentations at the method level. We created a framework for
method-level evaluation by merging the generated dataset and
implementations. The comparison results show that the method-
level techniques decreased accuracy whereas improved debugging
efficiency compared to file-level techniques.

Index Terms—bug localization, information retrieval, reposi-
tory transformation

I. INTRODUCTION

Bug localization is the process of identifying the location
of a bug. Developers must fix many bugs in large-scale
software projects, and debugging software is difficult and time-
consuming [1]. As this can be a tedious task in large-scale
software development projects, numerous ideas have been
proposed to automate this process using software development
information. For instance, we can identify the locations of
a bug using the description of bug reports, i.e., information
retrieval (IR)-based techniques [2], [3], or execution traces,
i.e., dynamic analysis [4]. Several hybrid techniques that
combine a base technique with additional information have
been proposed to improve bug localization accuracy. For ex-
ample, BugLocator [5] improved an IR-based technique with
similar bug reports that were previously resolved. BLUiR [6]
incorporated structural information in addition to using similar
bug reports. AmaLgam [7] combined the version history,
structural information, and similar bug reports.

Most existing IR-based bug localization (IRBL) techniques
follow file-level recommendations. They output a ranked list of
suspicious files; therefore, their evaluations were performed at

the file level. This granularity may be too coarse for developers
to debug. In particular, IRBL approaches may recommend
large files with more than 500 lines of code. Debugging efforts
can be decreased if it is possible to recommend code fragments
to be fixed at the method level.

However, in the literature, there are only a few IRBL
techniques and their implementations at the method level [8]–
[10]. To the best of our knowledge, no study has performed
a comprehensive comparison and evaluation of method-level
IRBL techniques, and only IR techniques have been com-
pared [11]. In addition, no publicly available evaluation frame-
work enables comparison at the method level, and we have
little knowledge of method-level IRBL approaches.

Therefore, in this study, we propose FinerBench4BL, an
evaluation framework for method-level bug localization tech-
niques. This framework is based on Bench4BL [12], an
existing evaluation framework for file-level bug localization
techniques. We built a method-level bug localization dataset
by applying a repository transformation to the repositories
in the Bench4BL dataset and prepared method-level IRBL
implementations by modifying the file-level ones.

This study also presents a performance study of method-
level IRBL techniques. The results demonstrated that method-
level IRBL techniques do not improve the accuracy but reduce
debugging effort compared with file-level bug localization.
We demonstrated a similar performance across different levels
and revealed the need for improvements in method-level bug
localization.

The main contributions of this study with respect to method-
level bug localization techniques are as follows:

• a transformational approach to obtain method-level IRBL
techniques and datasets,

• construction of an evaluation framework that enables
comparison of IRBL techniques at the method level, and

• confirmation of the superiority and inferiority between
techniques at the method level, which replicates existing
IRBL approaches applied to the different levels.

The remainder of this paper is organized as follows. In the
next section, we briefly introduce IR-based bug localization
and its evaluation framework. Section III discusses the issues
in terms of module granularity, and related work is introduced
in Section IV. The approach proposed in this study that leads
to the solution of these issues is presented in Section V.

1

ar
X

iv
:2

30
2.

14
29

3v
1

 [
cs

.S
E

]
 2

8
Fe

b
20

23

TABLE I
APPLYING BUGLOCATOR TO CODEC-199

Rank Filename Score
1 Soundex.java 0.800
2 DaitchMokotoffSoundex.java 0.618
3 RefinedSoundex.java 0.564
4 SoundexTest.java 0.500
5 RefinedSoundexTest.java 0.388

Section VI presents the experimental setup used in the analysis
and comparison of the results of the file and method levels.
Threats to validity are presented in Section VII. Finally, the
conclusions and future work are presented in Section VIII.

II. PRELIMINARIES

A. IR-Based Bug Localization

Bug localization is the process of finding buggy locations in
source code based on the information about a given bug. This
study explicitly focuses on IR-based bug localization (IRBL),
which uses textual analysis to determine bug locations. IRBL
techniques use a bug report and source code as inputs and
output a ranked list of modules to be fixed. Some IRBL
techniques may use past bug reports, stack traces, or historical
information as additional inputs. The given bug report serves
as a query for searching the given source code. A bug report
includes the bug ID, summary, dates when the bug is opened
or closed, and detailed description. The description of a
bug may include stack traces that are extracted and utilized
using advanced IRBL techniques. Finally, IRBL techniques
compute the similarity score between the bug report and source
code files considering the additional information and output a
ranked list of source files on the score.

As an IRBL example, an excerpt result of applying Bu-
gLocator [5] to bug CODEC-1991 is shown in Table I. The
columns indicate the rank, filename, and similarity score of
the target file for the query bug report. The highlighted row,
Soundex.java, specifies the oracle, i.e., the buggy file for
this bug. The higher the rank of the file, the more likely it is to
contain a bug. Therefore, developers search for bugs starting
with Soundex.java in the table.

B. IRBL Evaluation Framework

Researchers often employ a retrospective approach by ap-
plying IRBL techniques to previously resolved bugs to evalu-
ate their performance. When resolving a bug, the list of fixed
modules is regarded as the oracle list of modules that should
be localized associated with the bug. A set of resolved bug
reports and their associated lists of fixed modules form an
IRBL evaluation dataset. The performance of IRBL techniques
can be evaluated by comparing the oracle list of modules to
the ranked list of modules produced by the techniques.

Bench4BL2 [12] is a large-scale framework proposed by Lee
et al. to evaluate the performance of file-level bug localization

1https://issues.apache.org/jira/browse/CODEC-199
2https://github.com/exatoa/Bench4BL

techniques. Resolved bug reports obtained from the issue
tracking systems for 46 projects and their lists of oracle
source files to be localized were collected and provided as
a dataset for evaluation. In addition to the dataset, they have
attached the implementations of BugLocator [5], BLUiR [6],
BRTracer [4], AmaLgam [7], BLIA [13], and Locus [14].

In Bench4BL, released versions of projects are regarded
as source code snapshots to be searched. Each version was
created by checking out files from a Git repository in the
dataset. An oracle list of files corresponding to a bug report
was generated based on the commit history in a repository.
Once a bug-fixing commit is detected based on the matching
between its commit message and the ID of the bug, the
changed files in the commit are regarded as files to be fixed to
resolve the bug. In addition, AmaLgam and BLIA utilize the
historical information (also obtained from the Git repository)
to improve the bug localization accuracy. In summary, all
information used in applying IRBL techniques follows the
original Git repositories.

III. MOTIVATION

Most existing IR-based bug localization techniques localize
buggy code at the file level. Techniques such as BugLoca-
tor [5], BLUiR [6], AmaLgam [7], and BLIA [13] all recom-
mend suspicious modules at the file level. This section presents
the challenges of file-level bug localization and method-level
bug localization.

A. Challenges of File-Level Bug Localization

When recommending buggy files, IR-based bug localization
techniques may produce very large files that contain methods
unrelated to the bug, making it challenging to identify bug
locations. For example, consider the bug CODEC-2213. For
this bug, the three methods in HmacUtils.java must be
fixed. This file is 729 lines long and includes 40 methods.
Therefore, significant time is required to identify the bug
location in the entire file. It would be more helpful if the
three buggy methods were recommended to be fixed directly.

Table II lists the results of applying BLIA to this bug report
at both file and method levels. This table shows the names of
the modules recommended by BLIA with their ranks at both
the file and method levels. The score represents the points
used to rank each file, and LOC shows the lines of code of the
module. Rows with the correct answers are highlighted. In this
example, the correct answer at file level, HmacUtils.java,
is recommended at the first rank with a score of 0.640.
However, identifying the methods that need to be fixed in this
file, which consists of more than 700 lines, is challenging.
Conversely, all buggy methods are localized up to the fourth
in the list at the method level, and the sum of their LOC is only
82. The use of method-level IRBL reduces the effort required
to read the 729 lines of HmacUtils.java by 11%.

In addition, the ratio of buggy methods to the total number
of methods in a buggy file is generally small. In the context

3https://issues.apache.org/jira/browse/CODEC-221

2

TABLE II
APPLYING BLIA AT FILE AND METHOD LEVELS TO CODEC-221

File level Method level
Rank Module Score LOC Module Score LOC

1 HmacUtils.java 0.640 729 BaseNCodecInputStream#reset() 0.640 15
2 DigestUtils.java 0.251 752 HmacUtils#updateHmac(Mac,InputStream) 0.573 29
3 HmacUtilsTest.java 0.095 237 HmacUtils#updateHmac(Mac,byte[]) 0.565 19
4 BaseNCodecInputStream.java 0.048 184 HmacUtils#updateHmac(Mac,String) 0.565 19

TABLE III
COMPARISON OF IRBL STUDIES

Additional information Method level # techniques # projects Multi-version
Lee et al. (Bench4BL) [12] X 6 46 X
Youm et al. (BLIA1.5) [10] X X 1 3
Amasaki et al. [15] X X 1 43 X
Razzaq et al. (BoostNSift) [8] X X 4 4
Chakkrit et al. [11] X 4 2
Our Approach X X 5 37 X

of bug prediction, Hata et al. investigated the ratio of buggy
methods in a target project to ascertain the effectiveness of
fine-grained bug predictions [16]. The results showed that the
median number of buggy methods was 1–2, whereas that of
all methods was 8–22. Therefore, file-level recommendations
may be inefficient in identifying bug locations.

B. Challenges of Method-Level Bug Localization

Currently, there is a lack of knowledge regarding method-
level IRBL because only a few method-level techniques exist.
To the best of our knowledge, only a few bug localization
techniques, such as BLIA1.5 [10], FineLocator [9], or Boost-
NSift [8], work at the method level. Furthermore, there is
no unified framework for evaluating techniques at the method
level, and the performance differences between the granularity
levels and techniques remain unclear. Therefore, it is necessary
to establish an evaluation framework for various techniques.

IV. RELATED WORK

A. IRBL Approaches

To date, many techniques have been studied that recommend
bug locations based on information retrieval. Some of these
techniques add other information to the similarity between the
source code and bug reports. BugLocator [5] uses similarity
to previous bug reports and file size. BLUiR [6] uses structural
information of source code. BRTracer [4] uses the stack trace
information in bug reports. AmaLgam [7] and Locus [14]
use historical data. BLIA [13] combines all of these to localize
bugs. The aforementioned techniques localize bugs at the file
level and were evaluated with limited data, such as old versions
of JDT or AspectJ. After that, Bench4BL, an evaluation
framework proposed by Lee et al. [12], evaluated these six
techniques for 46 projects at the file level. They suggested that
IRBL techniques should be evaluated more accurately using
multiple-version matching, which searches for a version in
which a bug report is submitted.

Method-level IRBL is considered to aid developers in de-
bugging more, and several method-level IRBL techniques have

been proposed. BLIA1.5 proposed by Youm et al. extends
BLIA for method level bug localization [10]. Amasaki et
al. [15] tailored BLUiR to localize bugs at the method level
by using information outside the method. BoostNSift was
proposed by Razzaq et al. [8] to filter source code based on
bug report text.

Each method-level bug localization technique was evaluated
using different datasets. Youm et al. used AspectJ, SWT, and
ZXing, whereas Amasaki et al. used a part of the Bench4BL
dataset. Razzaq et al. compared BoostNSift with BLUiR,
BugLocator, and BLIA, and used the dataset used by Youm et
al. plus Eclipse. Numerous method-level techniques were not
applied to large projects in these evaluations, and the datasets
were not uniform.

However, only IR techniques without additional information
have been evaluated under a unified framework at the method
level. Chakkrit et al. investigated the effectiveness of four
IR techniques, VSM, LDA, LSI, and Entity Metric, at the
method level [11]. They proposed a metric named top-k LOC,
the percentage of bug reports for which at least one buggy
file is found in the top-ranked files with a cumulative sum
of k lines of code, to investigate the performance of the
techniques. They found that the settings, such as how texts
are pre-processed and which part of the texts in bug reports
are used, significantly impact the performance of method-level
IR techniques. In addition, settings with good performance
produce good results at any granularity. They also stated
that performance evaluation using LOC is necessary because
debugging developers’ efforts to find bugs may differ, even if
they show similar accuracy.

Table III shows the relationship between this study and
previous studies. In this table, the column of the additional
information indicates whether the techniques consider other
information. The column of the method level shows whether
the approach is evaluated at the method level. The column of
the multi-version shows whether the techniques localize bugs
with multiple-version matching.

3

TABLE IV
COMPARISON OF IRBL DATASETS

Name Granularity # projects # bugs
iBUGS [17] File 3 390
MoreBugs [18] File 2 902
BugLinks [19] File 2 5,046
Bench4BL [12] File 46 9,459
Bugzbook [20] File 29 21,253
FDS [21] File 11 4,429
MDS [21] Method 14 360
FinerBench4BL Method 37 3,344

B. IRBL Datasets

Bug localization techniques are evaluated by comparing the
list of modules produced by applying the techniques to bug
reports resolved previously with the oracle list of modules that
have actually been fixed when bugs were resolved. Several sets
of resolved bug reports and oracle lists of fixed modules were
packed and proposed as a bug localization evaluation dataset.
Table IV summarizes bug localization datasets.

iBUGS [17] is a dataset developed by Dallmeier et al.
MoreBugs [18] proposed by Rao et al. is an extended
dataset for projects adopted by iBUGS by additionally attach-
ing version history information. BugLinks [19] is a dataset
proposed by Sisman et al. that contains non-Java projects.
iBUGS, MoreBugs, and BugLinks are relatively small datasets,
comprising only 2–3 projects.

Bench4BL is a large-scale bug localization evaluation
framework proposed by Lee et al. This dataset consisted of 46
Java projects and 9,459 bug reports. In addition, the Bench4BL
framework bundles several IRBL technique implementations
so that users can easily execute the techniques for projects in
the provided dataset. Akbar et al. proposed BugzBook [20],
which is another large-scale bug localization dataset that
contains over 20,000 bug reports from 29 projects developed
in Java, C/C++, and Python.

To the best of our knowledge, most publicly available bug
localization datasets are at the file level. As mentioned above,
several existing studies on method-level bug localization inter-
nally analyzed method-level datasets. However, these datasets
are not publicly available. We believe that the inexistence of
method-level datasets and evaluation frameworks hinders the
promotion of method-level bug localization research. Note that
Chappaoro et al. [21] prepared IRBL datasets at the class,
file (FDS), and method level (MDS) as part of their study on
query reformulation for bug localization. These datasets are
available upon request.

V. APPROACH

To address the aforementioned challenges, we used the
method repositories created by the repository transformation
to construct a method-level IRBL dataset, and we modified the
existing file-level IRBL implementations for the method-level
ones. We constructed an evaluation framework for method-
level IRBL techniques by combining them.

IRBL techniques output a list of source code files in the
order of similarity to bug reports calculated using additional

information, such as the text of previous bug reports and histor-
ical data. They were evaluated by comparing the ranked list of
modules obtained by applying IRBL techniques to resolve bug
reports with the oracle list of modules. Accordingly, a method-
level evaluation framework needs to fulfill the following three
requirements:

• it should be able to output a ranked list of methods,
• it should be able to link bug reports to the fixed methods,

and
• it should be able to obtain historical information about

each method.

Most IRBL techniques assume that the input bug report
and source code are in the form of files and calculate their
similarity. They may consider the size or history of the source
files as additional information to be used to calculate the score.
A straightforward approach to make such implementations
work at the method level is to add a specific process to extract
information exclusively for the method of interest against
existing IRBL implementations, which require substantial en-
gineering work. Conversely, our idea is to prepare method
files whose contents are only of the individual methods of
interest, trick existing IRBL implementations to recognize that
these method files are normal source files, and have them
perform on these method files. This transforms the complexity
of method-level bug localization into the cost of preparing
the method files and minimizes the cost of re-implementing
each IRBL implementation at the method level. Note that such
method files are naturally considered incorrect Java source
code for the project as a whole, but even such fake files can
be analyzed without issues in most cases because IR-based
approaches do not perform deep program analysis but only
superficial text analysis. By preparing the method files using
a repository transformation mechanism and converting every
source file into method files at the stage of the original Git
change history, most of the automated processing provided in
the existing file-level IRBL evaluation framework, such as the
generation of code snapshots from a repository, extraction of
the change history of each file, and identification of oracle
files based on the correspondence between bug reports and
commits, could be completely reused. This could lead to an
ecosystem of IRBL evaluation frameworks with multiple levels
of granularity.

Accordingly, we propose an approach that transforms the
repository itself, which records the change history at the
method level, by applying a repository transformation mech-
anism. Figure 1 shows the repository before and after the
transformation. As shown in the figure, the dataset repository
provided by the existing evaluation framework was converted
to generate source code files split by the method. Conse-
quently, the entire dataset was converted to a method-level
dataset. We then constructed a dataset that can compare IRBL
techniques at the method level employing this method-level
repository as the input. Fewer changes are required to modify
IRBL techniques into method-level techniques. This approach
is described in more detail as follows:

4

Fig. 1. Overview of FinerBench4BL.

package org.apache.commons.digest;
import ……
class HmacUtils {

/**

*/
public byte[] hmac(String value) {

}

public String hmacHex() {

}

}

package

class
method’s
comment

method

package org.apache.commons.digest;

class HmacUtils {

/**

*/
public byte[] hmac(String value) {

}
}

HmacUtils.java

HmacUtils#hmac(String).java

Fig. 2. Example of repository transformation.

A. Creating Method-Level Repositories

We used the Git repositories provided by Bench4BL
and converted them into method-level repositories using
Historinc [22], a repository transformation tool. We con-
verted the target repository to the method level and ob-
tained method files. Figure 2 demonstrates an example
of the splitting part of file HmacUtils.java in the
Apache Commons CODEC. By splitting the original source
file, the method files, HmacUtils#hmac(String).java
and HmacUtils#hmacHex().java, were generated. The
package name, class name, Javadoc comment, and method

body were extracted as the bodies of the method file. There-
fore, in this approach, entities outside the method, such as
fields and imports of the class, were excluded from the method
file. Bugs caused outside of methods were excluded from the
evaluation at the method level.

B. Generating Oracles

Bench4BL framework includes a script that links the re-
solved bug reports to fixed files. This script identifies the fixed
file by linking bugs to commits that resolve them by referring
to the bug ID in the commit message. Therefore, the link of
bug reports can be updated by connecting bug reports to the
method-level repository using the same script. This updated
link can be used for the method file to compare method-level
IRBL techniques in the Bench4BL framework.

C. Modifying IRBL Techniques to Method Level

We modified the existing IRBL techniques to output a
ranked list at the method level. As explained, our approach
splits source files into method files as parsable Java source
code files so that the results of parsing up to the method
internals can be artificially reproduced. Therefore, if it merely
uses the information available from a method file, such as file
size or source code structure, no modifications are required.

5

Furthermore, we could obtain historical information without
modifying implementations because the repository itself is
already fine-grained and consists of method-level contents. We
need to modify an IRBL implementation only when it consid-
ers outside source code, such as the bug report description’s
stack trace, or when it requires valid source files.

For example, consider modifying BugLocator for method-
level bug localization. BugLocator outputs the ranked list
of files by considering the similarity between source code
and a bug report, its file size, and the similarity to past
bug reports. In this case, the original implementation could
be completely reused without any changes because all the
required information was available from the method file.

VI. EVALUATION

In this study, we compare and validate the method-level
techniques modified by our approach and the method-level
evaluation framework and answer the following research ques-
tions (RQs):

• RQ1: How much modification is required to convert IRBL
techniques to the method level?

• RQ2: How well do the method-level IRBL techniques
perform?

Five of the six techniques provided by Bench4BL were used
for evaluation: BugLocator [5], BLUiR [6], BRTracer [4],
AmaLgam [7], and BLIA [13], excluding Locus [14]. We
excluded Locus because it crashed during execution, and we
could not obtain the results. We found that several techniques
provided by Bench4BL had issues that prevented them from
correctly calculating the similarities. Therefore, we utilized
BLIA implementation to imitate BLUiR, AmaLgam, and
BRTracer by changing specific parameters to drop additional
information to avoid the issues in their implementations.

A. RQ1: How much modification is required to convert IRBL
techniques to the method level?

1) Motivation: We investigated the number of modifica-
tions to clarify whether our approach can easily convert the
existing IRBL technique implementations to the method level.

2) Study Design: This study is based on the LOC of
the modifications required to convert the techniques and the
percentage of the total LOC of Java source files for each
technique implementation.

3) Results: Figure V illustrates the results for RQ1. We
needed to modify only BRTracer and BLIA using the proposed
approach. These techniques for calculating similarity add
scores to files included in the stack traces in the bug report. We
modified the process of obtaining the file name from the stack
trace to obtain the method names belonging to the file. For
example, the stack trace of bug COMPRESS-2034 includes
org.apache.commons.compress.archivers.tar
.TarArchiveOutputStream.writePaxHeaders(T
arArchiveOutputStream.java:485). In this case,
the modified method-level techniques were needed to obtain

4https://issues.apache.org/jira/browse/COMPRESS-203

TABLE V
CHANGES REQUIRED TO FIX TECHNIQUES FOR METHOD LEVEL

IRBL technique Whole LOC Modified LOC Ratio (%)
BugLocator 3,180 0 0
BLUiR 10,469 0 0
BRTracer 10,530 4 0.038
AmaLgam 10,469 0 0
BLIA 10,474 4 0.038

TABLE VI
TARGET PROJECTS

Group Project # files # methods # versions # bugs
Commons CODEC 115 1,310 6 27

COLLECTIONS 525 6,997 5 59
COMPRESS 265 2,591 15 105
CONFIGURATION 447 6,073 11 107
CRYPTO 82 488 1 4
CSV 29 452 3 6
IO 227 2,608 12 70
LANG 305 6,336 15 158
MATH 1,617 15,695 15 175
WEAVER 113 473 1 1

Jboss ENTESB 252 3,210 1 4
JBMETA 858 4,834 3 15

Spring AMQP 408 3,996 32 86
ANDROID 305 3,582 2 8
BATCH 1,732 10,071 33 335
BATCHADM 243 1,298 4 16
DATACMNS 604 4,512 30 104
DATAGRAPH 848 5,190 14 43
DATAJPA 330 2,002 32 107
DATAMONGO 622 6,703 40 209
DATAREDIS 551 9,488 15 44
DATAREST 414 2,183 23 89
LDAP 566 3,556 5 46
MOBILE 64 814 3 8
ROO 1,109 7,803 15 568
SEC 1,618 9,295 41 422
SECOAUTH 726 3,912 6 61
SGF 695 5,790 19 83
SHDP 1,102 6,348 8 37
SHL 151 749 2 6
SOCIAL 212 1,344 4 10
SOCIALFB 253 1,786 4 11
SOCIALLI 180 830 1 2
SOCIALTW 153 1,197 5 6
SPR 6,512 57,696 10 89
SWF 808 6,864 19 101
SWS 925 3,505 24 122
Total 25,966 211,581 479 3,344

the method name writePaxHeaders and add the similarity
score of the corresponding method file. It was easy to find the
code location of the feature extracting the source file name
from a stack trace and to modify it to extract the method
file names by string manipulation, leading to only four line
modifications.

Table V shows that the modifications of the two techniques
were minimal (0.038 % each). Conversely, there were no mod-
ifications to techniques that use information directly related to
files, such as file size and historical information.

Our approach could convert five existing bug localization
techniques to method level in eight lines. The amount of
modification was small, and it was easy to identify the

6

TABLE VII
RESULTS OF MAP

File level Method level
Project BugLocator BLUiR BRTracer AmaLgam BLIA BugLocator BLUiR BRTracer AmaLgam BLIA
CODEC 0.631 0.623 0.283 0.629 0.621 0.192 0.352 0.094 0.345 0.381
COLLECTIONS 0.572 0.604 0.283 0.585 0.614 0.366 0.369 0.094 0.377 0.394
COMPRESS 0.631 0.703 0.263 0.678 0.696 0.281 0.318 0.170 0.302 0.349
CONFIGURATION 0.715 0.735 0.250 0.734 0.776 0.210 0.329 0.138 0.313 0.363
CRYPTO 0.314 0.313 0.063 0.322 0.323 0.106 0.060 0.264 0.060 0.058
CSV 0.806 0.833 0.482 0.833 0.833 0.155 0.423 0.154 0.437 0.453
IO 0.742 0.761 0.271 0.764 0.772 0.400 0.506 0.227 0.499 0.495
LANG 0.696 0.710 0.277 0.707 0.738 0.374 0.503 0.167 0.525 0.536
MATH 0.499 0.553 0.145 0.571 0.578 0.263 0.355 0.122 0.355 0.375
WEAVER 0.321 0.079 0.125 0.079 0.167 0.068 0.083 0.015 0.083 0.038
ENTESB 0.119 0.431 0.399 0.429 0.329 0.031 0.167 0.350 0.166 0.214
JBMETA 0.359 0.278 0.150 0.318 0.315 0.146 0.226 0.035 0.226 0.214
AMQP 0.404 0.421 0.086 0.422 0.434 0.155 0.167 0.106 0.165 0.187
ANDROID 0.540 0.562 0.566 0.499 0.556 0.298 0.343 0.237 0.353 0.367
BATCH 0.414 0.436 0.122 0.448 0.448 0.216 0.222 0.138 0.227 0.241
BATCHADM 0.438 0.553 0.276 0.549 0.606 0.256 0.223 0.136 0.248 0.225
DATACMNS 0.300 0.365 0.136 0.369 0.362 0.125 0.204 0.124 0.201 0.214
DATAGRAPH 0.145 0.171 0.107 0.182 0.197 0.145 0.171 0.106 0.182 0.197
DATAJPA 0.355 0.369 0.110 0.380 0.394 0.169 0.173 0.115 0.175 0.183
DATAMONGO 0.296 0.317 0.111 0.316 0.340 0.114 0.144 0.096 0.142 0.165
DATAREDIS 0.382 0.410 0.114 0.406 0.391 0.163 0.160 0.123 0.152 0.190
DATAREST 0.264 0.272 0.119 0.290 0.289 0.100 0.127 0.077 0.128 0.128
LDAP 0.498 0.476 0.223 0.487 0.508 0.227 0.300 0.212 0.309 0.309
MOBILE 0.530 0.427 0.251 0.427 0.427 0.372 0.627 0.376 0.627 0.595
ROO 0.414 0.375 0.127 0.384 0.414 0.200 0.193 0.087 0.200 0.228
SEC 0.505 0.533 0.221 0.545 0.559 0.299 0.334 0.186 0.339 0.362
SECOAUTH 0.434 0.426 0.157 0.429 0.457 0.301 0.275 0.176 0.285 0.318
SGF 0.415 0.380 0.155 0.384 0.404 0.182 0.159 0.123 0.168 0.169
SHDP 0.387 0.361 0.187 0.360 0.379 0.200 0.161 0.166 0.160 0.211
SHL 0.503 0.593 0.217 0.593 0.593 0.227 0.327 0.226 0.327 0.314
SOCIAL 0.692 0.570 0.292 0.600 0.684 0.316 0.499 0.406 0.499 0.501
SOCIALFB 0.666 0.470 0.222 0.495 0.520 0.184 0.300 0.328 0.318 0.318
SOCIALLI 0.327 0.300 0.084 0.300 0.303 0.511 0.514 0.505 0.514 0.515
SOCIALTW 0.693 0.462 0.694 0.462 0.512 0.488 0.320 0.193 0.320 0.282
SPR 0.415 0.277 0.119 0.321 0.339 0.203 0.167 0.141 0.227 0.254
SWF 0.461 0.424 0.253 0.411 0.476 0.212 0.243 0.191 0.229 0.271
SWS 0.270 0.257 0.105 0.264 0.285 0.272 0.256 0.095 0.265 0.283

required changes.

B. RQ2: How well do the method-level IRBL techniques
perform?

1) Motivation: We evaluated modified techniques in a
large-scale unified framework to identify changes in perfor-
mance to gain new insights into method-level bug localization.

2) Study Design: We compared the performance of the
techniques at the same and different levels. We evaluated the
accuracy and effort required to determine the bug locations.
MAP and MRR were used as measures of accuracy, and the
top-k LOC [11] was used as a measure of effort. Top-k LOC is
the percentage of bug reports for which at least one buggy file
is found in the top-ranked files with a cumulative sum of LOC
below k. For example, a top-k LOC of 0.1 for k = 10,000
means that the correct file appears within top 10,000 lines for
10% of bug reports. We used k ∈ {100, 500, 1000, 5000}. We
used a two-sided Wilcoxon signed-rank test to evaluate the
output of the techniques at both levels.

3) Construction of FinerBench4BL Dataset: In this experi-
ment, we used 37 of the 46 projects provided by Bench4BL to

construct the FinerBench4BL dataset owing to the execution
time. We filtered out bug reports that 1) any of the five IRBL
techniques at either level failed to produce any solution. A
typical example case to be filtered out is that the code location
to be fixed when resolving the bug was outside of methods,
and the list of solution modules at the method level became
empty. The target projects, number of modules, versions, and
bug reports to be used from Bench4BL and to be generated
as FinerBench4BL are shown in Table VI. 25,966 original
source files and 211,581 method files from all 479 versions
were searched for 3,344 bug reports.

4) Results of Accuracy Evaluation: Table VII presents the
MAP results for each project. Box plots of the MAP and MRR
of the projects comparing the file and method levels are shown
in Figs. 3(a) and 3(b). We describe only the MAP results
because the MRR results showed a similar tendency to the
MAP results. The technique with the highest accuracy for the
same project is highlighted as bold in the results in Table VII.

First, we investigated the accuracy at each level. BLIA
showed the highest accuracy, with the highest values in 20
of the 37 projects at the file level and 26 at the method level.

Furthermore, the same techniques showed the highest MAP

7

0.0 0.2 0.4 0.6 0.8 1.0

BLIA

AmaLgam

BRTracer

BLUiR

BugLocator

File
Method

(a) MAP.

0.0 0.2 0.4 0.6 0.8 1.0

BLIA

AmaLgam

BRTracer

BLUiR

BugLocator

File
Method

(b) MRR.

0.0 0.2 0.4 0.6 0.8 1.0

BLIA

AmaLgam

BRTracer

BLUiR

BugLocator

File
Method

(c) Top-1,000 LOC.

Fig. 3. Evaluation of IRBL techniques at each level.

at both levels for 18 projects (48.6% of the total). This
means that, for each project, the technique that showed the
highest accuracy at the file level is likely to recommend buggy
methods precisely at the method level. This result suggests
that the selection of effective techniques for file-level bug
localization may also be helpful at the method level.

Second, we investigated how the accuracy of each technique
changed as it was modified for the method level. There were
significant differences in the median MAP between the tech-
niques. MAP at the file level was 1.33 times higher than that
at the method level for BRTracer as the minimum and 2.07
times higher for BugLocator as the maximum. Furthermore,
at both levels, the median MAP value indicated by BLIA was
the largest, followed by AmaLgam, BLUiR, BugLocator, and
BRTracer. Therefore, the accuracy increased with the amount
of additional information handled, except for BRTracer. The
high accuracy of BLIA, which uses most of the information,
indicates that it can maintain accuracy by supplementing the
missing information at method-level bug localization from
various perspectives. In contrast, BLUiR, which uses only
structural information as additional information, showed an
accuracy comparable to that of AmaLgam and BLIA, which
also consider other information. This suggests that structural
information is adequate for method-level bug localization.

In some bugs, significant changes in accuracy occur with
different bug localization granularities. Two examples of Bu-
gLocator outputs are presented below.

The first case is of decreased accuracy. In COLLECTIONS-
2205, the writeObject() in UnboundedFifoBuff
er.java was the cause of the bug. Although the target
file was ranked first at the file level, writeObject()
was recommended in 789th place at the method level. The
words “increment”, “tail”, and “head” in this bug report
were not included in any writeObject(), which was
a deficient information method for the seven lines. How-
ever, add(), remove(), and other methods included in
UnboundedFifoBuffer.java, contained several relevant
words. This suggests that information from irrelevant methods
contributes to the high accuracy in file-level bug localization.

The second case is of improved accuracy. In
CONFIGURATION-5586, getList() in MultiFil
eHierarchicalConfiguration.java was the buggy
method. The method-level bug localization improved the rank
from 22nd to seventh at the file level. Although there were
few bug report descriptions, they included the parameters and
method names directly related to the target method. These
entities might have contributed to the improvement in the
accuracy at the method level. This is supported by the results
of Wang et al. [23] and Rahman et al. [24], who showed that
bug reports containing program entities are suitable for IRBL.

These examples with significant variations in accuracy at
both levels suggest that, at the file level, information on
methods irrelevant to the bug location is used for information

5https://issues.apache.org/jira/browse/COLLECTIONS-220
6https://issues.apache.org/jira/browse/CONFIGURATION-558

8

TABLE VIII
MEDIAN OF TOP-1,000 LOC VALUES

File level Method level p-value Cliff’s d
BugLocator 0.865 0.875 0.644 0.063 (negligible)
BLUiR 0.850 0.933 0.026 0.297 (small)
BRTracer 0.708 0.865 0.024 0.301 (small)
AmaLgam 0.855 0.933 0.022 0.305 (small)
BLIA 0.875 0.944 0.027 0.295 (small)

retrieval. This suggests the output ranked list based on unre-
lated methods may not help developers find such bug locations.
Conversely, the textual information of the method body may
be insufficient for information retrieval at the method level,
which is considered to have reasonable granularity. Therefore,
for method-level IRBL, it is useful to implement a hybrid ap-
proach for bug localization that uses not only the information
on the target method body but also the information outside of
its own method, as proposed by Amasaki et al. [15].

BLIA showed the highest accuracy at both levels. In 48.6%
of the projects, the best-performed techniques were the
same at both levels. Therefore, an accurate technique at the
file level performs well at the method level. Furthermore, we
found that the additional information effectively contributed
to the recommendation of the buggy methods despite a 2.07-
fold difference in accuracy.

5) Results of Effort Evaluation: Figure 3(c) shows the
results of the top-1,000 LOC, which is a measure of effort to
find bug locations from the ranked list. Table VIII also presents
the top-1,000 LOC median, p-value of the two-sided Wilcoxon
signed-rank test, and Cliff’s d with an interpretation [25] for
each project. Owing to space limitations, we omit the results
using k ∈ {100, 500, 5000} because they produce similar
tendencies to the case of k = 1000.

For all techniques, top-1,000 LOC performance was im-
proved at the method level. Among the four techniques, except
for BugLocator, there were significant differences in the top-
1,000 LOC between the two levels.

Compared to the top-1,000 LOC performance at the file
level, BugLocator showed the smallest increase at 2.2%, and
BRTracer showed the largest increase at 22.2%. At the method
level, the best performing BLIA identified correct files within
the top-1,000 lines of code of the ranked list for 94.4 % of
the bug reports.

The top-1,000 LOC performance of the file level was lower
than that of the method level owing to the large size of each
file’s lines of code, despite better accuracy. This suggests
that the number of lines developers need to read could be
reduced by current method-level IRBL approaches, even if
their accuracy is not high.

In terms of the performance order, BLIA showed the highest
top-1,000 LOC, and BRTracer showed the lowest, at both
levels. The order of the method level performance of the
top-1,000 LOC for each technique is the same from the file
level, as with the results of the accuracy evaluation, except for

BugLocator, which did not show significant differences. This
indicates that a technique with a good effort performance at the
file level also performed well at the method level. Furthermore,
as in the above discussion of accuracy, BLUiR, which only
uses structural information, performed top-1,000 LOC as well
as the other techniques at both levels. Therefore, the consid-
eration of structural information leads to an improvement in
the top-1,000 LOC performance.

Except for one technique, the method-level techniques sig-
nificantly improved the top-1,000 LOC. BLIA, which best
performed, found fixed method files in more than 94%
of bug reports within the top 1,000 lines of code of the
rank list. Techniques that perform well at the file level
often also perform well at the method level. Structural
information may improve the performance in method-level
bug localization, where information is scarce.

VII. THREATS TO VALIDITY

In this study, we assumed that bug reports were correctly
linked with fixed files. We used scripts provided by Bench4BL,
linked bug reports, and fixed files. However, we did not check
the validation of the correctness of the linking; therefore, there
may be bug reports that cannot be identified in the commit log
and those linked with non-buggy files.

Although the top-k LOC was adopted as an indicator for
evaluating the effort, its validity to the actual effort required
to identify bug locations was not apparent. In addition, we
used the total number of LOC from the top of the ranked
list above the correct solution file as an indicator of effort.
However, if the solution is ranked at the top, then the total
number is zero. This result may differ from the actual effort.
Moreover, this indicator also affects the evaluation in terms of
effort as developers do not necessarily read all lines of files.

VIII. CONCLUSION

In this study, we propose an approach to convert IRBL
techniques to the method level using repository transformation.
We evaluated them at both method and repository levels using
a framework combining converted techniques with datasets
constructed at the method level. This approach can convert
the existing IRBL techniques to method-level techniques with
minor modifications.

The evaluation results showed that the converted method-
level techniques decreased the accuracy but reduced the de-
bugging effort. However, as Amasaki et al. [15] stated, there
is potential for further performance improvement using file-
level information to compensate for the lack of details in
method-level bug localization. In future research on method-
level IRBL techniques, obtaining performance improvements
will be easier using our framework to adjust the parameters
and select additional information.

The future research directions of this study are as follows:
• Increasing the number of evaluated techniques and

datasets. We believe the evaluation framework can be

9

extended to existing method-level techniques and other
datasets to gain more knowledge.

• Tuning the parameters of method-level techniques. The
method-level techniques in this paper are run with pa-
rameters tuned for the file level. Further performance
improvements could be achieved by identifying optimal
settings for method-level bug localization.

• Comparing both levels of techniques under more uniform
conditions. When it is necessary to find all methods
in a fixed file, the number of solutions that method-
level techniques need to recommend is higher than at
the file level, contributing to a significant reduction in
accuracy. Bug reports with many solution methods should
be excluded and compared under appropriate conditions.

• Considering code elements outside of methods. Incor-
porating information in Java source files, such as fields
and imports, may provide different insights, which were
excluded in this study.

The FinerBench4BL experimental results of this study are
publicly available [26].

ACKNOWLEDGMENTS

This study was partially supported by JSPS KAKENHI
(JP21H04877, JP21K18302, JP21KK0179, 21K11833, and
JP22H03567).

REFERENCES

[1] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, 2006.

[2] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization
using latent dirichlet allocation,” Information and Software Technology,
vol. 52, no. 9, pp. 972–990, 2010.

[3] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and T. N.
Nguyen, “A topic-based approach for narrowing the search space of
buggy files from a bug report,” in Proceedings of the 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE’11),
2011, pp. 263–272.

[4] C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei,
“Boosting bug-report-oriented fault localization with segmentation and
stack-trace analysis,” in Proceedings of the 30th IEEE International
Conference on Software Maintenance and Evolution (ICSME’14), 2014,
pp. 181–190.

[5] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on
bug reports,” in Proceedings of the 34th International Conference on
Software Engineering (ICSE’12), 2012, pp. 14–24.

[6] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving bug
localization using structured information retrieval,” in Proceedings of
the 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE’13), 2013, pp. 345–355.

[7] S. Wang and D. Lo, “Version history, similar report, and structure:
Putting them together for improved bug localization,” in Proceedings
of the 22nd International Conference on Program Comprehension
(ICPC’14), 2014, pp. 53–63.

[8] A. Razzaq, J. Buckley, J. V. Patten, M. Chochlov, and A. R. Sai, “Boost-
NSift: A query boosting and code sifting technique for method level bug
localization,” in Proceedings of the 21st IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM’21),
2021, pp. 81–91.

[9] W. Zhang, Z. Li, Q. Wang, and J. Li, “FineLocator: A novel approach
to method-level fine-grained bug localization by query expansion,”
Information and Software Technology, vol. 110, pp. 121–135, 2019.

[10] K. C. Youm, J. Ahn, and E. Lee, “Improved bug localization based
on code change histories and bug reports,” Information and Software
Technology, vol. 82, pp. 177–192, 2017.

[11] C. Tantithamthavorn, S. Lemma Abebe, A. E. Hassan, A. Ihara, and
K. Matsumoto, “The impact of IR-based classifier configuration on the
performance and the effort of method-level bug localization,” Informa-
tion and Software Technology, vol. 102, pp. 160–174, 2018.

[12] J. Lee, D. Kim, T. F. Bissyandé, W. Jung, and Y. Le Traon, “Bench4BL:
Reproducibility study on the performance of IR-based bug localization,”
in Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA’18), 2018, pp. 61–72.

[13] K. C. Youm, J. Ahn, J. Kim, and E. Lee, “Bug localization based on
code change histories and bug reports,” in Proceedings of the 22nd Asia-
Pacific Software Engineering Conference (APSEC’15), 2015, pp. 190–
197.

[14] M. Wen, R. Wu, and S.-C. Cheung, “Locus: Locating bugs from
software changes,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE’16), 2016, pp.
262–273.

[15] S. Amasaki, H. Aman, and T. Yokogawa, “On the effects of file-level
information on method-level bug localization,” in Preceedings of the
46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA’20), 2020, pp. 314–321.

[16] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based on fine-
grained module histories,” in Proceedings of the 34th International
Conference on Software Engineering (ICSE’12), 2012, pp. 200–210.

[17] V. Dallmeier and T. Zimmermann, “Extraction of bug localization
benchmarks from history,” in Proceedings of the 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE’07),
2007, pp. 433–436.

[18] S. Rao and A. Kak, “moreBugs: A new dataset for benchmarking
algorithms for information retrieval from software repositories,” Purdue
University, School of Electrical and Computer Engineering, Tech. Rep.
TR-ECE-13-07, 2013. [Online]. Available: https://engineering.purdue.
edu/RVL/Database/moreBugs/TechReport.pdf

[19] B. Sisman and A. C. Kak, “Assisting code search with automatic query
reformulation for bug localization,” in Proceedings of the 10th Working
Conference on Mining Software Repositories (MSR’13), 2013, pp. 309–
318.

[20] S. A. Akbar and A. C. Kak, “A large-scale comparative evaluation
of IR-based tools for bug localization,” in Proceedings of the 17th
International Conference on Mining Software Repositories (MSR’20),
2020, pp. 21–31.

[21] O. Chaparro, J. M. Florez, and A. Marcus, “Using bug descriptions
to reformulate queries during text-retrieval-based bug localization,”
Empirical Software Engineering, vol. 24, no. 5, pp. 2947–3007, 2019.

[22] S. Shiba and S. Hayashi, “Historinc: A repository transformation tool
for fine-grained history tracking,” Computer Software, vol. 39, no. 4, pp.
75–85, 2022.

[23] Q. Wang, C. Parnin, and A. Orso, “Evaluating the usefulness of IR-based
fault localization techniques,” in Proceedings of the 24th International
Symposium on Software Testing and Analysis (ISSTA’15), 2015, pp. 1–
11.

[24] M. M. Rahman and C. K. Roy, “Improving IR-based bug localiza-
tion with context-aware query reformulation,” in Proceedings of the
26th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
(ESEC/FSE’18), 2018, pp. 621–632.

[25] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate
statistics for ordinal level data: Should we really be using t-test and
Cohen’s d for evaluating group differences on the NSSE and other
surveys?” in Proceedings of the 2006 Annual Meeting of the Florida
Association of Institutional Research (FAIR’06), 2006, pp. 1–33.

[26] S. Tsumita, S. Hayashi, and S. Amasaki, “Appendix of large-scale
evaluation of method-level bug localization with FinerBench4BL,”
Zenodo, 2023. [Online]. Available: https://doi.org/10.5281/zenodo.
7546043

10

https://engineering.purdue.edu/RVL/Database/moreBugs/TechReport.pdf
https://engineering.purdue.edu/RVL/Database/moreBugs/TechReport.pdf
https://doi.org/10.5281/zenodo.7546043
https://doi.org/10.5281/zenodo.7546043

	I Introduction
	II Preliminaries
	II-A IR-Based Bug Localization
	II-B IRBL Evaluation Framework

	III Motivation
	III-A Challenges of File-Level Bug Localization
	III-B Challenges of Method-Level Bug Localization

	IV Related Work
	IV-A IRBL Approaches
	IV-B IRBL Datasets

	V Approach
	V-A Creating Method-Level Repositories
	V-B Generating Oracles
	V-C Modifying IRBL Techniques to Method Level

	VI Evaluation
	VI-A RQ1: How much modification is required to convert IRBL techniques to the method level?
	VI-A1 Motivation
	VI-A2 Study Design
	VI-A3 Results

	VI-B RQ2: How well do the method-level IRBL techniques perform?
	VI-B1 Motivation
	VI-B2 Study Design
	VI-B3 Construction of FinerBench4BL Dataset
	VI-B4 Results of Accuracy Evaluation
	VI-B5 Results of Effort Evaluation

	VII Threats to Validity
	VIII Conclusion
	References

