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ABSTRACT

In this paper, we mainly address the problem of Joint Eigen-
Value Decomposition (JEVD) subject to nonnegative con-
straints on the eigenvalues of the matrices to be diagonal-
ized. An efficient method based on the Alternating Direc-
tion Method of Multipliers (ADMM) is designed. ADMM
provides an elegant approach for handling nonnegativity
constraints, while taking advantage of the structure of the
objective function. Numerical tests on simulated matrices
show the interest of the proposed method for low Signal-to-
Noise Ratio (SNR) values when the similarity transformation
matrix is ill-conditioned. The ADMM was recently used for
the Canonical Polyadic Decomposition (CPD) of nonneg-
ative tensors leading to the ADMoM algorithm. We show
through computer results that DIAG,, a semi-algebraic CPD
method using our ADMM-based JEVD_ algorithm, will give
a better estimation of factors than ADMoM in the presence
of swamps. DIAG also appears to be less time-consuming
than ADMoM when low-rank tensors of high dimensions are
considered.

1. INTRODUCTION

The Canonical Polyadic Decomposition (CPD) of multi-way
arrays plays an important role in various application areas
such as medical diagnosis [1]. A large number of CPD meth-
ods were proposed [2—6]. Among them, semi-algebraic (or di-
rect) methods showed a very good performance (e.g. fast con-
vergence speed, robustness with respect to initialization and
overfactoring) [7]. Semi-algebraic techniques aim at refor-
mulating the CPD as a matrix factorization problem of lower
dimension. For instance, the CFS (Closed Form Solution) [8]
and DIAG (DIrect AlGorithm) [7] algorithms formulate the
CPD as a JEVD (Joint EVD) problem while the SSD-CP (CP
decomposition based on Simultaneous Schur Decomposition)
method formulates it as a problem of joint upper triangular-
ization by an orthogonal similarity [9].

In some applications such as fluorescence spectroscopy
[7], the multi-way array to be decomposed and its loading

matrices are nonnegative. Hence the need for efficient non-
negative CPD methods. Note that the use of nonnegativity
was shown to ensure the existence of optimal solutions to
the CPD approximation problem [10]. Then we may wonder
whether the semi-algebraic CPD methods can be modified in
order to take into account the nonnegativity of the data. If
tensors are nonnegative, then it appears that the correspond-
ing matrices to be jointly diagonalized or triangularized have
nonnegative eigenvalues. In other words, modifying the CFS
and DIAG techniques in order to take into account nonnega-
tivity requires to solve the following JEVD_ problem:

Problem 1. Given K semi-definite positive matrices M ) in
REXE, factorize them as M® = AD® A1 subject to:

vk e {1,...,K}, D¥) e D+

[RR><R

where DV is the subset of diagonal matrices of such

that Diag(D*) = [0, +oo[~.

In order to solve problem 1, we proposed an approach
based on the Alternating Direction Method of Multipliers
(ADMM) [11]. ADMM provides an elegant approach for
handling nonnegativity constraints, while taking advantage
of the structure of the objective function. Numerical tests on
simulated matrices show the interest of the proposed method
for low Signal-to-Noise Ratio (SNR) values when the simi-
larity transformation matrix is ill-conditioned. The ADMM
was recently used for the Canonical Polyadic Decomposition
(CPD) of nonnegative tensors leading to the ADMoM algo-
rithm [12]. We show through computer results that DIAG,, a
semi-algebraic CPD method using our ADMM-based JEVD ;.
algorithm, will give a better estimation of factors than AD-
MoM in the presence of swamps. DIAG,. also appears to be
less time-consuming than ADMoM when low-rank tensors of
high dimensions are considered.

2. ALGORITHMS

The purpose of this section is first to show the interest in solv-
ing the JEVD, problem for the CPD of nonnegative tensors.



Secondly, an efficient ADMM-based JEVD_. solution is pro-
posed.

2.1. The CPD of nonnegative tensors

The Nonnegative CPD (NCPD) of a three-way array 7 €
[0, +-00[V1XN2XNs ig given by:

R
T=> fMofPos? 1)

r=1

where R = rank(7") denotes the rank of 7 and where:

FO = [V ) @
FO = [f® P 3)
FO — [f¥ )

are the so-called nonnegative loading matrices of 7T
The first unfolding matrix TW of size (N7 x N3N3) can
be expressed as:

7O — p(M) (F(3) @F(Q))T 5)

with:

FOOF® = [fPer? .  rPerd] ©

T

[(I)(l)F(?)T, . ,@<N3>F(2>T] %)

according to [7] where &™) is a (Rx R) diagonal matrix built
from the n-th row of matrix F®), The Singular Value Decom-
position (SVD) truncated at order R of T’ M js given by:

TO = VW’ )

Then there is a non-singular matrix A of size (R x R) such
that:

F A ©)
T
A (F<3) ® F<2>) (10)

Vy =
WT

As shown in [7], W has the following matrix block structure:
W= [r<1>,...,r<N3>T (11

where the N3 matrices T'™ of size (R x N) are given by:
™ = ApMm p@’ (12)

Then we can define N® (N®) — 1) matrices M™"2) ag
follows:

M (nmz) T2t
A@(m)F(?)T(F(2)T)ﬂ(@(n2))71A—1
M(nhnz) AD(nlmz)A—l (13)

where for each couple (n1,n2), the (R x R) matrix D(mm2)
given by:
D(n1,n2) _ (I)(nl)(q)(nz))fl (14)

is diagonal. Consequently, the DIAG algorithm [7] consists
in reformulating the CPD problem (1) as the JEVD problem
given by (13), which appears to be an optimization problem
of smaller size. Once matrix A is computed, the matrices
F® and F® © F® can be derived from the SVD of TV
using equations (9) and (10). As explained in [7], the column
vectors of F®) and F® can be derived from the columns of
F® & F® using the HOSVD [13].

By considering nonnegative loading matrices, it clearly
appears from (14) that the N®) (N ®) — 1) matrices M ("1:"2)
to be jointly diagonalized have nonnegative eigenvalues. Un-
fortunately, the JEVD methods [7, 14-16], such as the ef-
ficient Jacobi-like JDTM (Joint Diagonalization algorithm
based on Targeting hyperbolic Matrices) technique based on
the polar matrix factorization, did not take into account such a
property. Consequently, let’s see in the following subsection
how to overcome this drawback by proposing a nonnegative
JEVD method.

2.2. An ADMM-based JEVD_, method

The JEVD_ problem (see problem 1 defined in introduction)
can be reformulated as the following minimization problem:

minimize ¥(A, B, C) c=C (15

» 82y

subject to

with:

\II(AvaC):||X(1)_A(C®B)TH% (16)
+2||ABT — Ig||% + 1+ (C)
where XV = [MW ... M%) is the first unfolding ma-
trix of a third order tensor X for which A, B and C are the
three loading matrices, where the k-th row of C' is the di-
agonal vector of D™ and where B = A" with M®*) =
AD®™ A~ the k-th matrix to be jointly diagonalized (see
problem 1). ¢¢+ is the indicator function of set of (K x R)
matrices with nonnegative components. The indicator of a set
S of a Hilbert space H is defined as (Ve € H) ts(x) = 0 if
x € S, and +oo otherwise.

The augmented Lagrangian function associated with (15)
is given by

LP(Aa Bv Ca éa A) = \I/(Aa B7 C)
HAD(C-OE+EIc-CI an
where the (K x R) matrix A is the matrix Lagrangian mul-
tiplier, where [] is Hadamard product operator and where the

variable p €]0,4o0[ is a penalty parameter for the linear
equality constraints.



An ADMM-like algorithm for solving (15) is obtained by
successively i) minimizing the augmented Lagrangian func-
tion (17) with respect to A, B, C and C‘, one variable at a
time while setting the others to their most recent values, and
ii) updating the multiplier A using an ascent gradient rule. By
using (16) and (17), it turns out that the alternating minimiza-
tions of (17) have the following closed form solutions:

A = (X (CoB)+aB)
(C®B) (Co®B)+aB'B)"

B = (X®(CoA)+aA)
(COA)T(CoA)+adTA)"
C = (X®(BoA)+pC-A)
(Bo®A) (Bo A)+ply) "
C = Pe:(C+ %A)

where X and X® are the second and the third unfolding
matrix of X, respectively, and where Ps denote the projec-
tion onto a convex set S. The gradient of the augmented La-
grangian function L, with respect to the multiplier A is given
by p(C — C). Regarding the penalty parameter p, it is com-
puted as explained in [12]:

Wi ifl|[Pal|p > pl|Dal|
pitt1 = pir/T? if]|Dit||F > pl|Pil|F (18)
Pit otherwise.

where P;; = C;; — C;; and Dy = p(Cit — Citfl) with
w>1, 7MW > 1and 7@ > 1. As fas as a is concerned, we
initialize it to 1 and we divide it by 2 every 10 iterations.

3. NUMERICAL RESULTS

Now, we investigate the behavior of the proposed JEVD,
method and its use in the DIAG algorithm leading to the
DIAG; technique.

To build simulated data sets, we firstly randomly gener-
ated L = 100 diagonal matrices D™ and a non-singular
matrix A of size (R x R) with R = 3 by using a uniform
distribution over [0, 1] and a standard normal distribution, re-
spectively. Then we built L sets of K matrices M ) to be
jointly diagonalized such that:

AD® A1 N

vk, MW = +o
|IAD® A7 | |INW||p

where N®) models a Gaussian random noise and o allows
us to adjust the noise power to the desired SNR. We vary the
SNR value from 0 to 70 dB. The condition number of A was
adjusted by means of the following 8 parameter:

Vr>1,  a,=pa+(1-Bupy (20)

Fig. 1. Median value of the m¢ criterion at the output of the JIDTM
and JEVD_ methods as a function of SNR.

where a, denotes the r-th column vector of A and where
u[p,1] is a R-dimensional vector generated using a uniform
distribution over [0, 1]. The 5 parameter was fixed to 0.65.

Secondly, we randomly generated L = 100 loading ma-
trices FV, F® and F® of size (N x R), (N x R) and
(N () x R), respectively, by using a uniform distribution over
[0,1] with R = 2 and N = N = N®) = 100. The con-
dition number was also adjusted using the strategy described
by (20). Two 3 values were considered: 5 = 0 and 5 = 0.45.
Then we built L sets of third order tensors 7 to be canoni-
cally decomposed such that their first loading matrix TW is
defined by :

7 _ F(l)(F(3) ® F(2))T Q(k)

FOE o F) TPy, Y
where Q(k) models a Gaussian random noise and o allows us
to adjust the noise power to the desired SNR. The SNR value
was fixed to 100 dB.

Regarding the first performance criterion, we used an er-
ror between the calculated and actual matrices. More partic-
ularly, we computed the normalized Frobenius norm mg of
the difference between the actual matrix G and its estimate G.
Note that the indetermination up to scale and permutation was
corrected before the computation of mq. The second perfor-
mance criterion was the CPU time. It is noteworthy that all
experiments were run with Matlab R2014a on Intel® Xeon®
4-Core 2.8GHz, equipped with 32GB RAM.

Figures 1 and 2 display the median of the m¢ and m 4
criteria, respectively, at the output of the JDTM and JEVD
methods as a function of the SNR when the similarity trans-
formation matrix is ill-conditioned. Thus figures 1 and 2
clearly show that both the eigenvalues and the eigenvectors
are better estimated for low SNR values by taking into ac-
count the nonnegativity of the eigenvalues during the opti-
mization procedure. More particularly, our ADMM-based
JEVD. method gives better results than JDTM for SNR val-
ues below 40 dB.



Fig. 2. Median value of the m 4 criterion at the output of the JDTM
and JEVD_ methods as a function of SNR.

Table 1 compares the DIAG; method based on our
ADMM-based JEVD, technique with ADMoM [12] in terms
of performance for low-rank tensors of high dimensions. Note
that the same stopping criteria were used for both ADMM
procedures, say a threshold of 10~ and a maximum num-
ber of iterations of 1000. When the three loading matrices
are well-conditioned, both methods give a similar estimation
accuracy while DIAG, is ten times faster than ADMoM.
When the three loading matrices are ill-conditioned, not only
DIAG; is still faster than ADMoM, but it estimates the
loading matrices with a better accuracy. In fact, the DIAG
procedure allows us to algebraically reformulate the original
CPD problem as an optimization problem of smaller size,
hence the gain of time. But it also allows us to reformulate
the original CPD problem as a well-conditioned problem,
hence the better robustness with respect to ill-conditioned
loading matrices.

methods | factor collinearity | Error | CPU time
index (/3) (1073) (s)
ADMoM 0 0.0003 3.72
DIAG, 0 0.0004 0.29
ADMoM 0.45 0.181 13
DIAG, 0.45 0.0017 0.85

Table 1. Performance of ADMoM versus DIAG, .
4. CONCLUSION

In this paper, we showed how the ADMM algorithm could
be used to compute the solution of the JEVD, problem and
to handle the nonnegativity constraint of the eigenvalues of
semi-definite positive matrices. Numerical tests have shown
the good behavior of the proposed ADMM-based JEVD_,. ap-
proach for low SNR values when the similarity transforma-
tion matrix is ill-conditioned. The ADMM was recently used
for the CPD of nonnegative tensors leading to the ADMoM
algorithm [12]. We showed through computer results that

DIAG;, a semi-algebraic CPD method using our ADMM-
based JEVD, algorithm, gave a better estimation of factors
than ADMoM in the presence of swamps. DIAG, also ap-
peared to be less time-consuming than ADMoM when low-
rank tensors of high dimensions were considered.
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