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ABSTRACT

A semi closed-form expression of the Fisher information

matrix in the context of K-distributed observations with

parameterized mean is given and related to the classical,

i.e. Gaussian case. This connection is done via a simple

multiplicative factor, which only depends on the intrinsic pa-

rameters of the texture and the size of the observation vector.

Finally, numerical simulation is provided to corroborate the

theoretical analysis.

I. INTRODUCTION

The Cramér-Rao lower bound (CRLB) is well known

to be a popular tool in order to study performance, in

terms of variance, of unbiased estimators. This comes from

the fact that, for several observation models, it can be

achieved asymptotically when the number of observation

is large [1] or when the signal-to-noise ratio (SNR) is

high [2]. Moreover, in the specific but widely, used case

of Gaussian observations with parameterized mean and/or

covariance matrix, it can be computed very easily from

the so-called Slepian-Bang formula [3]. However, when the

observations are non-Gaussian, the Slepian-Bang formula

does not apply and the derivations of the CRLB has to be

analyzed specifically.

Among non-Gaussian probability density functions, the

spherically invariant random vectors (SIRV) are known to fit

with noise/clutter met in real applications [4]. Various SIRV

have been studied in the past with several applications, e.g.,

radar detection [5]. In this communication, we are interested

to a particular SIRV named K-distribution. A complex K-

distribution can be seen as the product of a complex circular

Gaussian random vector, with zero mean and covariance

matrix M, and the square root of a gamma distributed

random variable independent of this vector. The applications

of such random vectors are large especially in radar signal

processing [6].

Of course, the Slepian-Bang formula does not apply when

the observation vector is K-distributed. Several authors have

consequently studied the CRLB for such problems. One can

cite [7]–[10] where the parameter of interest is the covariance
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matrix M. In the context of K-distributed observations with

parameterized mean, the hybrid CRLB has been studied in

[8] in the context of spectral analysis by way of Monte-Carlo

simulation. In [11], [12], the true CRLB has been derived

w.r.t. the signal amplitudes in the context of array processing.

In this paper, we propose a general formula of the true

CRLB whatever the kind of parameterization. Finally, with

the aid of numerical tools, we provide a detailed discussion

on several enlightening properties of the CRLB revealed by

our expression, with an emphasis on the relationship with

the classical Gaussian case.

We advice the reader to consult reference [13], in which

the authors proposed a general compact semi-closed form

expression for the CRLB under the so-called multivariate

elliptically contoured distributed observations. Such distri-

bution is of great interest since it includes a wide kind of

distributions among them the K-distribution. Unfortunately,

for K-distributed observations, the proposed expression in

[13] has not been studied. Consequently, in this communi-

cation, we propose another way to derive the CRLB for only

the specific case of the K-distributed observations scenario.

II. OBSERVATION MODEL

In the sequel, we consider the following general observa-

tion model with parameterized mean

x(t) = m(θ, t) + n(t), t = 1, . . . , L, (1)

where t denotes the t-th observation, the observation vector

x(t) ∈ C
N is statistically independent from observation to

observation, the additive noise vector n(t) is modelled as

a complex multivariate K-distributed process. m(θ, t) is a

given deterministic known function (possibly nonlinear) and

assumed twice derivable w.r.t. θ ∈ R which is the parameter

of interest.

From the spherically invariant random vector definition

[14], one can decompose the multivariate K-distributed pro-

cess as the product of two components: τ(t) which is the

so-called texture term, and c(t) which is the speckle term,

one has:

n(t) =
√

τ(t)c(t), (2)

in which τ(t) is a gamma distributed process with parameters

α and 4
β2 , i.e., τ(t) ∼ G(α, 4

β2 ), whereas, c(t) denotes a

complex circular zero-mean Gaussian distributed process

with covariance matrix M, i.e., c(t) ∼ CN (0,M).



We can note that the parameter α affects the spikiness

of the additive noise. More precisely, for small α, the

noise n(t) becomes heavier, whereas, for high α, the

noise tends to be Gaussian. Let us define z (θ, t) =
(x(t)−m (θ, t))

H
M

−1 (x(t)−m (θ, t)) .Consequently,

the probability function of the observation vector is given

by

f (x(t); θ,M) =
βα+Nz (θ, t)

α−N
2

2α+N−1πN |M|Γ (α)
KN−α

(

β
√

z (θ, t)
)

(3)

in which Kµ(.) and Γ(.) denote, respectively, the modified

Bessel function of the second kind of order µ and the gamma

function [15].

III. CRAMÉR-RAO BOUND DERIVATION

Let E

{

(

θ̂ − θ
)2

}

be the variance of an unbiased esti-

mator of θ, denoted by θ̂. The Cramér-Rao inequality states

that E

{

(

θ̂ − θ
)2

}

≥ CRLB(θ) =
[

FIM(ξ)−1
]

1,1
where

ξ = [θ,S(M)T ]T in which the operator S(M) stacks the

real part of the upper triangular portion and stacks the

imaginary part of the upper triangular portion excluding

the diagonal of the matrix M. It has been proved in [13]

that FIM(ξ) = diag {FI(θ),FI(S(M))}. Consequently,

CRLB(θ) = 1
FI(θ)

where, for independent observations,

the latter simplifies to FI(θ) = −
∑L

t=1 E

{

d2 ln f(x(t);θ)
dθ2

}

in

which for sake of notation simplicity, the observation prob-

ability density function is denoted by f (x(t); θ). Note that

FI(S(M)) in the context of K-distributed clutter can be

found in [9] but that CRLB(θ) has not been studied before.

III-A. Score function and its derivative

First, let us rewrite
d2 ln f(x(t);θ)

dθ2 as follows

d2 ln f (x(t); θ)

dθ2
=

d

dθ

d ln f (x(t); θ)

dz(θ, t)

dz(θ, t)

dθ

=
d

dz(θ, t)

[

d ln f (x(t); θ)

dz(θ, t)

dz(θ, t)

dθ

]

dz(θ, t)

dθ

+
d ln f (x(t); θ)

dz(θ, t)

d2z(θ, t)

dθ2

=
d 1
f(x(t);θ)

df(x(t);θ)
dz(θ,t)

dz(θ, t)

(

dz(θ, t)

dθ

)2

+
1

f (x(t); θ)

df (x(t); θ)

dz(θ, t)

d2z(θ, t)

dθ2

=
1

f (x(t); θ)

d2f (x(t); θ)

dz(θ, t)2

(

dz(θ, t)

dθ

)2

+
1

f (x(t); θ)

df (x(t); θ)

dz(θ, t)

d2z(θ, t)

dθ2

−
1

f (x(t); θ)
2

(

df (x(t); θ)

dz(θ, t)

)2 (
dz(θ, t)

dθ

)2

. (4)

Thus, let us detail each component involved in (4), i.e.,
dz(θ,t)

dθ
,

d2z(θ,t)
dθ2 ,

df(x(t);θ)
dz(θ,t) and

d2f(x(t);θ)
dz(θ,t)2

Trivially, one has

dz(θ, t)

dθ
= 2ℜ

{

(m(θ, t)− x(t))HM
−1 dm(θ, t)

dθ

}

, (5)

and
d2z(θ, t)

dθ2
=2ℜ

{

(m(θ, t)− x(t))HM
−1 d

2
m(θ, t)

dθ2

}

+ 2
dm(θ, t)H

dθ
M

−1 dm(θ, t)

dθ
. (6)

To obtain
df(x(t);θ)
dz(θ,t) and

d2f(x(t);θ)
dz(θ,t)2 , let us set

ν =
βα+N

2α+N−1πN |M|Γ (α)

by the fact that
dKµ(̺)

d̺
= −Kµ+1(̺) +

µ
̺
Kµ(̺) one has

dKN−α(β
√

z(θ, t))

dz(θ, t)
=

−β

2
√

z(θ, t)
KN−α+1(β

√

z(θ, t))

+
N − α

2z(θ, t)
KN−α(β

√

z(θ, t)). (7)

Consequently,

df (x(t); θ)

dz(θ, t)
= −

βν

2
z(θ, t)

α−N
2

−
1

2KN−α+1(β
√

z(θ, t)).

(8)

Finally, using (8) and (7), one obtains

d2f (x(t); θ)

dz(θ, t)2
=

νβ2

4
z(θ, t)

α−N
2

−1KN−α+2(β
√

z(θ, t)).

(9)

III-B. Fisher information derivation

In the following, we derive the Fisher information given

by FI(θ) = −
∑L

t=1 E

{

d2 ln f(x(t);θ)
dθ2

}

.

First, let us derive the first term’s expectation of (4).

Plugging (3), (5) and (9) into (4) and using the expectation

operator, one obtains

E

{

1

f (x(t); θ)

d2f (x(t); θ)

dz(θ, t)2

(

dz(θ, t)

dθ

)2
}

=

β4

4

Γ(α− 2)

Γ(α)
E

{

ℜ2

{

(m(θ, t)− x(t))HM
−1 dm(θ, t)

dθ

}}

,

(10)

where the expectation is taken with respect to the following

probability density function

f (x(t); θ) =
βα+N−2z (θ, t)

α−N−2

2

2α+N−3πN |M|Γ (α− 2)
KN−α+2

(

β
√

z (θ, t)
)

,



which is a complex K-distribution KN (α−2, 4
β2 ,M). Using

the SIRV decomposition given by (2) and the independence

between τ(t) and c(t), (10) becomes

E

{

1

f (x(t); θ)

d2f (x(t); θ)

dz(θ, t)2

(

dz(θ, t)

dθ

)2
}

=

β4

4

Γ(α− 2)

Γ(α)
E {τ}E

{

c̃(t)2
}

(11)

in which c̃(t) = ℜ
{

c(t)HM
−1 dm(θ,t)

dθ

}

. Since

c(t) ∼ CN (0,M), thus, c(t)HM
−1 dm(θ,t)

dθ
∼

CN
(

0,
dm(θ,t)H

dθ
M

−1 dm(θ,t)
dθ

)

. Furthermore, since c(t)

is assumed to be circular, this implies that c̃(t) ∼

N
(

0, 1
2
dm(θ,t)H

dθ
M

−1 dm(θ,t)
dθ

)

and finally, (11) reduces

to

β4

8

Γ(α− 2)

Γ(α)
E {τ}

dm(θ, t)H

dθ
M

−1 dm(θ, t)

dθ
=

β2

2
(α− 2)

Γ(α− 2)

Γ(α)

dm(θ, t)H

dθ
M

−1 dm(θ, t)

dθ
. (12)

Second, let us derive the second term’s expectation of (4).

Plugging (3), (6) and (8) in (4), one obtains

E

{

1

f (x(t); θ)

df (x(t); θ)

dz(θ, t)

d2z(θ, t)

dθ2

}

=

−
β2

2

Γ(α− 1)

Γ(α)
E

{

ℜ

{

(m(θ, t)− x(t))HM
−1 d

2
m(θ, t)

dθ2

}

+
dm(θ, t)H

dθ
M

−1 dm(θ, t)

dθ

}

, (13)

where the last expectation is taken with respect to following

probability density function

f (x(t)) =
βα+N−1z (θ, t)

α−N−1

2

2α+N−2πN |M|Γ (α− 1)
KN+1−α

(

β
√

z (θ, t)
)

,

which is a complex K-distribution KN+1(α − 1, 4
β2 ,M).

Using the SIRV decomposition given by (2) into (13) one

deduces

E

{

1

f (x(t); θ)

df (x(t); θ)

dz(θ, t)

d2z(θ, t)

dθ2

}

=

−
β2

2

Γ(α− 1)

Γ(α)

dm(θ, t)H

dθ
M

−1 dm(θ, t)

dθ
(14)

because ℜ
{

c(t)HM
−1 d2

m(θ,t)
dθ2

}

follows a Gaussian distri-

bution with zero mean.

Finally, let us derive the third term’s expectation of (4).

Plugging (3), (5) and (8) in (4), one obtains

E

{

1

f (x(t); θ)
2

(

df (x(t); θ)

dz(θ, t)

)2 (
dz(θ, t)

dθ

)2
}

=

E

{

β2

z(θ, t)

KN−α+1(β
√

z(θ, t))2

KN−α(β
√

z(θ, t))2
ℜ2

{

n(t)HM
−1 dm(θ, t)

dθ

}

}

= β2
E

{

KN−α+1(β
√

τ(t))2

KN−α(β
√

τ(t))2

}

E

{

ℜ2

{

c(t)HM
−1 dm(θ, t)

dθ

}}

=
β2

2
E

{

KN−α+1(β
√

τ(t))2

KN−α(β
√

τ(t))2

}

dm(θ, t)H

dθ
M

−1 dm(θ, t)

dθ

in which the second step was done by noting that

τ(t) has the same distribution as z(θ, t) and by using

n(t) =
√

τ(t)c(t). The last step was done by noting that

ℜ
{

c(t)HM
−1 dm(θ,t)

dθ

}

∼ N
(

0, 1
2
dm(θ,t)H

dθ
M

−1 dm(θ,t)
dθ

)

.

III-C. Result and Gaussian Fisher information connec-
tion

The Gaussian Fisher information w.r.t. the model given

in (1), i.e., with n(t) ∼ CN (0,M), is given by the Slepian-

Bang formula by

FIG(θ) = 2

L
∑

t=1

dm(θ, t)H

dθ
M

−1 dm(θ, t)

dθ
(15)

Consequently, using the fact that Γ(α−1) = (α−2)Γ(α−2),
(12) and (14), one deduces the link between the Gaussian

FI, FIG(θ), and the derived FI for K-distributed observations,

FI(θ) :

FI(θ) = Φ(α, β,N)FIG(θ)

in which

Φ(α, β,N) =
β2

4
E

{

KN−α+1(β
√

τ(t))2

KN−α(β
√

τ(t))2

}

. (16)

It is worth noting that the multiplicative factor Φ(α, β,N)
is θ independent and depends only on the intrinsic gamma

distribution’s parameters and the size of the observation

vector. This means that the previous computed CRLB for the

Gaussian case can be directly used under the K-distributed

observation just by numerically evaluating Φ(α, β,N).

IV. EXTENSION TO THE MULTI-DIMENSIONAL
CASE

We assume, in the model (1), that the unknown parameter

of interest θ ∈ R
M , i.e., the parametric model is now given

by x(t) = m(θ, t) + n(t), t = 1, . . . , L. Due to the space

limitation we present, in the following, only the result for

the FIM. Nevertheless, we note that the methodology, tricks

and derivations are exactly the same as in the scalar case.

[FI(θ)]i,j = Φ(α, β,N)[FIG(θ)]i,j



in which Φ(α, β,N) in given by (16) and the Gaussian FIM

w.r.t. θ, for (i, j) ∈ {1, . . . ,M}2, is

[FIG(θ)]i,j = 2

L
∑

t=1

ℜ

{

∂m(θ, t)H

∂[θ]i
M

−1 ∂m(θ, t)

∂[θ]j

}

(17)

V. NUMERICAL ILLUSTRATION

In this section we perform a numerical simulation to

illustrate the previous study in the case of sensor array pro-

cessing. Consider M radiating far-field narrowband sources,

from direction of arrival θm with m = 1, . . . ,M and λ as

wavelength, observed by a unifrom and linear array (ULA)

composed of N sensors with interelement spacing d. The pa-

rameterized mean is then given by m(θ, t) = As(t), where

the steering matrix is given by A = [a(θ1), . . . ,a(θM )]T in

which [a(θm)]n = exp−2π d
λ
n sin(θm) for n = 0, . . . , N − 1

and the source signal vector is s(t) = [s1(t), . . . , sM (t)] in

which the complex time-varying signal source for the m-th

source is denoted by sm(t). In this scenario the unknown

parameter vector is given by ξ = [θ,S(M)T ]T ∈ R
M+N2

.

Furthermore, we consider the well known configuration, in

the radar context, for which β = 1
α

(i.e., the case of a

correlated heavy tailed clutter).
It is straightforward to derive the FIM using (17) and to

deduce the CRLB for a fixed number of sources, for which

an illustration is give in Fig. 1:

• This simulation reveals that for large α an efficient

estimator under K-distributed noise exhibits the same

performance than an efficient estimator in the classical

case, i.e., in a Gaussian context. Whereas, for smaller

α the variance of this latter degrades.

• From Fig.1 we can note that the CRLB in the K-

distributed observation context for the parametrized

mean is lower than the Gaussian one. This case has

already been observed in the case of Gaussian mixture

in [16]. Nevertheless, it should be noticed that this it not

the case for the parametrized covariance matrix only

case for which the opposite phenomenon is observed

[9].

• Finally, from (16), one note that, for a fixed α and

large number of sensors, an efficient estimator under

K-distributed noise and an efficient estimator under

Gaussian noise has a comparable variance.

Note that the second and third items were verified by

simulation, but due to the lack of space, these simulations

could not be added.
VI. CONCLUSION

In this communication, an extension of the Slepian-Bang

formula for the computation of the Fisher information is

provided in the context of K-distributed observation. Semi

closed form expression are provided for the general case of

parameterized mean and the connection with the Gaussian

model assumption is presented. Numerical simulation reveals

that the CRLB in the K-distributed observation context

for the parametrized mean is lower than the classical one.

Nevertheless, it should be noticed that this it not the case

for the parametrized covariance matrix.

Fig. 1. The CRLB w.r.t. θ1 under K-distributed noise for

different α and under the classical Gaussian noise. N=10

and M=2 with two orthogonal signal sources.
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