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Abstract— In this paper, we explore the problem of three-
dimensional motion planning in highly cluttered and un-
structured outdoor environments. Because accurate sensing
and modeling of obstacles is notoriously difficult in such
environments, we aim to build computational tools that can
handle large point data sets (e.g. LADAR data). Using a
priori aerial data scans of forested environments, we compute
a network of free space bubbles forming safe paths within
environments cluttered with tree trunks, branches and dense
foliage. The network (roadmap) of paths is used for efficiently
planning paths that consider obstacle clearance information.
We present experimental results on large point data sets
typical of those faced by Unmanned Aerial Vehicles, but also
applicable to ground-based robots navigating through forested
environments.

I. INTRODUCTION

Accurate sensing, obstacle detection and modeling of
cluttered, unstructured scenes, such as natural outdoor en-
vironments, is a difficult research challenge. This paper de-
velops techniques for enabling efficient three-dimensional
(3-D) path planning among obstacles represented by dense
point data sets. These data sets are typical of the data
returned by Light Amplification for Detection and Ranging
devices (LADAR). Using a priori aerial data scans of
forested environments, we compute a network of free space
bubbles forming safe paths within environments cluttered
with tree trunks, branches and dense foliage. An example
1 of such a result is presented in Figure 1. The network of
paths is used as an efficient data structure for encoding
obstacle information which can be used for 3-D path
planning.

Recent work on real-time 3-D motion planning with
moving obstacles has motivated us to look at the problem
of 3-D motion planning in highly cluttered and unstructured
environment. Previous work has been done in the context
of computer animation and interactive graphics [3]. Here
we consider planning for autonomous unmanned aerial
navigation. Specifically, we explore the idea of navigation
below the forest canopy for small scale, less than two
meters in diameter, Unmanned Aerial Vehicles (UAV) that
can maneuver in three dimensions.

Such vehicles are envisioned for a variety of missions
including reconnaissance. Some are small enough to be
launched and recovered from an autonomous ground ve-
hicle [11]. Several of such vehicle prototypes are under
development including the Allied aerospace iSTAR and the

1Figures in this paper are designed to be viewed in color

Fig. 1. Illustration of the free space bubbles in a forested environment.
In red, the ground surface; in green, the tree canopy; in blue, the tree
trunks and finally in grey the bubbles of different diameters.

Aurora GoldenEye. Their small sizes and ducted fan make
them particularly suitable for navigation in highly cluttered
environments such as the tree canopy. But their low payload
prevents them from carrying on-board a comprehensive
sensor suite. In addition, highly cluttered terrains reduce
the range of the sensor field of view, generally limiting
navigation control to local reactive modes. Long range
and reliable navigation requires a level of environment
knowledge that cannot be produce on-board such a vehicle
in such an environment.

The availability and quality (density, resolution) of aerial
LADAR data makes them particularly interesting as a priori
information to address our problem. Such information will
be provided prior to the small AUV mission by a larger
UAV or a manned platform. We use data provided by
the CMU Autonomous Helicopter, illustrated in Figure 4.
Details on this aircraft and its mapping capabilities are
presented in Section V-A. The a priori data can be used
to compute three-dimensional safety tunnel networks prior
to the mission. The tunnel network is stored on-board of
the small UAV. In the scenario envisioned, the small UAV
will track on the fly the precomputed paths but avoid local
obstacle. Such approach was used successfully in 2D-1/2
for planning a priori path for a ground mobile robot during
the PerceptOR program [14]. In this paper, we focus on
the processing of the prior data and the tunnel network



computation. This approach is designed to take advantage
of the data available in our context in order to achieve
navigation tasks. The use of aerial data is not advocated as
a panacea for outdoor mobile robot navigation but only as
one way to address some of the many challenges faced in
outdoor environments.

Our approach can be decomposed into two steps. First,
the scene made of 3-D points is segmented into three
classes (ground, vegetation, and tree trunk-branches) based
on features characterizing the local 3-D geometry. Sec-
ondly, a path planning algorithm explores the segmented
environment to extract connected obstacle-free areas to
form a network of tunnels (network edges) intersecting at
some locations (network nodes).

The next section deals with 3-D data classification.
Section IV gives an overview of the planning method and
computation of the tunnel network. Section V contains
results produced using aerial data collected with the CMU
Autonomous Helicopter.

II. STATE OF THE ART

The state of art we reviewed can be divided into two
broad categories: 3-D path planning and UAV navigation.
On one hand, several authors looked at the problem of 3-
D path planning using dense environment representation
such as quad-tree or voxel representations [4], [8], even
proposing a real-time implementation of A∗ to detect
obstacle free paths in the presence of moving obstacle [7].
The geometry of the scenes considered were much simpler
than the cases we propose to deal with. In the work of
Brock [1] free space tunnels in the workspace are computed
using a greedy wavefront expansion algorithm. We use the
representational idea of tunnels of free space to search large
data sets of obstacle information to compute path networks.

We also build upon research in UAV navigation in natural
terrain or in urban environments. Nikolos [12] proposes
an off/on line planner but only for 2D-1/2 environments.
Sinopoli [13] is interested in nap-of-the-earth navigation
with the aircraft flying on top of the tree canopy instead
of inside the canopy. Vision-based systems have also been
considered for navigation in canyon-like structures such as
urban environments [6], [5]. They differ from our work
because the environment can be represented by simple
geometric primitive (meshes and planes). Finally, Zapata
[16] presented a related work which is primarily focused
on reactive obstacle avoidance.

III. DATA SEGMENTATION

In [15], we proposed a method to classify 3-D LADAR
data in natural terrain into three classes: vegetation, solid
surfaces and linear structures. The method estimates the
local point distribution in space and uses a Bayes classifier
to produce the probability of belonging to each class. Priors
are modeled as Mixtures of Gaussians and parameters
are learned using the Expectation-Maximization algorithm

(EM) on labeled data. At each point, the scatter matrix is
computed using a predefined support region. The principal
components of this matrix are used to define three saliency
features for each scale [2], characterizing the 3-D points’
spatial distribution into the three classes.

We reuse here the notation introduced in [15]: if {Xi} =
{(x, y, z)} is a 3-D point we wish to characterize locally,
we define by B(X) = {Xk; |Xk − X| < r} the support
region with r its extent.

With X = 1
N

∑
Xi we have:

covB(X)(X) =
1
N

∑
(Xi − X)(Xi − X)T

The matrix is decomposed into principal components
ordered by decreasing eigenvalues:

|covB(X)(X) − λ · Id| = 0

with λ0 ≥ λ1 ≥ λ2.
The saliency features used for classification are defined

as:

S =




λ2

(λ0 − λ1) · �t
(λ1 − λ2) · �n




The direction associated with the scalar value of the
saliency features, respectively the tangent (�t) and the
normal (�n) for the linear and surface feature, is used to
discriminate the tree trunks. By projecting the classified 3-
D points into a 2-D map and by voting on the class we
can determine the center of the tree trunk.

Figure 2 shows an example of terrain classification using
CMU helicopter LADAR data. Note the recovery of the tree
trunks and the vegetation above the ground. In Section V-A
we give an overview of the mapping sensor used to produce
such a data set. In addition, in Section V-B we characterize
the distribution of the points for this scene.

IV. PLANNING

The goal of the path planner is to preprocess and convert
the information from the LADAR data into a representation
that could be used on-board the small UAV for navigation.

A. Obstacle Distance Field

First, the classified point data is used to compute a
distance field on the free space. The space is discretized
into cells (voxels) which will store local obstacle distance
information. The minimum distance to the nearest sensed
obstacle is computed and stored in each voxel, forming
a distance field over the free space accurate up to the
specified resolution.

B. Tunnel Network

The voxel centers along with their value from the dis-
tance field can be interpreted as defining a spherical ”bub-
ble” of free space. The radius of the bubble is determined
by the value in the distance field. A tunnel represents a
connected sequence of overlapping bubbles between two



Fig. 2. Example of terrain classification. The red points represent the
load bearing surface, blue points represent tree trunks and branches, and
the green points correspond to foliage and other vegetation features.

points in the free space. The tunnel defines a volume of
free space within which a safe path for the UAV lies.
Because many such tunnels may connect any two given
points, the free space is actually composed of a tunnel
network, which can be stored as a graph with potentially
multiple connected-components.

C. Path Search

The goal of the path search phase is to compute a contin-
uous path connecting the initial and goal configurations of
the UAV that lies safely inside the tunnel network. For the
experiments in this paper, all paths consisted of a sequence
of straight and diagonally-adjacent voxel cells in the grid
that connects the start and goal cells while minimizing a
given cost metric. Several choices for cost metrics include
path length, distance to obstacles, visibility from above the
canopy, or other mission criteria.

D. Mathematical Formulation

To formalize the problem, we define the following terms:

G 3D occupancy grid of the environment
qinit Initial configuration of the UAV
Cinit Cell in G corresponding to qinit

qgoal Goal configuration of the UAV
Cgoal Cell in G corresponding to qgoal

ρ(C) Metric cost function used to evaluate a voxel
cell C

P An ordered sequence of cells in G connecting
Cinit and Cgoal

Bijk Spherical “bubble” of free space of radius rijk

centered at voxel cell Cijk

T Connected sequence of bubbles forming a tun-
nel of free space of minimum width rT (i.e. all
bubbles in the tunnel have a radius r ≥ rT )

τ Continuous path in �3 connecting qinit and
qgoal lying entirely inside the tunnel T

The basic algorithm utilizes an A* search over G which
is optimized for grid structures in �3 [9]. The input to the
planner is the set {qinit, qgoal,G,Dmin}, where Dmin is
the specified minimum required distance between the UAV
and any obstacle in the environment. The cost function

ρ(C1, C2) �→ �

defines an implicit metric over the set of possible solutions.
The planner returns a path τ constrained to lie in an optimal
tunnel T according to ρ. The minimum distance constraint
is enforced to guarantee that rT ≥ Dmin.

E. Network Construction

The criteria used to determine viable tunnels between
two voxel cell locations is the intersection between their
corresponding bubbles of free space. Given a sphere cen-
tered at C1 with radius R1 and a sphere centered at C2
with radius R2, if the distance between their centers is
greater than the sum of the radii, then the spheres are
disjoint:

||C1 − C2||2 ≥ R1 + R2

R1 R2

C1 C2C2 C1

d

R1
R2

x

C2 C1

d

R1
R2

x

Fig. 3. Left: Calculating the size of the connecting hole between two
overlapping spheres. Right: Interior spheres (spheres lying wholly within
a larger sphere) are pruned from the tunnel network.

If their volumes intersect, then we first test whether
either of the spheres is entirely contained within the other
as in Figure 3 (right). This condition is true when either:

||C1 − C2||2 + R1 < R2

or
||C1 − C2||2 + R2 < R1

holds. Otherwise, we calculate the radius of the circular
hole connecting the two spherical volumes as shown in
Figure 3 (left). The radius of the hole is given by:

x =
1
2d

√
4d2R12 − (d2 − R12 − R22)2



V. RESULTS

In this section we present the aerial mapping helicopter
used to collect the aerial data presented in this paper. Note
that this platform is not the one considered to navigate
through the canopy. We give also details on the point
distribution in the environment we experimented in. We
then present and analyze results of path in the canopy.
Finally we look at the computational performances of our
approach.

A. Aerial data

The CMU autonomous helicopter, illustrated Figure 4, is
a versatile platform build around the Yamaha R-Max heli-
copter and equipped with on-board sensing which includes
an IMU (LN-200 Litton), CCD Cameras (Sony 1Kx1K),
GPS (Carrier phase dual freq type), a laser scanner (built
around Riegl LD90-3 and that includes a registered color
sensor), re-configurable on-board computing (TI DSP, Intel
P3, etc), a modular sensor mount for experimental sensor
deployment, power, communication, and a control system.
Terrain mapping has been performed extensively over vari-
ous nature of terrain (urban, natural with vegetation, desert
canyons). The modified Riegl laser range finder is capable
of collecting 3-D color data, with 10 cm accuracy [10].

Fig. 4. Aerial mapping platform: CMU Autonomous Helicopter.

For comparison, we show in Figure 5 a ducted fan
UAV considered for going through the canopy [11]. The
illustration depicts the work perform in the Autonomous
UAV Mission System (AUMS) project. This is a 29 inches
diameter version, smaller versions exist.

Fig. 5. Example of ducted fan UAV [11].

The data set used covers an area of 165×296×35 m and
is made of more than seven millions 3-D LADAR data

points. For each 3-D point, the position and the attitude
of the helicopter is known. Figure 9 shows a top view of
the scene with the elevation color coded. The data were
collected in the Fall season.

B. Tree canopy voids

Before extracting 3-D safety tunnels we would like to
quantify the voids in the tree canopy. We consider here a
global and a local measure: the occupancy rate of the space
and the distribution of the diameter of free space bubbles.
The data are sparsely distributed in 3-D as shown in Table
I. For different voxel sizes, the occupancy rate is com-
puted. This is a global characterization. A characterization,
more relevant to our application, that preserves information
about the local scene structure, is the estimation of the
distribution of the free space bubbles inside the canopy.
Figure 7 illustrates the cumulative distribution of the free
space bubble radius. This graph shows us that 80% of the
free space inside tree canopy is at least 50 cm away from
obstacle. So for the 72 cm diameter iSTAR or the 1.7 m
diameter GoldenEye, respectively 60 and 20 percent of the
free space is accessible to them, in our example. Figure 6
shows the free space bubbles, 2 meters in diameter at least,
in the scene. We can see that they merge together to form
tunnels.

TABLE I

3-D SPACE OCCUPANCY

Grid size (m) Empty cells Occupied cells Occupancy rate
0.5 13,610,910 367,286 2.6
1.0 1,654,917 119,955 6.7
2.0 189,835 32,771 14.7

(a) (b)

Fig. 6. Illustration of the free space bubbles for the example presented
in Figure 1. Only one meter radius bubbles are represented. (a) Top view.
(b) Side view.

C. Paths through the canopy

To improve the visibility of the results, we present paths
generated on a small section of the full data set. We choose
this section of the terrain because of the height density
of the tree canopy but also because of the presence of
understory vegetation (bushes). Figure 8 shows : (a) the
shortest but with minimum bubble radius guarantee of one
meter and the safest path, (b) the safest path overlaid in
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Fig. 7. Cumulative distribution of the free space bubble radius for the
cropped data set

the classified data, (c) a different view point of (b). We
choose a start and a goal point at the edge of the map,
well above the ground. The path produced is as expected.
A robot following this path would have to lower its altitude
to avoid the lower part the tree canopy, closing to the
ground, then it will have increase this elevation to avoid the
bushes covering the ground. Tree trucks are also avoided.
Notice the size variation of the bubbles. In this example,
we constrained the path to be inside the canopy, prohibiting
overfly of it.

D. Complete data set

In this section we present results produced using the
complete data set. Figure 9 shows the shortest path com-
puted within the tree canopy. Figure 10 details the result. In
Figure 10-(a) the safest and shortest path are represented.
In that case we did not constrained the path so the the upper
path is above the canopy while the lower path is within the
canopy as illustrated in Figure 10-(b)-(c).

E. Planning Performance

We conducted experiments using several LADAR data
sets of unstructured natural environments. The computa-
tional performance depends on the size and resolution (dis-
cretization) of the data set, as well as the cutoff minimum
distances used to calculate the tunnel network. Some results
are shown in Table II. All performance data was calculated
using a standard PC with 1 GB of RAM and a 1.6 GHz
Pentium M processor, and the reported times include the
time to load the data set from disk. Times are reported
for calculating a single path in the environment and for
computing the entire tunnel network.

VI. CONCLUSIONS

In this paper we presented an approach for small scale
UAV navigation within and below the tree canopy using
a priori aerial LADAR data. 3-D safety tunnels are con-
structed by exploring segmented data. We demonstrated

Fig. 9. Full data set used for planning. The scene is color coded based
on the elevation, red being high elevation data. The grey spheres are the
bubbles of free space producing the shortest path.

TABLE II

PLANNING PERFORMANCE FOR THE FULL DATA SET.

Environment Grid size Free cells Time (sec.)
Data set (resolution) (voxels) Single Path Network
Cropped 31x31x24 5,545 0.6 3.4

Forest(5.0 m) 34x60x8 12,133 0.8 2.8
Forest(2.5 m) 67x119x15 98,933 2.1 8.2
Forest(1.0 m) 166x297x36 1,654,917 20.5 133.5

our approach using aerial data collected by the CMU Au-
tonomous helicopter. Other applications can be envisioned.
For example by constraining the free space bubbles to
intersect the ground we can find safety tunnel for ground



(a) (b) (c)

Fig. 8. Path planning example: (a) Shortest (red) and safest (blue) paths. (b)-(c) Safest path overlayed on top of the terrain classification results: the
path (grey), the ground surface (red), the vegetation (green), and linear structures such as trunks and branches (red)

(a) (b) (c)

Fig. 10. Details on the experiments with the full data data set: (a) Shortest (bottom) and safest (top) path, (b) Close view of the entry point into the
canopy, (c) Path inside the canopy. For (b)-(c) the path is in grey, the point cloud is color coded based on the elevation.

vehicles. Also the tree canopy structure is important to
model chemistry exchange, illuminations in environmental
science. Future work will include comparison with ground
based vehicle laser data, comparison between paths com-
puted with data collected at different seasons.
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