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abstract : Mobility for a great portion of robot mechanism 
having over-constraint and non-holonomic constraints bas not 
been dearly identified. TI& work is to introduce a method of 
mobility analysis for such systems using the concept of 
representative screws' and pseudwjoint. The pseudo-joint Is 
employed to effectively represent the real motion trajectory due 
to the roiling contact of the wheeL To show tbe validity and 
effectiveness of the proposed method, mobility of various lypes of 
planar mobile robots having over-constraint and non-bolonomic 
constrains are examined. 
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1. INlXODUCTTON 

In general, to analyze mobility of mechanisms, the well- 
known Grubler's mobility formula has been used[l4]. This 
method is often called as the zeroth-order mobility analysis. 
However, this formula is sometimes not adequate in directly 
computing the mobility of a number of mechanisms because 
Grubler's mobility formula assumes that the allowed motion 
space of all joints in one loop is not constrained by the joints 
in other loous. In over-constrained svstems. this is not the case. 

to now [6-81. This is mainly because the available methods or 
procedures are either complicated or not easy to understand to 
use them in finding the mobility of such overanstmined 
mechanisms. 

This paper is amnged as follows. Firstly, Grublefs mobility 
formula and its limitation of direct application to over- 
constrained mechanisms are discussed.' Secondly, concept of 
representative screws and method of identifymg them are 
described with an exemplary mechanism.[9] Lastly, mobility 
analyses of several planar mobile systems vjith nonholonomic 
constraints as well as ones with singular configuration, are 
conducted by representing the characteristics of shapes of the 
allowed motion aajectory of joints and rolling contacts as 
"pseudo-joints" and "pseudo-screws". 

IJ. GRUBLER FORMULA AND ITS APPLICATTONS 
Grublefs mobility formula can be wrinen in the following 

form[ I]; 

M = d ( l - l ) - c c ,  
t 

where d represents the dimension of the feasible motion 
space of the entire joints of the mechanism, and I and C, 

Thus, the size of allowed motion ;pace of joints in each of denotes the number of links including the ground and the 
number of constraints of the i" joint, respectively. The value 

.of d can be identified as the number of.independent joint 
screws of the mechanism (refer to Appendix). According to the 

independent loops needs to be identified. 
Screw approach, which is called, the first-order mobility 

analysis, provides a means of identifying the size of the 
allowed motion space of joints in a loop. However, the screw 
intrinsically represents only the infinitesimal charactefistics of 
motion (i.e., the first-order kinematic characteristics). Thus, 

value of d , Hunt[ll categorized mechanism into one-systh 
six-system. 

screw approach .often fails to exactly represent the motion For parallel mechanisms, due to their closed-chain 
along finite displacements occurring in rolling contact. To structures that impose constraints on the motion of some of 
identify tbe mobility in such cases, second-order mobility joints, the value not be arbitrarily selected l i e  
analysis of rolling motion trajectory needs to be examined. se,.ial mechanism. ne following is a modified form of 
Rimon and Burdick[S] suggested a second-order mobility Grubl& Form&, which is useful for parallel mechanisms 
analysis method on gripping mechanisms, but the process [I] : 
requires either a significant computational or algebraic burden. 
Thus, mobility analysis for great poflion of robot mechanisms 
with over-constrains or with non-holonomic constraints such 
as rolling motion of wheels have not been done completely up 

d 

m 

M = C . h - C d , ,  , (2) 
i=l j = l  
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where f, and d,, represents the degree of freedom of the 

i" ' ' joint and the dimension of the feasible joint motion space 
of the independent loop L, , respectively. m and n 
denotes the number of independent loops and the number of 
joints, respectively. For a mechanism having one closed-loop, 
dL, can be easily identified as the number of independent 

joint screws in the loop L, 

However, in most of over-constrained mechanisms 
consisting of several closed-loops, the feasible motion space of 
all joints belonging to one loop L, is constrained by other 
loops, and thus it makes difficult to identify the correct value of 
dL, , In light of this fact, a way to identify the dimension of the 
feasible motion space for each loop via the concept of 
"representative screw" will be summarized in the following 
session[9]. 

m. REPRESENTATIVE SCREWS 
Consider the parallelogrammic mechanism of Fig. 1. This. 

mechanism is a typical example of over-constrained systems. 
and bas mobility of one. However, unless the over-constrained: 
condition is incorporated into'Eq. (I) ,  the mobility of the 
mechanism h u n s  out to be zero from Eq (l), which is in fact 
incorrect. To wpe with this problem, the concept of 
representative screw is introduced by using the same example.. 
As shown in Fig. 1, the mechanism has two independent loops 
A and B .  Note that joint 3 and 4 are shared by the two 
loops. We start the analysis €rom the loop A, and then check if 
the feasible motion space of the loop B is affected by the loop 
A. The joint screw for each joint of the mechanism with respect 
to an arbitrary origin o can be written as 

'. 

I ,  = (O,O,l;y, + yf , -x ,  - x,,O) , i = 1,2,... . 6 .  

(b) 
Fig. 1. A parallelogrammic planar mechanism 

Using these joint screws, the number of independent joint 
screws for the loop A is computed as dL, =3 and its 
mobility is computed as 1 from either Fq. ( I )  or Fq. (2). 

However, the feasible motion space of joints belonging to 
both the loop A and B (joint 3 and 4) would be 
constrained by the motion of loop A .  Actually, the feasible 
motion space of joints commonly belonging to both lcqs A 
and B is reflected through the motion of the link U ,  which 
connects both loops. In fact, the motion screw of the link U 

in Fig. I (  8, ) represents the constrained motion screw of two 
joints 3 and 4. Thus, it is defined as "representative screw". 
And for this particular example it can be easily identified as 

$ = (O,O,o; lsin @,-I cos 8,O) , 

where the length of  the link connecting joint 1 and 2 is 
denoted as 1. From this eqnation it can be seen that the motion 
of the link a is always translational and the direction is 
perpendicular to the link b .  Also, it can be easily confirmed 
that $, is always dependent of the joint screws of the loop 

B (i.e.,$5 and $6). Thus, the number of independent joint 

screws of the loop B becomes 2 (=d, ) and the mobility of 

the mechanism in Fig. 1 is obtained as M = 6 - (3 + 2) = 1 
from Eq. (2). Likewise, the mobility analysis could be 
performed in a reverse way in which the Imp A is assumed 
constrained by the loop B . With the same procedure, we will 
obtain the same mobility for the mechanism. 

The following summarizes the procedure of finding 
mobility of closed-chain mechanisms via. "representative 
screws." 

Fig. 2. Schematic model of closed-chain mechanism 

Step I) Assign the sequential order to the constrained loops 
of the mechanism. For convenience, it is assumed that loops 
are constrained sequentially from 1 to n as in Fig. 2. 

Step II) Compute the number of independent screws of all 
joints in the loop 1 and the mobility of block 1. 

Sfep III) Identify the representative screw set {$+,)k} 

reflecting the motion space of the link Z ( r - l ) k  which connects 

the block k-1  and the loop k ( k = l ; . . , n ) .  Then, 
compute the number of independent joint screws for the loop 
k kom the union set of-representative screw set { $ ( k - , ) k }  
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and the partial joint screw set of loop which do not belong to 
the block k - 1 . Then compute the mobility of the block k . 

Step Iv) Repeat step Ill until k = n . 
In step I), it is assumed that loops are constrained 

sequentidly from loop 1 to loop N , for convenience. 
However, depending on the sbucture of the mechanism, the 
order could be varied. Suppose that two different blocks ( P  
and Q) are connected through a loop R . Then, the number 
of independent joint screws of the loop R can be found from 
the union set of the representative screws for the two blocks. 

N. M O B I L I ~  AkALYSIS FOR OVERCONSTRAINED 
MECHANISMS 

In the followings, mobility analysis for several planar 
mobile robots is described. In fact, some of these examples 
represent over-constrained systems. It can be noted that the 
number of over-constraints can be easily identified by checking 
the number of constraints of all the independent loops in the 
proposed mobility analysis. Particularly in the 
parallelogmmic system in Fig. 1, when it is assumed that the 
loop A has three independent joint screws, the loop B 
twns out to have 2 independent joint screws. Thus, the 
system is indeed an over-constrained system by one over- 
constraint (note that if the loop B is not constrained, the 
number of independent joint screws of the loop must be 3 ). 
A. Pseudojoint representing a rolling contoct 

The interface of a rolling wheel with the gmund has been 
often modeled as a revolute joint at the contact point as shown 
in Fig. 3(b) and Rimon and Burdick[S] showed that both the 
zerothader and first-order mobility analysis do not take the 
cnrvature characteristics of the contact surfaces into 
consideration, thus sometimes resulting inaccurate mobility. In 
spite of this fact, mobility analysis on wheeled mobile systems 
has not been studied much in literature. 

Consider the motion of the rolling wheel of Fig. 4. The 
motion of the point P induced by the revolute joint model at 
the contact point follows a circular trajectoryP.4 . However, 
when observing a finite motion of this disk, the points 0 ,  c , 
and P follow the trajectories along the arcs CD , cc and 
PB , respectively. Thus, if a rolling interface is modeled as a 
revolute joint at 0,  it should he treated differently 60m the 
normal revolute joint in that its finite motion trajectory is 
different from one of a normal revolute joint shown in Fig. 3@). 
Thus, in order to compensate for the missing information due 
to solely relying on infinitesimal motion analysis, the second- 
order kinematic characteristic should be taken into account. To 
represent the finite motion of each of the three points 0, C 
and P , separately, the concept of pseudo-joint is introduced. 
Suppose in Fig. 3(a) that $onh ,$Cnh and $Pnh denotes the 
screws of the pseudo joints corresponding to the finite motion 
trajectories OD , CC and E ,  respectively. Note that 

- 

_ _  
- 

- -  

screws of pseudo joints $Onh and $pnh are different from 

normal joint screw of the revolute joint, hut $cnh is qual to 
the one of the prismatic joint. Then, an equivalent linkage 
model of the pseudo-joints of the mobile system of Fig. 3 can 
be depicted as Fig. 3(c), where the two prismatic joints denote 
pseudo joints representing the linear motion of the center of 
each wheels, and the revolute joints represent free joints 
connecting the wheel center to the link. 

( 4  (b) ( 4  
Fig. 3. Amohile system moving on a flat surface and its joint model. : 

(a) mobile system, (b) revolute joint model, (c) prismatic joint model 

Fig. 4. Motion trajectories of points on the rolling wheel 

B. Joint screw model of two dflerent types of wheels 
Table 1 shows two different types of wheels popularly 

employed in most of the planar mobile robots. A conventional 
fixed wheel is modeled as having three joints. The axis of the 
revolute joint (7) is along the direction normal to the ground 
and it passes through the contact point between the ground and 
the wheel, a revolute joint (e,) represents the rotation about 

the wheel axle, and a prismatic joint (P, = r e )  is parallel to 
the contact surface on the ground. When fictional motions 
such as sliding and skidding occur, two prismatic joints 
(us, :sliding velocity, U, :skidding velocity) should be added 
to the current joint model. Likewise, the other type of wheel 
could be modeled similarly and summarized in Table 1. 

C. Six-wheeledplanor mobile robot 
Table 2 shows the a little more detailed process in 

computing mobility of a mobile robot with two steering 6ont 
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wheels and four conventional rear wheels via the concepts of 
pseudo-joint and representative screw. Note that the motion 
space and mobility of the loops may depend on the order Of 
loops being analyzed. Starting from the loop A ,  its motion 

Half Order of 
figure Constraming 

Loops 

Table 1. Joint Model for three Different Types of Wheels 

D Mobility 
M 

Conventional 

Centered 
Onentable Wheel 

. Off-Centered 
Orientable Wheel 

Schematics 

-I 

Table 2. Mobility Analysis for Mobile Robots with Two 
Steering Wheels and Four Conventional Wheels (Appendix B) 

Example cI-- I I 

c I ~otiictionalmotion I 

space and its mobility turns out to be 5 and 2 ,  respectively. 
Similarly, the motion of three joints belonging to both loops 
A and c could be described as a representative screw, $ A ,  

Using this representative screw, the motion space of the other 
loop C could be obtained as 4. And the mobility of the 
subsystem consisting of both loops A and C is computed 
as 1 from Fq. (2), which represents a steering rotational motion 

On the contrary, s&ing with the loop c, the motion 
space and the mobility of the loop is 5 and 1, respectively. 
Thus, the motion of the three joints belonging to both loops A 
and C can be described as a representative screw $=, which 
represents a forward translatio~l motion. Using this 
representative screw, the motion space of the other loop A is 
computed as 4, differently from the previous step. Lastly, the 
mobility of the subsystem consisting.of loops A and C 
turns out to be 1. It can be noted from this example that the 
order of analyzing loops does not .make difference in 
computing the mobility of the mobile robot of interest after all. 

Now, the other half of @e mobile robot could be analyzed 
similarly. The mobility of each of two different subsystems of 
the mobile robot tums out .to be 1. These two motions 
represent the steering motions of the two h n t  steering wheels 
and do not affect the motion ofjoints in the Loop E ..Thus the 
motion space of the loop E becomes 0. Finally, mobility 
of the whole system can be computed'as 2 from Q. (2). The 
concept of representative screw can be applied to other various 
types of over-constrained mechabisms and recently, the 
concept was effectively used to identify the over-constrained 
parallel mechanism[lO]. ' . 

V. MOBILITY A N A L Y S I S  Vu PSEUDO-SCREWS 

Up to now, mobility analyses of over-constrained systems 
have been investigated, which can be identified by 
investigating the firstader kinematic characteristics (joint 
screw based analysis). Some of mobile robots may require the 
second-order mobility analysis in their singular confgurations, 
which may be in general analytically tedious and 
computationally massive. Here, in replace of the second-order 
kinematic characteristics, the concept of "pseudo-screw" is 
int~cduced to effectively represent the real finite motion 
trajectory due to the rolling contact of wheels. To show the 
validity and effectiveness of the method, a couple of exemplary 
systems are examined. 

A. Pseudo-screw representing the second-order kinematicr 
Define the pseudo-screw for a revolute joint as 

$n' = (6;ws x ( d x  F)), (3) 

where this pseudo-screw represents the nonlinear centrifugal 
acceleration generated by the motion of the joint screw and in 
fact, is orthogonal to the direction of the linear velocity due to 
the joint screw, and it is related to the second order kinematic 
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characteristics of the joint motion. This nonlinear term comes 
into play in analyzing mobility of mechanisms when they are at 
singularity configurations. Particularly, note that since the 
prismatic joint does not have any nonlinear acceleration 
orthogonal to the linear velocity term, the comesponding 
pseudo-screw becomes a null screw. 

$"' = (63) (4) 

For convenience, only planar cases will be considered in 
the followings. Suppose that there are k joints in a simple 
closed chain mechanism. Among these joints, I joints have 
distinctive d, pseudo-screws that are orthogonal to all linear 
velocities from all k joints. Then the number of independent 
joint screws dL, of the loop Lj  can be computed as follows, 
depending on the configuration of the mechanism. When the 
mechanism is not at singularity configuration, the number of 
independent joint screws can be computed as 

When the mechanism is either over-constrained or at 
singularity configuration so that its mobility h m  the zeroth- 
order or the first-order analysis are not coincident(or 
inaccurate), the number of independent joint screws can be 
computed as 

where N denotes the number of distinctive pseudo-screws of 
all joints including ones with zero nonlinear acceleration 
components representing prismatic joint screws. Noting that 
pseudo screws represent nonlinear characteristics of the 
cwature, we detine the distinctive pseudo screws as those that 
have different magnihldes even though they are linearly 
dependent. 

Through the following examples, the proposed method 
will be described in detail. Consider a mechanism in which 
three joints are aligned along the same line as in Fig. 5. The 
number of independent joint screws is 2 and there are three 
nonlinear joint pseudo-screws orthogonal to all the linear joint 
screws. Therefore, the mobility of the mechanism is computed 
as M = 3 - 3 = 0. Likewise, mobility of a mechanism in 
which all n joints are located at distinctive locations along 
the same line can be computed as M = n - n = 0. However, 
for the mechanism in which I joints out of all n joints are 
not located at distinct locations but distributed at other k 

locations, the mobility is calculated as 
M = n - (n - I  + k)) = I - k . Fig. 6 shows one example 
in which only three joints out of four joints are located at 
distinct locations, hut two joints are located at the Same 
location. Thus, its mobility can be computed as 
M=4-(4-2+1)=1. 

'1 r 
$1 =IO 0 1 :o -x1 0). $f'=(O 0 o:&l 0 0) 
$2 =(O 0 1 io -x2 0). $$'=CO 0 0:aXz 0 0) 
$3 =(O 0 1:0 -x3 0). $8=(0 0 0:aXs 0 0) 

&,= d. VI = w x,. 1=1,2.3 

Fig. 5 Joint screws and its pseudo-screws for a mechanism 

XI 

with aligned three joints 

V: ax,= -. vI = w x , ,  i=1.2.3,4 
XI 

Fig. 6 Joint screws and its pseudo-screws for a mechanism with 
aligoed four joints but with two joints at the same location 

Now, consider another two examples in Fig. 7. The 
mobility of the mechanism in Fig. 7(a) can be computed as 
M =3(4-1)-2x4=1 from Q. (1). However, the 
mobility of the same mechanism can be computed as 
M = 4-  2 = 2 from (2) via. the screw analysis. On the 
contrary, the mechanisms in Fig. 7(b), mobility can be 
identified as 1 from those two methods. The conflict in 
mobility analysis of the mechanism in Fig. 7(a) can be cleared 
by the proposed method in this paper. The following describes 
its detailed mobility analysis. The joint screws and pseudo-joint 
screws for the mechanism in Fig. 7(a) with respect to the 
referred origin can be expressed as 

$, = $, = (ooo;loo),$:' = $;' = (00o;000) 

$, = (001;-y,OO),$;' = (ooo;ov: /y,O) 

$4 = (ool;-y*oo),$: = (ooo;ov; /y,O) 

where v, = y,w ,and 

where v, =y,w 

The number of independent joint screws can be computed 
as 2 and it can be seen that nonlinear screws are orthogonal 
to all the joint screws. Thus, the number of distinctive pseudo- 
screws including the ones representing prismatic joint screws 
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will be the number of the independent pseudo-joint screws and 
can be obtained directly as 3 . Thus, mobility of this 
mechanism can be computed 60m (2) as M = 4 - 3 = 1. 

Similarly, the joint screws and pseudo-joint screws for the 

mechanism in Fig. 7(b) with respect to the referred origin can 
be expressed as 

$, = $2 = (ooo;loo),$;' = s;' = (000;000), 

$3 = (OO1;-ylOO),$;' = (0oo;Ou: l y ,  0) , 

where U, =y ,w,and  

- $4 =(ooI;-~, -x,o),$: =(OOO;a,q,O) 

where U, = (xi + y ~ ) - " ' w ,  

2 
U, = u;x2 /(xi +vi), a, = 0 2 y ,  4 x ;  +y : ) .  

In this case, the number of the independent joint screws can be 
~ computed as 3 and all nonlinear screws spans spaces of'all 

linear joint screws. Thus, mobility of this mechanism can 
directly be computed.6om (2) as M = 4 - 3 = 1 , 

(a) @) 
Fig. 7 Mobility d y s e s  for (a) a one-system Mechanism and (b) a 

two-system mechanism 

B. Mechanisms with rolling contact 
Now, consider a mobile system consisting of two wheels 

contacted a flat surface in Fig. 3(a). Fig. 3@) represents the 
joint model in which the rollimg is modeled as a revolute joint 
at contact point. The joint model is in a singular configuration. 
However, in this model, the results of the zero- and.first-order 
mobility analysis become 1 and 2, respectively. That is, the 
zeroader mobility using Eq. (1) becomes 1 and the first-order 

~ mobility turns out as 2 by counting the number of independent 
joint screws. Thus, the second-order mobility &lysis is 
necessary to identify the true mobility. 

Since the center of eaih wheel, actually moves along the line 
. . parallel to the contact surface, the rolling interface of each 
I wheel is modeled as a prismatic joint in Fig. 3(c). In this 

particular case, the screw corresponding to this prismatic joint 
perfectly represents the motion trajectory of the center of the 
wheel. That is, it also describes the finite motion of the center 
of the wheel correctly. This model is equivalent to one in Fig. 7 
(a) and its mobility is computed as 1. 

Fig. 8(a) shows a mobile robot moving on a flat surface. The 
feature different 60m Fig. 3 is the off-centered allocation of the 
connecting link with respect to the center of the bottom wheel. 
Since the trajectories of the two connecting points are different, 
the joint model should be different fiom Fig. 3(c). In Fig. 8@), 
a point on the bottom wheel can no longer be modeled as a 
prismatic joint, but it is modeled as a pseudo-revolute joint 
( $2nk), which has different motion characteristics as compared 
to the normal revolute joint of Fig. 3@), and thus it is marked 
as a black circle in Fig. 8@). In this model, three joint screws 

are independent one another, implying that its 
feasible joint motion space spans the whole 3-DOF planar 
space. It can be seen easily that the joint screw of the pseudo- 
revolute joint is dependent of those three joint screws since the 
motion space of the pseudo-revolute joint is in planar space. 
Thus, the dimension of independent joint screws is 3 and the 
mobility of this mechanism can be identified as 
M=4-3=1 .  

(a) @) 
Fig. 8. (a) A mobile system and (b) its joint model 

Fig. 9(a) represents a mobile system moving on two different 
circular surfaces. Its contact interface can be modeled as a 
revolute joint, the origin of which is located at the center of the 
curvature of the surface, as shown in Fig. 9@). In fact, Fig. 9(a) 
shows the tinire motion trajectories for each of two pseudo 
joints. Similarly to Fig. 3 its mobility can be computed from E$ 
(2) as h' = 4 - 4 = 0. Also, for the similar system of Fig. 
9(c), Fig. 9(d) denotes its joint model. The number of joint is 
4 but the number of independent joint screws is easily seen to 
be 3 .  Thus, the mobility of the system can also be identified 
as M=4-3=1 .  

Fig. 9. A mobile robot on two circular surfaces and its joint model 
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VI. CONCLUSIONS 
In this paper, a method of finding mobility for various types 

of closed<hain mechanisms with overanstmints or with 
rolling contacts is proposed. The method primarily utilizes joint u s  = " ( 0 ; s ) .  ('4-3) 

characteristic due to the rolling con& of wheels as well as the 
motion of the mechanism at singular configuration. To show 
the validity and effectiveness of the method, a variety of planar 
exemplary systems are examined. 
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APPENDIX A 
Motion of a body due to the joint motion could be 

represented by joint screw 

APPENDIX B 
Joint screws and mobility analyses of three different 

types wheeled mobile robots are given here. These results are 
referred in calculating the number of independent joint screws 
for six-wheeled planar mobile robot in Table 2. 

Fig. B 1. Screws of a Bicycle Type Wheels 

/7==% 

Fig. 82. Screws of Two Conventional Wheels in Paiallel 
" "  

w I = ru ( S  ; S  ) = o ( i  ; P x i + h i ) 9 (A-1) 

where and 7 represents the angular speed about joint 

axis S and the position vector eom an arbitrary origin, 
respectively. And h = (s . ,( . s) represents the 

screw pitch. A revolute joint with zero screw pitch and a 
prismatic joint with infinite screw pitch can be written as, 

A A A  

respectively. l r . l O O O O - I O i  Mi6-5=, do, 
la- I 0 0  1."2001 

Fig. 63. Screws of Two Conventional Wheels m Series 
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