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Abstract— In this paper, we use a linear complementarity
problem (LCP) formulation of rigid body dynamics with uni-
lateral contacts to obtain definitions for contact modes. We show
how the complementary cones of the LCP correspond to each
of the intuitive contact modes: slide right, slide left, roll, and
separate. These complementary cones allow us to make rigorous
definitions for contact modes in three-dimensional systems, where
our intuitive understanding fails.

I. I NTRODUCTION

The class of robotic tasks that today are perhaps the most
difficult to plan and execute, are those involving intermittent
contact. Even when the mathematical model of the robotic
system is assumed to be completely known, planning ma-
nipulation tasks is quite challenging. One of the problems
is the difficulty in determining the sets of wrenches (forces
and moments) that should be applied to maintain or achieve
certain desirable arrangements of contacts. Typically, toreduce
overall complexity, a rigid body model is used [1], [2], [3].The
unfortunate drawback of such models is that they are known
to suffer from solution nonuniqueness [4], [5].

In recent work, despite the nonuniqueness problem, Balk-
com and Trinkle [6] developed a method for computing the
set of all wrenches guaranteed to achieve a particular contact
state for planar parts. This approach was based on the common
intuitive notion of a contact mode, which, roughly speaking, is
a qualitative description of the interactions at a set of contacts.
The problem with the intuitive development is that it does
not easily extend to three-dimensional systems. In the plane,
possible interactions at a contact areslide left, slide right, roll ,
and separate. However for a contact in a three-dimensional
space, there is an infinite number of directions that a contact
could slide.

In this paper, we use a linear complementarity problem
(LCP) formulation of rigid body dynamics to motivate def-
initions of contact modes; each mode corresponds to a com-
plementary cone [7] of the LCP. We also show the equivalence
between the intuitively motivated contact modes and those
implied directly by the LCP. This then makes clear how contact
modes should be defined for three-dimensional systems, which
is done at the end of the paper.

II. DYNAMIC MODEL IN THE PLANE

The dynamic model of a workpiece interacting with a
number of objects (the three small circles) permanently at

rest is shown in Figure 1 and is composed of the four pieces
described below.
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Fig. 1. The dynamic model of a workpiece with three stationary objects

1) Newton-Euler Equations:Let cin andcit be the normal
and tangential components of the contact force applied by
stationary objecti to the workpiece. Collecting all the normal
and tangential components into the vectorscn = [. . . cin . . .]T

and ct = [. . . cit . . .]T , the Newton-Euler equations can be
written as follows:

Mν̇ = W ncn + W tct + wext + h (1)

q̇ = Gν (2)

where M = diag(m, m, J), wext = [fx fy τz]
T is the

external wrench (force and moment) applied to the workpiece,
G is a Jacobian matrix that allows for different parameteri-
zations ofSO(3), W n and W t are Jacobian matrices (also
called “wrench matrices”) that map the contact forces to their
equivalent wrenches in the body-fixed frame, andh is a vector
containing the velocity product terms. The columns of these
matrices are the unit wrenches associated with each of the
stationary objects. The complete definitions are:

W n =

[

· · ·
n̂i

ri ⊗ n̂i
· · ·

]

W t =

[

· · ·
t̂i

ri ⊗ t̂i

· · ·

]

(3)

whereri ⊗ n̂i is defined asrixniy − riynix andrix, riy, nix,
andniy are the x- and y-components ofri andn̂i, respectively.

2) Kinematic Equations: Let Ψ(q) = [. . . Ψi(q) . . .]T be
the vector of distances between the workpiece and all the
stationary objects. The first and second time derivatives of
Ψi(q) are the normal components of the relative velocity
vin and accelerationain between the workpiece and object
i. Defining the normal velocity and acceleration vectorsvn =
[. . . vin . . .]T andan = [. . . ain . . .]T , allows one to write the



velocity and acceleration relationships at all the objectsin the
following form:

vn = W n
T ν, (4)

an = W n
T ν̇ + Ẇ n

T
ν. (5)

Note thatW n
T = ∇qΨ, where∇q denotes the partial deriva-

tive with respect to the elements of the vectorq. Analogous
tangential kinematic equations that will be needed are:

vt = W t
T ν (6)

at = W t
T ν̇ + Ẇ t

T
ν. (7)

3) Normal Complementarity: The normal complemen-
tarity constraint, arises from the fundamental observed phe-
nomenon that contact must exist in order for there to be a
nonzero contact force. That is, the solution to the dynamic
model may havecin > 0 if and only if ain = 0. Conversely,
if a contact is breaking, thenain > 0 and cin = 0. These
constraints can be written concisely for all contacts as follows:

0 ≤ an ⊥ cn ≥ 0, (8)

where the symbol⊥ indicates normality, (i.e., aT
n cn = 0).

4) Friction Law: It is assumed that Coulomb friction acts at
the contacts. Coulomb’s law states that at a rolling contactthe
contact force lies within a cone of possible contact forces.By
contrast, at a sliding contact, the contact force must lie onthe
boundary of a cone in the direction maximizing the dissipation
of energy. Coulomb’s law can be written as follows:

|cit| ≤ µiscin i ∈ R (9)

cit = −sign(vit)µikcin i ∈ S (10)

where R = {i | Ψi = vin = vit = 0} is the index set
identifying rolling contacts,S = {i |Ψi = vin = 0; vit 6= 0}
is the index set identifying the sliding contacts, andµis and
µik are the static and kinetic coefficients of friction at contact
i.

In the discussion of instantaneous contact modes to follow,
it will be convenient to manipulate the equations above into
a more concise form. First, letJ =

[

W n W t
]

denote
the constraint Jacobian matrix. Solving equation (1) forν̇

and substituting into equations (5) and (7) yields a linear
relationship between the contact accelerations and contact
forces:

a = Ac + Bwext + h, (11)

wherea =

[

an

at

]

, c =

[

cn

ct

]

, A = J T M−1J andB =

JM−1. The dynamic model is now given by equations (8,9,
10,11) with auxiliary equations (4,6) needed only to formulate
the model.

III. C ONTACT MODES IN THE PLANE

Contact modes are combinations of relative motions at the
point of contact. Four possibilities are: separating (s), rolling
(n), sliding left (l), or sliding right (r). In addition, in the part
seating problem in which contact is not quite initially achieved,

it is important to define an additional mode, approach (a), as
was done in [8].

General manipulation tasks can be viewed as a sequence
of contact modes leading from an initial state to a goal state.
However, to successfully execute the sequence and accomplish
the task, one must be able to maintain contact modes and effect
transitions between them. One approach to this is to compute
sets of forces guaranteed (under a dynamic model) to control
the contact modes. In order to do this, we should distinguish
between the current contact mode and the impending contact
mode. For example, given a ball at rest on a horizontal surface,
the current contact mode isn. In the next time instant, the
mode could be any ofl, n, r, or s, but nota.

To help solidify the ideas of contact modes, Figure 2 shows
a disc initially at rest and in contact with a small fixed disc.
The static friction coefficient at the contact is assumed to be
0.4. The objective is to identify the set of external wrenches
that would maintain contact with this disc and achieve contact
with the other disc. The arrows are the “generators” of the
wrench cone corresponding to mode ’la’. That is, any vector
in the cone can be written as a nonnegative linear combination
of the generators. The generators are consistent with our
expectations. Specifically, if a force is applied along the
generator on the edge of the friction cone, then the disc will
not move. However, if this force is augmented by even the
slightest application of forces along either or both of the other
generators, then the disc will slip downward while the gap at
disc 2 is reduced.

Disc 1

Disc 2

Fig. 2. mode ‘la’: slide left-approach

Tables I and II show the possible contact modes for a
single contact and their relationships to the unknowns of the
instantaneous model given above.

Given n existing contacts, there are4n potential contact
modes, of which only a fraction are kinematically feasible
[9]. The set of external wrenches consistent with each mode
is a convex set obtained by setting various quantities to
zero and then removing them from the model. For example,
if one desires the set of external wrenches consistent with
maintaining rolling contact at contacti, then one setsain and
ait to zero, constrainscin to be nonnegative, and requires
cit to satisfy equation (9). Any other constraints, such as the
complementarity constraint betweenain andcin equation (8),
become redundant. If similar assumptions are made for all the
contacts, the dynamic model (11) reduces to a system of linear
equations and inequalities, which in general defines a polytope
in the space of contact forces and accelerations.



Interaction Abbreviation ain ait cin cit

separate s > 0 – = 0 = 0

slide left l = 0 > 0 > 0 = −µik cin

roll n = 0 = 0 > 0 |cit| ≤ µis cin

slide right r = 0 < 0 > 0 = µik cin

TABLE I

INTUITIVE CONTACT MODES FOR AN OBJECT INITIALLY IN CONTACT

Interaction Abbreviation ain ait cin cit

separate s > 0 – = 0 = 0

approach a < 0 – = 0 = 0

TABLE II

INTUITIVE CONTACT MODES FOR AN OBJECT INITIALLY SEPARATED

If we assume thath in equation (11) is negligible (it is
zero in the planar case), then we can rewrite the equation as
follows:

K

[

a

c

]

= Pwext (12)

[

a

c

]

≥ 0 (13)

whereK = [I2n×2n −A]. Now the polytope defined earlier
becomes a convex polyhedral cone, which can be expressed as
a system of linear inequalities in the following two equivalent
forms:

polar(F ) = {wext : Fwext ≤ 0} (14)

pos(G) = {wext : wext = Gz for somez ≥ 0}(15)

Note thatF can be computed fromK andP by a moderately
complicated procedure given in [6]. However, reformulating
equations (8,9,10,11) as a linear complementarity problemwill
reveal a very simple way to obtain the matrixG.

Before proceeding, it is worth making a few comments
about the forms of the cone given in equations (14) and (15).
Figure 3 gives an example of a cone with both representations
shown. Since everywext ∈ polar(F ) makes a non-positive
dot product with each row ofF , the rows of F can be
interpreted as outward facing normal vectors to the facets
of the polyhedral cone. The cone can be seen then as the
intersection of half-spaces and thus has its apex at the origin.
This form is referred to as “face form.” In the second form,
the columns ofG play the roll of generators of the cone. This
form is referred to as “span form.” Conversion between these
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Fig. 3. Face and Span representations of a polyhedral convexcone.fi is
the ith row of F (Face form) whilegi is the ith column ofG (Span form)

forms can be accomplished in general by linear programming
methods [10].

IV. FORMULATION OF THE MODEL AS AN LCP

The standard linear complementarity problem [7], can be
stated as follows:

Definition 1 (LCP(B, b)): Given the constant matrixB ∈
ℜm×m and vectorb ∈ ℜm, find vectorsz ∈ ℜm, y ∈ ℜm

satisfying the following conditions:

y = Bz + b (16)

0 ≤ y ⊥ z ≥ 0 (17)

This LCP is said to be of sizem.
In [11], the instantaneous dynamic model was manipulated

obtaining an LCP for spatial bodies in contact. Below we have
specialized this formulation for two dimensional systems.

This is done by eliminatingcit for all sliding contacts
and changing force and acceleration variables at all rolling
contacts. Let us rewrite the tangential acceleration at contact
i ∈ R as the sum of its positive and negative parts (i.e.,
ait = a+

it − a−

it, where a+
it, a

−

it ≥ 0). Denoting the vector
of tangential accelerations at all the rolling contacts asaRt =
[. . . ait . . .]T ∀ i ∈ R, and similarly defining the positive and
negative parts,a+

Rt anda−

Rt, we have:

aRt = a+
Rt − a−

Rt. (18)

We also define complementary slack variabless+
it = µiscin +

cit and s−it = µiscin − cit and s+
it, s

−

it ≥ 0 for i ∈ R.1 In
matrix form, the slack conditions for all the rolling contacts
are:

s+
Rt = URcRn + cRt (19)

s−

Rt = URcRn − cRt, (20)

wheres+
Rt ands−

Rt are defined analogously toa+
Rt anda−

Rt

above andUR is the diagonal matrix with diagonal elements
equal to the coefficients of static friction at the rolling contacts.

^
i
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Fig. 4. Slack variables are interpreted as the distance between the tip of a
contact forcecin and the edge of its friction cone. Leftward sliding (a+

it
> 0)

implies that the right side slack (s+

it
= 0), and therefore, the left side slack

is maximized (s−
it

= 2µiscin).

1Even though the contact can begin sliding at the instant the instantaneous
model is solved, we assume the static coefficient of friction applies. In a
simulation setting, after sliding begins, then the kinetic coefficient applies
through equation (10).



The above definitions lead to the following tangential com-
plementarity constraints at the rolling contacts:

0 ≤ a+
Rt ⊥ s+

Rt ≥ 0 (21)

0 ≤ a−

Rt ⊥ s−

Rt ≥ 0. (22)

Notice that whena+
it is positive (leftward sliding), thens+

it

must equal zero, which implies that the contact force lies on
the right edge of the friction cone as required. Conversely,
when s+

it is positive the contact force lies to the left of the
right edge of the cone implying that leftward acceleration is
impossible (i.e., a+

it = 0). The analogous statements hold for
a−

it ands−it.
Using equation (10) to eliminatecit for all i ∈ S, combining

equations (1,5,7,18,19,20), and appending equations (8,21,22),
we arrive at the following LCP formulation of the instanta-
neous dynamic model:











aSn

aRn

a+
Rt

s−

Rt











= B











cSn

cRn

s+
Rt

a−

Rt











+ b (23)

aSn, cSn, aRn, cnR, a+
Rt, s+

Rt, a−

Rt, s−

Rt ≥ 0 (24)

aT
SncSn = aT

RncnR = (a+
Rt)

T s+
Rt = (a−

Rt)
T s−

Rt = 0 (25)

where the values ofB andb can be found in [11] but are not
required in our analysis.

V. LCP-MOTIVATED CONTACT MODES IN THEPLANE

For a given contact state, one can compute a polyhedral cone
of external wrenches consistent with each contact mode de-
fined intuitively earlier. An LCP of sizen implicitly defines2n

n-dimensional convex polyhedral cones that arise as follows.
Equation (23) is rewritten withy = [aSn aRn a+

Rt s−

Rt]
T and

z = [cSn cRn s+
Rta

−

Rt]
T on the same side:

[I − B]

[

y

z

]

= b (26)

0 ≤ y ⊥ z ≥ 0. (27)

Let I ⊆ {1, ..., n} and its complementI over{1, ..., n} denote
two index sets. Ann-dimensional complementary cone is then
defined by choosing complementary elements ofy and z

to be strictly positive, (i.e., yI ,z
I

> 0). Having done this,
equation (27) requires thaty

I
= 0 and zI = 0, and so

these unknowns may be removed from equations (26) and (27)
to directly yield the following span form representation ofa
convex polyhedral cone:

Gξ = b (28)

ξ > 0, (29)

whereG ∈ ℜn×n. Note thatn is the maximum number of
positive elements out of the2n elements ofy andz. Choosing
more thann elements to be zero is physically allowable, but
degenerate and will not be considered here.

A. Equivalence Between LCP-Formulated and Intuitively-
Motivated Contact Modes

In this section, we show that the intuitively-motivated
contact modes are identical to those obtained by the LCP
formulation and that no other contact modes are possible.
We will only consider the cases in which complementarity
is satisfied strictly (all variables not set to zero are strictly
positive). The degenerate cases simply lie on the boundaries
of the non-degenerate sets. Physically they correspond to
situations such as rolling withcin = 0.

Consider the possible contact modes for theith contact.
If the contact is originally sliding, it contributes only two
unknowns,ain andcin, to the LCP defined by equations (23-
25). Since the only complementary pair of variables iscin and
ain only two contact modes are possible for a single sliding
contact:
A) Contact Maintenance (ain = 0, cin > 0)
B) Contact Separation (ain > 0, cin = 0).

While the transition from sliding to rolling can also occur,
this transition is not part of the solution of the LCP. Rather, it
is determined in a simulation setting by monitoring the relative
sliding speed and designating the contact as a rolling contact
once a minimum speed is reached.

When i is originally rolling, three pairs of complementary
variables are contributed:ain andcin, a+

it ands+
it, anda−

it and
s−it. Since there are23 = 8 ways to choose complementary
pairs at a rolling contact, one wonders how these relate to the
four contact modes, separate, slide left, roll, and slide right,
discussed earlier (table I) for rolling contacts. We will now
show that four of the eight modes are infeasible and that the
four feasible modes are identical to the definitions.
A) Contact Maintenance (ain = 0, cin > 0)

1) Rolling (a+
it = a−

it = 0, s+
it, s−it > 0): This contact

mode is feasible and is identified asrolling as follows.
Sincea+

it anda−

it are zero, strict complementarity con-
strainss+

it and s−it to be positive. This implies that the
contact forceci lies within the friction cone as required
by the Coulomb model of friction for rolling contact.

2) Sliding Left (a−

it = s+
it = 0, a+

it, s−it > 0): This contact
mode is feasible and is identified asleftward slidingas
follows. Sincea−

it is zero anda+
it positive, the motion

at the contact is leftward. Sinces+
it is zero, the contact

force ci must lie on the right edge of the friction cone
as required by Coulomb’s law, which is also consistent
with s−it nonnegative.

3) Sliding Right (a+
it = s−it = 0, a−

it, s+
it > 0): Analysis

is identical to sliding left after exchanging + and -
superscripts.

4) Infeasible (a+
it, a−

it > 0, s+
it = s−it = 0): This contact

mode is physically infeasible, sincea+
it > 0 anda−

it > 0
mean that the contact is simultaneously sliding leftward
and rightward. Also, sincecin > 0, both s+

it and s−it
cannot be0 simultaneously (see Figure 4).

B) Contact Separation (ain > 0, cin = 0)
Sincecin = 0, equations (9) and (10) requirecit to be zero,



which requiress+
it ands−it to be zero.

1) Infeasible (s+
it, s−it > 0, a+

it = a−

it = 0): Both s+
it and

s−it must be zero.
2) Infeasible (a+

it, s−it > 0, s+
it = a−

it = 0): s−it is positive.
3) Infeasible (a−

it, s+
it > 0, s−it = a+

it = 0): s+
it is positive.

4) Separation (a+
it, a−

it > 0, s+
it = s−it = 0): s+

it and
s−it are zero as needed and the positivity ofa+

it anda−

it

imply that the tangential acceleration at the contact is
unconstrained, as one would expect.

In the intuitive analysis we defined the contact mode ap-
proach (a) which is possible when there is no contact. In
the LCP-formulation, approach can be analyzed by assuming
contact exists, and then changing the sign ofain by a simple
change of variables. Once done, this case is identical to the
case of separation, sinces+

it ands−it must be zero. Therefore,
we know that only the fourth choice is feasible.
C) Contact Approach (−ain > 0, cin = 0)

1) Approach (a+
it, a−

it > 0, s+
it = s−it = 0)

The above analysis demonstrates, that the contact modes
implied by the LCP formulation are identical to those derived
intuitively.

VI. EXTENDING THE MODEL INTO 3-DIMENSIONS

The LCP formulation can be easily extended to 3D (see [11]
for details):

















aSn

aRn

a+
Rt

a+
Ro

s−

Rt

s−

Ro

















= B

















cSn

cRn

s+
Rt

s+
Ro

a−

Rt

a−

Ro

















+ b (30)

aSn,aRn,a+
Rt,a

−

Rt,a
+
Ro,a

−

Ro, cSn, cRn,

s+
Rt, s

−

Rt, s
+
Ro, s

−

Ro ≥ 0 (31)

(aSn)T cSn = (aRn)T cRn = (a+
Rt)

T s+
Rt

= (a+
Ro)

T s+
Ro = (s−

Rt)
T a−

Rt = (s−

Ro)
T a−

Ro = 0 (32)

where again the definitions ofB andb can be found in [11]
and a graphical interpretation of the slack variables is shown
in Figure 5. The LCP is of size5|R| + |S|

A. Three-Dimensional Contact Mode Analysis

Analogous to our previous contact mode analysis, consider
the possible contact modes for theith contact. If the contact
is originally sliding, it contributes only two unknowns,ain

andcin, to the LCP defined by equations (30-32). Since there
is only one complementary pair, only two contact modes are
possible for a single sliding contact:
A) Contact Maintenance (ain = 0, cin > 0)
B) Contact Separation (ain > 0, cin = 0).

Now consider the case wherei is originally rolling, five
complementary pairs of variables are contributed:ain and
cin, a+

it and s+
it, a−

it and s−it, a+
io and s+

io, and a−

io and s−io.

o

i

i

s

s

t

+

o

i

i

o

−

t
t

+

−

s
s

c

n

Fig. 5. Rolling contact friction cone with a 4 sided pyramid approximation.
Also shown are the slack variables all positive ensuring thecontact forceci

lies within the cone.

Therefore, we have25 = 32 ways to choose complementary
pairs at a rolling contact. Using similar arguments as done in
the planar analysis we can show that only 10 of these modes
are feasible. In order to save space, we will only list the 6
feasible non-degenerate modes. The degenerate modes simply
correspond to a transition between sliding direction quadrants.
The missing analysis for two of the sliding modes is analogous
to one of the sliding modes with the analysis given, and the
missing analysis for the infeasible contact modes can be easily
verified.
A) Contact Maintenance (ain = 0, cin > 0)

1) Rolling
(a+

it = a+
io = a−

it = a−

io = 0, s+
it, s+

io, s−it, s−io > 0):
This contact mode is feasible and is identified asrolling
as follows. Sincea+

it, a+
io, a−

it, and a−

io are zero, strict
complementarity constrainss+

it, s+
io, s−it, and s−io to be

positive. This implies that the contact forceci lies within
our approximation of the friction cone (as required by
the Coulomb model of friction for rolling contact).

2) Sliding Negative o, Negative t
(a+

it = a+
io = s−it = s−io = 0, s+

it, s+
io, a−

it, a−

io > 0):
Since a+

it = 0, a−

it > 0, a+
io = 0, and a−

io > 0 the
acceleration direction is somewhere within the−t, −o

quadrant. Sinces−it = s−io = 0 with s+
it > 0 ands+

io > 0,
the contact forceci must lie on the vertex of the pyramid
in the positive t, positive o quadrant, as required by
Coulomb’s law.

3) Sliding Positive o, Negative t
(a+

it = s+
io = s−it = a−

io = 0, s+
it, a+

io, a−

it, s−io > 0)
4) Sliding Negative o, Positive t

(s+
it = a+

io = a−

it = s−io = 0, a+
it, s+

io, s−it, a−

io > 0)
5) Sliding Positive o, Positive t

(s+
it = s+

io = a−

it = a−

io = 0, a+
it, a+

io, s−it, s−io > 0)
B) Contact Separation (ain > 0, cin = 0):
Sincecin = 0, the formulation requires all the slack variables
to be zero. We see that only one mode of the 16 has this
requirement. Therefore, there is only one possible separation



mode and all the other modes are infeasible.
1) Separation

(s+
it = s+

io = s−it = s−io = 0, a+
it, a+

io, a−

it, a−

io > 0):
This is the only contact mode in which all slack variables
are zero. We can also see that our frictional accelerations
are unconstrained which is expected.

Again, we would like to define the contact mode approach.
We know approach is identical to the case of separation if we
change the sign ofain. Therefore, there is only one possibility.
C) Contact Approach (−ain > 0, cin = 0)

1) Approach
(s+

it = s+
io = s−it = s−io = 0, a+

it, a+
io, a−

it, a−

io > 0):
Identical to separation.

Therefore, this friction model hasRolling, 4 sliding directions,
separation, andapproachfor possible contact modes resulting
from the complementary cones of the LCP. Intuitively, we
would have expected an infinite number of sliding directions,
but in practice this is impossible and the above friction model
and resulting LCP formulation gives us the smallest and
simplest set of sliding directions.

B. More Accurate Friction Cone Approximation

The 4-sided pyramid approximation of Coulomb’s friction
cone is a natural extension into 3D; and it is easily converted
into a LCP formulation similar to the 2D case. However, a
drawback of the 4-sided pyramid approximation is the lack of
accuracy (i.e. only 4 friction force directions). In this section,
we will analyze the possible contact modes using a more
accurate friction model developed in [12].

This friction model can be thought of as ak-sided pyramid
approximation of the friction cone (see Figure 6). This allows
for k (non-degenerate) friction force directions as opposed to
the 4 available in the previous model. In order to produce
the correct friction force at contacti, the following system of
inequalities is used

λe + af ≥ 0 cf ≥ 0 (33)

µicin − eT cf ≥ 0 λ ≥ 0 (34)
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Fig. 6. Overhead view of a sliding contact with the improved friction cone
approximation wherek = 8. Eachdi is one of the spanning vectors in the
space of generalized friction forces. Any acceleration in the shaded region
corresponds toc2 > 0.

with complimentary conditions:

(λe + af )cf = 0 (35)

(µicin − eT cf )λ = 0 (36)

where e = [1, 1, . . . , 1]T ∈ R
k with k being the number

of edges of the polyhedral approximation,cf ∈ R
k is a

vector of frictional force magnitudes in thek directions,
af = W T

f ν̇ + Ẇ
T

f ν, where af ∈ R
k is a vector of

projections of the tangential acceleration onto the friction
directions, andλ is a scalar (explained below). Appending
this system of frictional complementarity conditions to the
normal complementarity constraints, results in the following
complementarity formulation of the dynamic model at contact
i:





ain

λe + aif

µicin − eT cif



 = B





cin

cif

λ



 + b (37)

an, (λe + aif ), (µcn − eT cif ), cn, cif , λ ≥ 0 (38)

(an)T cn = (λe + aif )T cif = (µcn − eT cif )T λ = 0 (39)

where again the definitions ofB andb can be found in [12],
but are not important for this analysis.

We can then extend this model allowing for multiple con-
tacts as was done in [12]. The multiple contact LCP is of size
|S| + (k + 2)|R|.

C. Contact Mode Analysis for Improved Friction Cone Ap-
proximation

Since the analysis for a contact originally sliding is identical
to above, we will only analyze the case when the contact
is originally rolling at a contacti. It contributes k + 2
complimentary pairs. Since there are2k+2 ways to choose
complementary pairs, one wonders how these relate to the
contact modes discussed earlier. We will now show that only
2k + 4 ways are feasible, and that the feasible modes relate
directly to the modes defined earlier. Since enumeration is
impractical, we will take a more logical approach analyzing
the system.
A) Contact Maintenance (ain = 0, cin > 0)
Sliding: In order to make the transition from rolling to sliding,
‖aif‖ > 0. Since the columns ofD positively span the space
of generalized friction forces, the vectoraif contains at least
one strictly negative element. Therefore, in order to satisfy
the left inequality in (33),λi must be positive. Furthermore,
it requires λi ≥ −minξ(aξ) where aξ ∈ aif . Positive λi

in equation (36) implies the sum of the elements incif

equalsµicin. Sinceλi ≥ −minξ(aξ), this implies that the left
inequality in (33) will be zero once, twice, or never (the twice
and never cases are degenerate and discussed later). Looking
at the right inequality, we see the perpendicularity constraint
(in strict complementarity) forces the respective elementin cif

to be positive. Since this element must equalµicin, the contact
force must lie on the edge of the friction cone satisfying
Coulomb’s law for sliding.



One possible set of degenerate cases happens when two
elements ofcif are positive. This can only happen when
two elements ofaξ equal −minξ(aξ). However, even in
this situation, the left inequality in (34) still requires the
elements ofcif to sum toµicin. Therefore, the friction force
is constrained to a face of the pyramid.

Usually λi = −minξ(aξ), but if λi is > −minξ(aξ), we
have a degenerate case in which all elements ofcif are zero.
Equation (36) still must be satisfied, which can only happen if
eitherµi is zero and/orcin is zero. Since we assumedcin > 0
above, this degenerate case is only possible whenµi = 0 (i.e.
no friction).

Using the above analysis, we see the2k+1 possible modes
for maintaining contact reduce to2k + 1 feasible modes for
sliding. There arek non-degenerate cases, andk+1 degenerate
cases (one for each of the k cases where two elements of
cif are non-zero, and one for whenµ is zero). We will
now again only enumerate the non-degenerate feasible modes
below using the following: letcj ∈ cif andaj ∈ (λie + aif )
for somej = [0, . . . , k]

1) Sliding in aif direction
(cif − cj) = aj = (µicin − eT cif ) = 0
λi, cj , ((λie + aif ) − aj) > 0

Rolling: In order to remain rolling,‖aif‖ = 0. Looking at the
left inequality in (33), this leaves two choices forλi: λi > 0 or
λi = 0. If λi = 0, then the inequalities in (33) implycif > 0.
Using these results in the inequalities defined in (34), we see
(eT cif < µicin). This allows the contact force to range over
the interior surface of the k-sided friction cone approximation
(as expected in rolling).

The other choice forλi is a degenerate case.λi > 0 implies
thatcif = 0. We still must satisfy equation (36), which forces
µicin = 0. Analogous to the situation for sliding, this can only
happen with the lack of friction (i.e µi = 0).

Using the above logic, we see the2k+1 total possible modes
for maintaining contact reduce to2 modes for a rolling contact,
and we have listed the non-degenerate mode below:

1) Rolling
(λie + aif ) = λi = 0
(µicin − eT cif ), cif > 0

B) Contact Separation (ain > 0, cin = 0)
Separation: cin = 0 implies from the left inequality in (34)
that cif = 0. Using the inequalities in (34) we seeλ must be
positive. We also have unconstrained frictional acceleration
as one would expect. Therefore, the2k+1 possible modes for
contact separation are reduced to1 possible choice, shown
below:

1) Separation
cif = (µicin − eT cif ) = 0
λi, (λie + aif ) > 0

Again, we would like to define the contact mode approach. We
know from previous analysis that approach can be analyzed
by changing the sign ofain and then this case is identical to
the case of separation. Therefore, again to save space, we only

list the one feasible mode.
C) Contact Approach

1) Approach
cin = cif = (µicin − eT cif ) = 0
−ain, λi, (λie + aif ) > 0

Therefore, this friction model hasRolling, k (non-degenerate)
sliding directions, separation, andapproachfor possible con-
tact modes resulting from the complementary cones of the
LCP. We see that this friction model more accurately reflects
out intuitive idea of an infinite number of sliding directions
by discretizing the space intok-directions.

VII. C ONCLUSION

This paper presents the equality of intuitive contact modes
for rigid bodies with the cones generated from a linear
complementarity formulation of the dynamics. Using multiple
friction models, we represent the system as a linear com-
plementarity problem and show how this formulation easily
reduces to polyhedral convex cones. We analyzed these cones
determining which were physically allowable, and showed the
relationship with contact modes.
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