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Abstract—In this paper, we use a linear complementarity rest is shown in Figure 1 and is composed of the four pieces
problem (LCP) formulation of rigid body dynamics with uni-  described below.
lateral contacts to obtain definitions for contact modes. We show
how the complementary cones of the LCP correspond to each
of the intuitive contact modes: dlide right, dlide left, roll, and N
separate. These complementary cones allow us to make rigorous
definitions for contact modes in three-dimensional systems, wher
our intuitive understanding fails.

A

I. INTRODUCTION

The class of robotic tasks that today are perhaps the most
difficult to plan and execute, are those involving interanitt
contact. Even when the mathematical model of the robotic
system is assumed to be completely known, planning mdaZ9- 1. The dynamic model of a workpiece with three stationarjects
nipulation tasks is quite challenging. One of the problems
is the difficulty in determining the sets of wrenches (forces 1) Newton-Euler Equations:Let ¢;, andc;; be the normal
and moments) that should be applied to maintain or achied®d tangential components of the contact force applied by
certain desirable arrangements of contacts. Typicallsedoice Stationary object to the workpiece. Collecting all the normal

overall complexity, a rigid body model is used [1], [2], [Jhe and tangential components into the vectegs= ... cin .. .J"
unfortunate drawback of such models is that they are kno@Rd ¢. = [...cit...]7, the Newton-Euler equations can be
to suffer from solution nonuniqueness [4], [5]. written as follows:

In recent _work, despite the nonuniqueness problem, Balk- Mi = Whe, + Wic + wea + h 1)
com and Trinkle [6] developed a method for computing the )
set of all wrenches guaranteed to achieve a particular conta 9 = Gv @

state for planar parts. This approach was based on the comm@izre M = diag(m, m, J), Wex = [fz fy .7 is the
intuitive notion of a contact mode, which, roughly speakiisg external wrench (force and moment) applied to the workpiece
a qualitative description of the interactions at a set otadis. G is a Jacobian matrix that allows for different parameteri-
The problem with the intuitive development is that it doegations of SO(3), W, and W, are Jacobian matrices (also
not easily extend to three-dimensional systems. In theeplagalled “wrench matrices”) that map the contact forces tarthe
possible interactions at a contact aligle left slide right, roll, equivalent wrenches in the body-fixed frame, @&nis a vector

and separate However for a contact in a three-dimensionatontaining the velocity product terms. The columns of these
space, there is an infinite number of directions that a contafatrices are the unit wrenches associated with each of the

could slide. stationary objects. The complete definitions are:

In this paper, we use a linear complementarity problem R .
(LCP) formulation of rigid body dynamics to motivate def- W, = [ oo ] W, = { Lo b } ©)
initions of contact modes; each mode corresponds to a com- i @ n; Ti @1

plementary cone [7] of the LCP. We also show the equivalenagherer; @ n; is defined as:xn;y, — riynix andrix, riy, nix,
between the intuitively motivated contact modes and thoaedn;, are the x- and y-components®fandn;, respectively.

implied directly by the LCP. This then makes clear how contac 2) Kinematic Equations: Let ¥(q) = [... ¥,(q)...]T be
modes should be defined for three-dimensional systemshwhihe vector of distances between the workpiece and all the
is done at the end of the paper. stationary objects. The first and second time derivatives of

U,;(q) are the normal components of the relative velocity
v;n and acceleratior,;, between the workpiece and object
The dynamic model of a workpiece interacting with &a. Defining the normal velocity and acceleration vectogs—

number of objects (the three small circles) permanently ft.v;,...]7 anda, = [...a;, ...]T, allows one to write the

II. DYNAMIC MODEL IN THE PLANE



velocity and acceleration relationships at all the objactthe it is important to define an additional mode, approagh &s
following form: was done in [8].
T General manipulation tasks can be viewed as a sequence
v = Wiy, o ) of contact modes leading from an initial state to a goal state
a, = W@ v+W, v. (5) However, to successfully execute the sequence and acampli
the task, one must be able to maintain contact modes and effec
transitions between them. One approach to this is to compute
sets of forces guaranteed (under a dynamic model) to control
the contact modes. In order to do this, we should distinguish
vy, = Wb (6) between the current contact mode and the impending contact
a = W+ WtTV. @ mode. For example, given a ball at rest on a hori_zontal seyfac
the current contact mode is. In the next time instant, the
3) Normal Complementarity: The normal complemen- mode could be any df n, r, or s, but nota.
tarity constraint, arises from the fundamental observee- ph To help solidify the ideas of contact modes, Figure 2 shows
nomenon that contact must exist in order for there to beaadisc initially at rest and in contact with a small fixed disc.
nonzero contact force. That is, the solution to the dynamite static friction coefficient at the contact is assumedéo b
model may have;, > 0 if and only if a;;, = 0. Conversely, 0.4. The objective is to identify the set of external wrersche
if a contact is breaking, then,;, > 0 and¢;, = 0. These that would maintain contact with this disc and achieve occnta
constraints can be written concisely for all contacts dgved: with the other disc. The arrows are the “generators” of the
wrench cone corresponding to moda’.’ That is, any vector
in the cone can be written as a nonnegative linear combimatio
where the symbol. indicates normality,ie., alc, = 0). of the generators. The generators are consistent with our
4) Friction Law: It is assumed that Coulomb friction acts agxpectations. Specifically, if a force is applied along the
the contacts. Coulomb’s law states that at a rolling cortteet generator on the edge of the friction cone, then the disc will
contact force lies within a cone of possible contact for@s. Nnot move. However, if this force is augmented by even the
contrast, at a sliding contact, the contact force must lighen slightest application of forces along either or both of tieeo
boundary of a cone in the direction maximizing the dissgati generators, then the disc will slip downward while the gap at
of energy. Coulomb’s law can be written as follows: disc 2 is reduced.

Note thatW,” = V, ¥, whereV, denotes the partial deriva-
tive with respect to the elements of the vectprAnalogous
tangential kinematic equations that will be needed are:

0<a, Lc, >0, 8)

‘Cit| < WisCin 1€R (9) . Disc 2

cit = —sign(vVit)tikCin 1ES (10)

whereR = {i | ¥; = v;, = viy = 0} is the index set
identifying rolling contactsS = {i |¥; = v;, = 0; v # 0}
is the index set identifying the sliding contacts, amg and
1 are the static and kinetic coefficients of friction at contac
2.

In the discussion of instantaneous contact modes to follow,
it will be convenient to manipulate the equations above into

a more concise form. First, lef = [ W, W, | denote  Tapjes | and Il show the possible contact modes for a

the constraint Jacobian matrix. Solving equation (1) £0r gngle contact and their relationships to the unknowns ef th
and substituting into equations (5) and (7) yields a line@¥siantaneous model given above.

relationship between the contact accelerations and dontacgjyen 1, existing contacts, there ar® potential contact

Fig. 2. mode [a’: slide left-approach

forces: modes, of which only a fraction are kinematically feasible
a = Ac+ Bwex + h, 11) [9]. The set of external wrenches consistent with each mode

a, Cn 1 is a convex set obtained by setting various quantities to

wherea = { a, '€ { c } A=J "M "JandB = ;o4 and then removing them from the model. For example,

JM~!. The dynamic model is now given by equations (8,9f one desires the set of external wrenches consistent with
10,11) with auxiliary equations (4,6) needed only to foratel Maintaining rolling contact at conta¢tthen one sets;,, and
the model. a;y to zero, constraing;, to be nonnegative, and requires
¢;y to satisfy equation (9). Any other constraints, such as the
lIl. CONTACT MODES IN THE PLANE complementarity constraint betweep, andc¢;, equation (8),
Contact modes are combinations of relative motions at thecome redundant. If similar assumptions are made for all th
point of contact. Four possibilities are: separatisy (olling contacts, the dynamic model (11) reduces to a system ofrlinea
(n), sliding left (), or sliding right €). In addition, in the part equations and inequalities, which in general defines a ppéyt
seating problem in which contact is not quite initially amheéd, in the space of contact forces and accelerations.



[ Interaction  Abbreviation] as;n [ @it [ Cin | Cit |
separate s >0] - [ =0 =0

forms can be accomplished in general by linear programming

slide left | 0| >0|>0]| = —pcin methods [10].
roll n =0 1| =0 | >0 | |eit] < pis Cin
slide right r =0 <0] >0 = Wik Cin IV. FORMULATION OF THE MODEL AS AN LCP
TABLE |

The standard linear complementarity problem [7], can be

INTUITIVE CONTACT MODES FOR AN OBJECT INITIALLY IN CONTACT .
stated as follows:

[ Interaction  Abbreviation] a, | ai | Cim | i | Definition 1 (L CP(B, b)): Given the constant matriB €
separate s >0 - [=0]=0 Rm>m and vectorb € R'™, find vectorsz € R, y € R™
approach a <0] - [=0]=0 satisfying the following conditions:

TABLE II
INTUITIVE CONTACT MODES FOR AN OBJECT INITIALLY SEPARATED Y= Bz + b (16)
0<ylz>0 17)

If we assume that in equation (11) is negligible (it is This LCP is said to be of sizex.
zero in the planar case), then we can rewrite the equation a$n [11], the instantaneous dynamic model was manipulated

follows: obtaining an LCP for spatial bodies in contact. Below we have
a specialized this formulation for two dimensional systems.
K[ . } = Pwey (12)  This is done by eliminating:;; for all sliding contacts
and changing force and acceleration variables at all @llin
[ a } > 0 (13) contacts. Let us rewrite the tangential acceleration atawbn
c B 1 € R as the sum of its positive and negative paits.(

. . D + H
where K = [I5,x2, — A]. Now the polytope defined earlier®it = %t — @it where a;;, a;; > 0). Denoting the vector
becomes a convex polyhedral cone, which can be expresse@’d@ngential accelerations at all the rolling contactsias =

a system of linear inequalities in the following two equerl |-+ %it---]" 7 i € R, and similarly defining the positive and
forms: negative partsaj, anday,, we have:
polafF) = {wezt: Fwe,: <0} (14) aRy = a?it —ap;- (18)
PoSG) = {wey : we,r = Gz for somez > 0}(15) We also define complementary slack variabgs= ji;scin +

cit and s;; = pisCin — ¢;x and s;g,s;t >0 fori e RYIn

Note that" can be computed frork and P by a moderately matrix form, the slack conditions for all the rolling contsic

complicated procedure given in [6]. However, reformulgtin
equations (8,9,10,11) as a linear complementarity prolwém

reveal a very simple way to obtain the matiix s, = UprCrn+cri (19)
Before proceeding, it is worth making a few comments _
b g 9 Sry — URCRH — CRt, (20)

about the forms of the cone given in equations (14) and (15).

Figure 3 gives an example of a cone with both represer.1t.aticwﬁere8745t and sy, are defined analogously @}, andary,
shown. Since everyv.,; € polafF) makes a non-positive ghove andJ% is the diagonal matrix with diagonal elements

dot product with each row off’, the rows of F' can be equal to the coefficients of static friction at the rollingneacts.
interpreted as outward facing normal vectors to the facets

of the polyhedral cone. The cone can be seen then as the

intersection of half-spaces and thus has its apex at th&orig — S —

This form is referred to as “face form.” In the second form, c
A

S

the columns ofGG play the roll of generators of the cone. This
form is referred to as “span form.” Conversion between these i

2 ti
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Fig. 4. Slack variables are interpreted as the distancedmstvthe tip of a
contact forcez;;,, and the edge of its friction cone. Leftward slidingjg > 0)
implies that the right side slaclsjg = 0), and therefore, the left side slack
is maximized §;; = 2u;sCin)-
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2 1Even though the contact can begin sliding at the instantrtbintaneous
model is solved, we assume the static coefficient of frictiopligp. In a

Fig. 3. Face and Span representations of a polyhedral cormee. f; is  simulation setting, after sliding begins, then the kinetiefticient applies
the ith row of I (Face form) whileg; is theith column of G (Span form)  through equation (10).



The above definitions lead to the following tangential comA. Equivalence Between LCP-Formulated and Intuitively-

plementarity constraints at the rolling contacts:

0<af, L si >0
1L sz, >0.

(21)
0<ag, (22)

Notice that whena;; is positive (leftward sliding), thes;

Motivated Contact Modes

In this section, we show that the intuitively-motivated
contact modes are identical to those obtained by the LCP
formulation and that no other contact modes are possible.
We will only consider the cases in which complementarity

must equal zero, which implies that the contact force lies ds satisfied strictly (all variables not set to zero are #yric
the right edge of the friction cone as required. Converselypsitive). The degenerate cases simply lie on the bourdarie
when s is positive the contact force lies to the left of theof the non-degenerate sets. Physically they correspond to

right edge of the cone implying that leftward acceleratien

situations such as rolling with;, = 0.

impossible {e., aj; = 0). The analogous statements hold for Consider the possible contact modes for tHe contact.

a; ands;.
Using equation (10) to eliminatg; for all i € S, combining
equations (1,5,7,18,19,20), and appending equation,2p

If the contact is originally sliding, it contributes only ¢w
unknowns,a;,, andc;,, to the LCP defined by equations (23-
25). Since the only complementary pair of variables;jsand

we arrive at the following LCP formulation of the instantas,, only two contact modes are possible for a single sliding

neous dynamic model:

asn CSn
ARn CRn
Ml=B| |40 (23)
a S
Rt Rt
SRt AR
a T st oan,sa, >0  (24)
Sn; CSns OGRny CnRy Arys SRy ARy Sry =

agnCSn = a%ncnﬁ = (aﬁt)TS;%t = (aﬁt)Tsﬁt =0 (25)

where the values aB andb can be found in [11] but are not s;;. Since there are?

required in our analysis.

V. LCP-MOTIVATED CONTACT MODES IN THEPLANE

contact:
A) Contact Maintenance (a;, = 0, ¢;, > 0)
B) Contact Separation(a;, > 0, ¢;, = 0).

While the transition from sliding to rolling can also occur,
this transition is not part of the solution of the LCP. Rathier
is determined in a simulation setting by monitoring the tre¢éa
sliding speed and designating the contact as a rolling conta
once a minimum speed is reached.

Wheni is originally rolling, three pairs of complementary
variables are contributed;,, andc;,, a;; ands;, anda;; and
8 ways to choose complementary
pairs at a rolling contact, one wonders how these relateeto th
four contact modes, separate, slide left, roll, and sliddtri
discussed earlier (table 1) for rolling contacts. We willwno

For a given contact state, one can compute a polyhedral cam@w that four of the eight modes are infeasible and that the
of external wrenches consistent with each contact mode deur feasible modes are identical to the definitions.

fined intuitively earlier. An LCP of size implicitly defines2”

n-dimensional convex polyhedral cones that arise as follows |

Equation (23) is rewritten withy = [as, arn aj, Sz,)” and
z = [Csn CRrn Shax)T ON the same side:

il —B][‘Z]:b

0<ylz>0.

(26)

(27)

LetZ C {1,...,n} and its complemer® over{1, ...,n} denote

two index sets. Am-dimensional complementary cone is then

defined by choosing complementary elementsyofand z
to be strictly positive, i(e., y;, 27 > 0). Having done this,
equation (27) requires thagz = 0 and zz = 0, and so

these unknowns may be removed from equations (26) and (27}3)

to directly yield the following span form representation af
convex polyhedral cone:

G¢ = b
£ > 0,

(28)
(29)

where G € R™**". Note thatn is the maximum number of

positive elements out of tHan elements ofy andz. Choosing

A) Contact Maintenance (a;, = 0, ¢;, > 0)

) Rolling (a; = a;; = 0, s}, s;; > 0): This contact
mode is feasible and is identified adling as follows.
Sincea;, anda;, are zero, strict complementarity con-
strainss; ands;; to be positive. This implies that the
contact forcec; lies within the friction cone as required
by the Coulomb model of friction for rolling contact.
Sliding Left (a;; = si; =0, af;, s;; > 0): This contact
mode is feasible and is identified kftward slidingas
follows. Sincea;, is zero anda;; positive, the motion
at the contact is leftward. Sinc€; is zero, the contact
force ¢; must lie on the right edge of the friction cone
as required by Coulomb’s law, which is also consistent
with s;, nonnegative.

Sliding Right (a}f = s;; = 0, a;;, sj > 0): Analysis
is identical to sliding left after exchanging + and -
superscripts.

Infeasible ¢/, a;; > 0, s} = s;; = 0): This contact
mode is physically infeasible, sineg, > 0 anda;; > 0
mean that the contact is simultaneously sliding leftward
and rightward. Also, since;, > 0, both s} and s,
cannot bed simultaneously (see Figure 4).

2)

4)

more thann elements to be zero is physically allowable, buB) Contact Separation (a;, > 0, ¢;;, = 0)

degenerate and will not be considered here.

Sincec;, = 0, equations (9) and (10) requirg; to be zero,



which requiress;; ands;; to be zero.

1) Infeasible £, s;; > 0, afi = a;; = 0): Both s}, and
s;; must be zero.

2) Infeasible &}, s;; >0, st =a;; =0): s;, is positive.

3) Infeasible ¢;,, s;; >0, s;; = aj; =0): s is positive.

4) Separation (a};, a; > 0, s, = s;; = 0): s;; and
s;, are zero as needed and the positivityadf and a;;
imply that the tangential acceleration at the contact is
unconstrained, as one would expect.

In the intuitive analysis we defined the contact mode ap-
proach @) which is possible when there is no contact. In
the LCP-formulation, approach can be analyzed by assuming
contact exists, and then changing the sigrugfby a simple
change of variables. Once done, this case is identical to the
case of separation, sin@ég and Si_t must be zero. Therefore,iilg- 5. Rolling contact frictio_n cone with a_4 sided pyramid)apximation.

. . . so shown are the slack variables all positive ensuringcibvetact forcec;
we know that only the fourth choice is feasible. lies within the cone.
C) Contact Approach (—a;, > 0, ¢, = 0)

1) Approach (af, a;; >0, s =s;; =0)

. herefore, we hav@® = 32 ways to choose complementary
. The above analysis dempnstratgs, thgt the contact MOfEHs at a rolling contact. Using similar arguments as done i
!mp!lgd by the LCP formulation are identical to those derlilve,[he planar analysis we can show that only 10 of these modes
intuitively. are feasible. In order to save space, we will only list the 6
VI. EXTENDING THE MODEL INTO 3-DIMENSIONS feasible non-degenerate modes. The degenerate modeg simpl
rrespond to a transition between sliding direction qaats

The LCP formulation can be easily extended to 3D (see [1 e missing analysis for two of the sliding modes is analegou

for details): to one of the sliding modes with the analysis given, and the
asn CSn missing analysis for the infeasible contact modes can hifyeas
aRn CRn verified.
aztzt _B s:{?t b (30) A) Conta;t Maintenance (a;n = 0, ¢;in > 0)
ar, SRo 1) Rolling
37:% a’f{t (af = af =a; =a;;, =0, s, st, s;, s;; > 0):
SRo ar, This contact mode is feasible and is identified@tng
P as follows. Sincent, a;, a;;, anda;, are zero, strict
@Sn; AR, ARy ARer ARo» ARo)» €S0y CR1) complementarity constraing!, s, s;;, ands;_ to be
Sk SRir Skor Sro = 0 (31) positive. This implies that the contact foreglies within
our approximation of the friction cone (as required by
(asn) csn = (arn) ern = (ak,)T sk, th(_a _Coulomb model of fric_tion for rolling contact).
T o o ) Sliding Negative o, Negative t
= (aR,)" Sro = (Spy)” Ary = (8g,) ag, =0 (32) (ajt - ajo =s; =5, =0, 337 8%7 ay, ag > 0):
where again the definitions d8 andb can be found in [11] Sinceaj; = 0, a;; > 0, a, = 0, anda;, > 0 the
and a graphical interpretation of the slack variables isvsho acceleration direction is somewhere within the, —o
in Figure 5. The LCP is of sizé|R| + |S| quadrant. Since;; = s;, = 0 with s > 0 ands{, >0,
the contact force; must lie on the vertex of the pyramid
A. Three-Dimensional Contact Mode Analysis in the positivet, positive o quadrant, as required by

Analogous to our previous contact mode analysis, consider ~Coulomb’s law.
the possible contact modes for th& contact. If the contact 3) Sliding Positive o, Negative t
is originally sliding, it contributes only two unknowns,, (af = s =85 = az, =0, s, afy, ag, s;,>0)
andc;,, to the LCP defined by equations (30-32). Since there4) Sliding Negative o, Positive t
is only one complementary pair, only two contact modes are  (sf; = af, = aj = s;, =0, af, sit, s, a;, > 0)

possible for a single sliding contact: 5) Sliding Positive o, Positive t
A) Contact Maintenance (a;, = 0, ¢, > 0) (sf = sf =az =a;, =0, aff, afy, s, s;5>0)
B) Contact Separation(a;, > 0, ¢;, = 0). B) Contact Separation (a;, > 0, ¢;, = 0):

Now consider the case wheieis originally rolling, five Sincec;, = 0, the formulation requires all the slack variables
complementary pairs of variables are contributeg; and to be zero. We see that only one mode of the 16 has this
cins af; and s, a;; andsj;, af andsf, anda;, ands;,. requirement. Therefore, there is only one possible separat

20 20!



mode and all the other modes are infeasible. with complimentary conditions:
1) Separation

(s =sf =5, =s,=0, a}, af, a;, a;, > O): (Ae+ays)ey =0 (35)
This is the only contact mode in which all slack variables (icin — €Tep)A =0 (36)

are zero. We can also see that our frictional accelerationﬁ
where e

are unconstrained which is expected. L P
Again. we would like to define th ntact mod ; f edges of the polyhedral approximation; € R" is a
gain, we wou € o define the contact mode approaci, ., of frictional force magnitudes in thé directions,

We know approach is identical to the case of separation if we

_ T 7T ko
change the sign of;,. Therefore, there is only one possibility.%/ = Wi¥ + Wyv, wherea, € R" is a vector of
C) Contact Approach (—ai, > 0, c; = 0) projections of the tangential acceleration onto the fricti

directions, andX\ is a scalar (explained below). Appending
1) Approach . . . .
(st = st = s- =s- =0, af, at this system of fr|ct|on_al comple_mentanty condltlons teth
it wo it 0 P o normal complementarity constraints, results in the folimyv

Identical to separation. : ) .
o . . L complementarity formulation of the dynamic model at contac
Therefore, this friction model hdRolling, 4 sliding directions ..

= [1,1,...,1]T € R* with k& being the number

az, a., > 0):

separation andapproachfor possible contact modes resulting” Qin Cin

from the complementary cones of the LCP. Intuitively, we Xe + aiy =B| ci | +b (37)
would have expected an infinite number of sliding directjons picin — €T cif A

but in practice this is impossible and the above friction elod

and resulting LCP formulation gives us the smallest and  a,, (\e + aif), (uc, — €’ i), cn,cip, A >0 (38)

simplest set of sliding directions. . . -
B. More Accurate Friction Cone Approximation (an)” cn = (Ae+aif) cif = (pen — €' cip)" A =0 (39)
The 4-sided pyramid approximation of Coulomb’s frictiorvhere again the definitions @8 andb can be found in [12],
cone is a natural extension into 3D; and it is easily condert®ut are not important for this analysis.
into a LCP formulation similar to the 2D case. However, a We can then extend this model allowing for multiple con-
drawback of the 4-sided pyramid approximation is the lack &Cts as was done in [12]. The multiple contact LCP is of size
accuracy i(e. only 4 friction force directions). In this section, |S| + (k + 2)[R|.
we will analyze the possible contact modes using a more _ .
accurate friction model developed in [12]. C. C;ontqct Mode Analysis for Improved Friction Cone Ap-
This friction model can be thought of askasided pyramid Proximation
approximation of the friction cone (see Figure 6). Thiswabo  Since the analysis for a contact originally sliding is ideait
for k& (non-degenerate) friction force directions as opposed tw above, we will only analyze the case when the contact
the 4 available in the previous model. In order to produdse originally rolling at a contact.. It contributesk + 2
the correct friction force at contact the following system of complimentary pairs. Since there a2ét? ways to choose
inequalities is used complementary pairs, one wonders how these relate to the
contact modes discussed earlier. We will now show that only
Aetay =0 =0 (3) ok t4 ways are feasible, and that the feasible modes relate
picin — €' cp >0 A=0 (34) directly to the modes defined earlier. Since enumeration is
impractical, we will take a more logical approach analyzing
ds the system.
A) Contact Maintenance (a;, = 0, ¢;n > 0)
d, dr Sliding: In order to make the transition from rolling to sliding,
la;¢|| > 0. Since the columns ab positively span the space
of generalized friction forces, the vectas; contains at least
one strictly negative element. Therefore, in order to Batis
the left inequality in (33),\; must be positive. Furthermore,
it requires \; > —ming(ae) Whereas € a;yp. Positive \;
in equation (36) implies the sum of the elements dfy
equalsy;c;,. Sincel; > —ming (ag), this implies that the left
o d; inequality in (33) will be zero once, twice, or never (thedwi
and never cases are degenerate and discussed later). grookin
at the right inequality, we see the perpendicularity castr
Fig. 6. Overhead view of a sliding contact with the improvedtion cone  (in Strict complementarity) forces the respective elenieas ¢
approximation wheré: = 8. Eachd; is one of the spanning vectors in thetg be positive. Since this element must equal;,,, the contact
igﬁ%ip%fnging:\lz%é friction forces. Any accelerationhie shaded region force must lie on the edge of the friction cone satisfying
Coulomb’s law for sliding.

ds



One possible set of degenerate cases happens when listathe one feasible mode.
elements ofc;; are positive. This can only happen wherC) Contact Approach
two elements ofas equal —ming(ag). However, even in 1) Approach
this situation, the left inequality in (34) still requiretet Cin = Cif = (ficin — €T cif) =0
elements ofc;; to sum toyu;c;,. Therefore, the friction force —@in, Ni, (Ni€ + aif) > 0

is constrained to a face of the pyramid. Therefore, this friction model haRolling, k (non-degenerate)
Usually \i = —ming(ag), but if A; is > —ming(ag), We  gliding directions separation andapproachfor possible con-
have a degenerate case in which all elements; pfare zero. (5t modes resulting from the complementary cones of the
Equation (36) still must be satisfied, which can only hapfienjicp, we see that this friction model more accurately reflects
either ., is zero and/or;, is zero. Since we assumegd, >0 oyt intuitive idea of an infinite number of sliding direct®n

above, this degenerate case is only possible when 0 (i.e. by discretizing the space inte-directions.
no friction).

Using the above analysis, we see fife! possible modes VII. CONCLUSION
for maintaining contact reduce @& + 1 feasible modes for  This paper presents the equality of intuitive contact modes
sliding. There aré non-degenerate cases, dndl degenerate for rigid bodies with the cones generated from a linear
cases (one for each of the k cases where two elementscofmplementarity formulation of the dynamics. Using muéip
c;y are non-zero, and one for whem is zero). We will friction models, we represent the system as a linear com-
now again only enumerate the non-degenerate feasible mopksnentarity problem and show how this formulation easily
below using the following: let; € ¢;y anda; € (\;e +a;f) reduces to polyhedral convex cones. We analyzed these cones

for somej = [0,..., k] determining which were physically allowable, and showesl th
1) Sliding in a,; direction relationship with contact modes.
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Ai = 0. If \; = 0, then the inequalities in (33) imply;; > 0.
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