
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Analysis of Feature Configuration Workflows

Classen, Andreas; Hubaux, Arnaud; Heymans, Patrick

Publication date:
2009

Link to publication
Citation for pulished version (HARVARD):
Classen, A, Hubaux, A & Heymans, P 2009, 'Analysis of Feature Configuration Workflows', Doctoral Consortium
Co-Chair of RE'09 -- The 17th IEEE International Requirements Engineering Conference, Atlanta, Georgia,
USA, 31/08/09 pp. 381-382.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 20. Nov. 2024

https://researchportal.unamur.be/en/publications/6a7729e7-299d-4a94-ae8d-bd9eb8a5ec26

Analysis of Feature Configuration Workflows

Andreas Classen∗ , Arnaud Hubaux, and Patrick Heymans
PReCISE Research Centre, Faculty of Computer Science,

University of Namur, 5000 Namur, Belgium

E-mail: {acs,ahu,phe}@info.fundp.ac.be

Abstract

We recently introduced feature configuration workflows,
a formalism for modelling the complex configuration pro-
cesses in software product line engineering. In earlier work
we identified obstacles to efficient tool support for which
we now outline the main concepts of a solution. These take
the form of a set of analysis tasks that can be performed on
feature configuration workflows.

1 Introduction

In software product line engineering [6], feature dia-
grams (FDs) [4, 7] are used to model the variability of the
product line (PL), i.e. its set of products. The configuration
process is the process of gradually deciding which features
of the FD should be included in a product and which should
not [6, 1]. It is thus a bridge between the domain engineer-
ing and the application engineering processes.

A configuration process can be a complex and lengthy
endeavour [2]. In order to provide a modelling and rea-
soning framework for this process, we built on our earlier
work on formal semantics for FDs [7] and proposed feature
configuration workflows (FCWs) [3], a formalism that com-
bines the workflow language YAWL [8] with FDs. FCWs
relax the requirement of a striclty sequential configuration
process as originally imposed in multi-level staged config-
uration (MLSC) [1].

An FCW, such as the one shown in Figure 1, is a YAWL
workflow where tasks (such as t or v) are annotated
with FDs. The configuration process follows the workflow
and an FD of the PL can only be configured when the task to
which it is linked is executed. Generally, a task is assigned
to a stakeholder, and the FD that is configured during the
task captures her responsibility. The second kind of node
in a workflow is the condition (e.g. I , u or �)
which designates a point in time. Linking an FD to a condi-
tion means that the FD has to be fully configured when the

∗FNRS Research Fellow.

f

h

i j

g

t

task
stop

a

b c

d e

u v

task stop

<<requires>>

<<equals>>

fd1 = fd2 =

Figure 1. An example FCW.

condition is reached—it is the FD’s stop.
The individual FDs are actually modules of an overall

FD, and there are usually links between the features of dif-
ferent modules, such as the� equals� link between fea-
tures d and i in Figure 1. Since the task and the stop of
an FD are not necessarily connected, this allows to have
situations in which a configuration decision is postponed.
The decision of including or excluding the feature d, for in-
stance, does not have to be taken during task t , because
the person responsible of task v is also able to make this
decision, her feature i being equal to d.

Although the principal implementation strategies for
FCWs are known [3], there is one problem that needs to be
solved before an efficient implementation can be provided.
It is to make sure that a decision is only postponed if we
are certain that it will be taken at a later time. The deci-
sion of whether or not to select feature b during task t ,
for instance, cannot be postponed, since there is no way this
choice could be made afterwards, meaning that the task’s
stop condition � would not be satisfied.

2 Module types: towards a normal form

A first way of preventing unsatisfiable stop conditions is
to prevent them when the model is being constructed. This
way, they cannot occur when the workflow is executed. To
this end, we propose the following classification of modules
of an FCW (a module being an FD with a task and a stop).

An invalid module is a module for which, in at least one
path of the workflow, the stop precedes the task. This would
mean that the configuration of the module had to be finished
before the person responsible for it can even get a chance to
configure it. In the example of Figure 1, if the stop of fd2

were u , then this would be an invalid module.
A closed module is a module where task and stop imme-

diately follow each other (fd2 in the example). This corre-
sponds to the original definition of a module in MLSC: the
configuration of an FD has to be done in ‘one shot’.

All other modules, such as fd1 in Figure 1, are called
open. In their case, certain configuration decisions might be
postponed. Having an open module, however, only makes
sense if between its task and stop, there are tasks of other
modules that can configure it through inter-module links.
Modules for which this is indeed the case are called justi-
fied. Concretely, fd1 is justified open because its feature d
is equal to a feature of a later module.

Now consider a workflow with an invalid module. In
fact, it might still have a valid execution: if it has no
variability to begin with (e.g. an FD with only and-
decompositions) or in case the module is fully configured
through inter-module links by the modules that appear be-
fore its stop is reached. Furthermore, workflows with non-
justified open modules also have valid executions: those
where the configuration of each module finishes in its as-
signed task, ahead of the stop. Therefore, invalid modules
as well as open modules that are not justified can be consid-
ered modelling errors, and can be corrected by turning the
FCW into a normal form. The normal form of an FCW is
an FCW with the same executions but with closed and jus-
tified open modules only. An editor for FCWs would have
to offer ways to check whether an FCW is in normal form.

These concepts can all be formally defined for the FCW
syntax and can automatically be checked either by an anal-
ysis of the underlying workflow (which is, in fact, a Petri
net [8]) or through approximation by syntactical checks.
Armed with such verifications, a workflow can be trans-
formed into normal form before being executed, and the
execution engine can be fed with precalculated information.

3 Runtime prevention

Even with an FCW in normal form, a configuration tool
has to perform additional analyses in order to prevent the
process from deadlocking. Indeed, if a module is justified
open, this means that certain decisions can be postponed,
but the configuration tool still has to determine which ones.
If a stakeholder was allowed to proceed without having
made a decision she had to, once the stop of her module
is reached, the process would deadlock and would have to
be rolled back to the point where the decision was forgotten.
Put more generally, the problem is to determine in each task
which are the choices to be made at least.

This can be done by analysing the boolean formula en-
coding of the FD d, Γd, in order to determine for each fea-
ture whether it is propositionally defined [5] in terms of the
subsequent features. Concretely, if a feature f is defined
by an expression over fa, fb and fc, then if fa, fb and fc

are features that belong to modules that occur on all subse-
quent paths, the choice of f can be left open. In addition,
if fa, fb and fc only appear on some subsequent paths, but
a mechanism to force workflow execution into taking these
paths can be used, the choice of f can also be postponed.
This process is recursive, since fb might itself be defined in
terms of features in subsequent modules, and runs until the
choices of fa, fb and fc are fixed, inducing the choice for f .
Definability can be checked with a single UNSAT [5].

4 Conclusion

We recalled FCW, a notation previously defined in [3],
and discussed how deadlocks might arise during execution
of an FCW—something that has to be avoided in practice.
The contribution of this paper is a proposal of how this can
be achieved, namely by (i) analysing the FCW statically,
requiring it to be in normal form, and (ii) performing checks
at runtime for decisions that are about to be postponed. An
implementation of this is underway.

Acknowledgements. Sponsored by the Interuniversity
Attraction Poles Programme of the Belgian State, Belgian
Science Policy (MoVES project) and the FNRS.

References

[1] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged con-
figuration through specialization and multi-level configura-
tion of feature models. Software Process: Improvement and
Practice, 10(2):143–169, 2005.

[2] S. Deelstra, M. Sinnema, and J. Bosch. Product derivation
in software product families: a case study. J. Syst. Softw.,
74(2):173–194, 2005.

[3] A. Hubaux, A. Classen, and P. Heymans. Formal modelling of
feature configuration workflows (to appear). In Proceedings
of SPLC’09, 2009.

[4] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-21, SEI, Carnegie
Mellon University, November 1990.

[5] J. Lang and P. Marquis. On propositional definability. Artifi-
cial Intelligence, 172(8-9):991–1017, 2008.

[6] K. Pohl, G. Bockle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer, July 2005.

[7] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bon-
temps. Feature Diagrams: A Survey and A Formal Semantics.
In RE’06, pages 139–148, September 2006.

[8] W. van der Aalst and A. ter Hofstede. Yawl: yet another work-
flow language. Information Systems, 30(4):245–275, 2005.

