
Software Reliability Analysis of NASA Space Flight Software: A
Practical Experience

Harish Sukhwani1, Javier Alonso1,2, Kishor S. Trivedi1, and Issac Mcginnis3

1Department of Electrical & Computer Engineering, Duke University, Durham, USA

2Research Institute of Advanced Studies on Cybersecurity, University of León, León, Spain

3NASA Goddard Space Flight Center, Greenbelt, MD, USA

Abstract

In this paper, we present the software reliability analysis of the flight software of a recently

launched space mission. For our analysis, we use the defect reports collected during the flight

software development. We find that this software was developed in multiple releases, each release

spanning across all software life-cycle phases. We also find that the software releases were

developed and tested for four different hardware platforms, spanning from off-the-shelf or

emulation hardware to actual flight hardware. For releases that exhibit reliability growth or decay,

we fit Software Reliability Growth Models (SRGM); otherwise we fit a distribution function. We

find that most releases exhibit reliability growth, with Log-Logistic (NHPP) and S-Shaped

(NHPP) as the best-fit SRGMs. For the releases that experience reliability decay, we investigate

the causes for the same. We find that such releases were the first software releases to be tested on a

new hardware platform, and hence they encountered major hardware integration issues. Also such

releases seem to have been developed under time pressure in order to start testing on the new

hardware platform sooner. Such releases exhibit poor reliability growth, and hence exhibit high

predicted failure rate. Other problems include hardware specification changes and delivery delays

from vendors. Thus, our analysis provides critical insights and inputs to the management to

improve the software development process. As NASA has moved towards a product line

engineering for its flight software development, software for future space missions will be

developed in a similar manner and hence the analysis results for this mission can be considered as

a baseline for future flight software missions.

Index Terms

Defect Reports; Flight Software; Incremental Development; Software Reliability; Software
Reliability Growth Models

I. Introduction

Today’s mission-critical systems are becoming increasingly dependent on software controls

for performing critical functions. One prominent example is space missions [1], [2].

Unfortunately, software failures are one of the most dominant causes of failures in today’s

mission-critical systems [3], [4]. Software failures in such missions can cause mission

NASA Public Access
Author manuscript
IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017
December 20.

Published in final edited form as:
IEEE Int Conf Softw Qual Reliab Secur. 2016 ; 3: 386–397. doi:10.1109/QRS.2016.50.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

performance degradation or even complete mission failure, incurring a heavy scientific and

economical penalty.

Flight software is the software that executes on-board a spacecraft. It is an embedded real-

time software system, a domain that has experienced an exponential growth, where the

software size grows by an order of magnitude every ten years [1]. This has been particularly

challenging in the areas of spacecraft, aircraft and automobiles. The main source of growth

is the increasingly ambitious requirements and the advantages of situating new functionality

in software rather than hardware [1], [5]. Another area of concern is the increasing

complexity of the flight system architecture, which gives rise to increasingly complex

interdependent variables that could cause a failure, thus making the testing of such systems

extremely challenging.

Software faults (“bugs”) are the underlying causes of software failures. These defects can be

inserted at any software life-cycle phase. In order to maximize the likelihood of mission

success, the quality of software needs to be assessed and evaluated at each phase of the

software life-cycle. This can prevent the propagation of defects from one phase to another.

Furthermore, measuring software quality in terms of software reliability at any time of the

software life-cycle will become a powerful tool for project managers to decide if it is worth

moving to next phase or spend extra time and resources on current phase to guarantee

specific levels of software quality.

One of the most valuable repository of information captured during the software life-cycle

phases are defect (bug) reports. These defect reports are used to track defects found in any

phase of the software life-cycle, including development, testing as well as mission phase.

Although most organizations use defect reports solely for bug-tracking purposes [6],

analysis of these reports provide insights into the software development process [7], and

hence frequently used to infer the quality of software. Note that in the software life-cycle

context, “defects” in a broad sense include faults, errors or any other anomaly that surfaced

in the software that may or may not cause a failure. Another practical way to understand is

that “defect” is a necessary change to the software [5].

Software Reliability Growth Models (SRGM) provide a set of well-developed techniques to

assess reliability growth, using data collected during the testing phase. It has been used

successfully to count number of faults remaining, estimate and predict reliability during the

test and operational phase [5]. Although SRGMs are black-box technique, they have been

successfully applied in projects at IBM, NASA, JPL, Hewlett-Packard, CISCO, US Air

Force and many such organizations [8]. Since there are challenges involved in applying

SRGMs to datasets collected from real-world systems, we attempt to provide a clear

approach to apply SRGMs to defect reports from development stage, and also share our

experience and challenges encountered.

In collaboration with NASA Goddard Space Flight Center (GSFC), we analyzed the defect

reports for the on-board software of a recently launched space mission. These reports were

generated during the development and testing phases (pre-launch phase) of the mission. The

software development for this project spanned several years, and the software was developed

Sukhwani et al. Page 2

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

in multiple releases. Each release spanned across several software life-cycle phases such as

requirements analysis, design, code, test, integration and verification. We also received a

document that was used as a running document for the team to share updates across the team

and project managers, which was updated throughout the mission development. We were

particularly interested in the details regarding the development goals of each build, the

timeline for delivery of the releases, timeline for receiving the various hardware setups, and

log of problems experienced during the development. Overall, this document helped us

understand the defect reports better, and we attempt to use this information to interpret our

analysis results.

The major contributions of this paper are as follows. First, we correlate the software

reliability analysis of major releases with the activities performed and problems encountered

during the development of those releases. We find that some of the major problems

encountered include integration issues with new hardware platforms, issues with new

releases of COTS software and problems encountered in hardware test environment. We find

these reasons consistent with known observations in the flight-software development domain

[1], [9]. Second, we identify important software releases to perform our analysis. Since there

were 35 different releases, we first identify the major and minor releases by reviewing the

development goals and timeline of each release. For the set of releases addressing the same

set of requirements, we find that such releases were developed and tested in a sequence.

Hence from the software reliability analysis perspective, we analyze such releases together

as a set. Third, from the software reliability analysis of the major software releases, we find

that the Log-Logistic (NHPP) and S-Shaped (NHPP) are the best-fit models across most of

the releases. Thus, in the future, it may be sufficient to consider only a subset of SRGMs.

To the best of our knowledge, this is the first paper analyzing defects reports from a flight

software during the pre-launch phase. We feel that there would be a peculiar pattern to the

development of such mission-critical software for flight domain, and hence these results can

be considered as a baseline for similar analysis of the data from other flight software

missions. Overall, software reliability analysis provides useful insights and inputs to the

management, and hence improve the process.

The paper is structured as follows. First, in Section II, we provide a summary of the defect

reports, including the description of important fields, field frequency analysis of the relevant

fields, and plots to aid visualize the data. Next, in Section III, we provide software

engineering details specific to this mission. In Section IV, we provide our analysis approach,

followed by detailed results in Section V. We discuss our results in Section VI, followed by

related work in Section VII, and conclude our paper in Section VIII.

II. Summary of the Defect Reports

The software engineering team at GSFC uses a custom-made defect tracking tool (let us call

it Defect Tracking Tool (DTT)). This tool is used to track defects and change requests across

all the software life-cycle phases and releases. We obtained the reports for one of their

recently launched mission. The reports span across more than five years, covering multiple

Sukhwani et al. Page 3

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

releases of software. In this section, we provide a summary of the important fields of the

dataset, along with the field frequency analysis of some of the critical fields.

The dataset includes reports filed against the flight software as well as simulator developed

for the same mission. Since we are focusing on flight software development, we subset and

analyze reports related to the flight software only.

We summarize the important fields that are present in the reports along with a brief

description in Table I. For fields that were not relevant for this paper, we skipped them for

brevity. Also for the field values that were missing, we have replaced them with the tag

(missing). In the following figures, we provide field frequency analysis of some of the

relevant fields. Such analysis is useful to obtain a high-level view of the dataset, before

delving into software reliability analysis.

A. DTT Type v/s Severity

From Figure 1, we see that 63% of reports are “Change Requests”, and 33% of reports are

“Defects” reports. External DTT refers to reports against external products or subsystems,

and they are a tiny share of defect reports.

B. DTT Type v/s Build Found

Since these reports were collected during the pre-launch phase of the mission, the software

builds signify major or a minor milestone in the development, and it is safe to assume that

only the final release (build 4.7.2) of this software (and patches thereafter) was deployed in

the mission. However, we can still refer to some of the major builds as “releases”, since they

signify a major milestone of the project. In this paper, we use the terms “build” and

“release” interchangeably.

We found that reports span across 35 different builds. Since this number is large, in Figure 2

we choose to display only the builds against which more than 5 reports were filed. We

provide more details about the major software releases in Section III-A.

From Figure 2, observing the count of reports against each build, it seems that builds 1.0.0,

2.0.0a, 2.0.0b, 3.0.0, 4.0.0 and 4.1.1 correspond to major software releases. We also observe

that builds up to 4.1.1 have a large share of “Change Requests”, with following builds

having increasing share of “Defects”. Note that builds developed late in the mission

development, such as 4.2.x and later, seem to have an unreasonably large number of

“Change Requests”.

C. DTT Type v/s Phase Found

We notice that very few reports are filed for phases like “Preliminary Design”, “Unit Test”,

and “System Acceptance”. Hence we merged the reports in these phases as follows:

“Preliminary Design” and “Detailed Design” are merged into “Design”; “Code” and “Unit

Test” are merged into “Code&Test”; “System Acceptance” and “System Validation” are

merged into “System Validation”; “Spacecraft I&T”, “Customer” and “Operations &

Maintenance” are merged into “Customer”. Thus all the phases are as shown in Figure 3.

Note that the development process in each release passes through all the above-mentioned

Sukhwani et al. Page 4

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

phases. From Figure 3, observing across all the releases, we notice that more “Change

Request” reports are filed in the earlier phases (up to Build Integration) and more “Defect”

reports in the later phases of software-life-cycle. This confirms the observations made in

literature [1], [10] that more defects emerge as the subsystems are integrated and verified

(Build Integration and Verification phases) and latter phases.

D. Timeline plot

Since the reports span across multiple releases and phases, it is useful to visualize the

development time spent in each phase of each release as a two-dimensional timeline. The

information regarding the calendar dates signifying the start and end dates for each release

was not readily available, we decided to infer this information based on the information

captured in the defect reports. In Fig. 4, we plot the Date Created of the defects along with

the Build Found and Phase Found. Also since there are many releases, we clubbed the

releases that would be considered as a logical entity together (discussed further in Section

III-A), which also makes it easier to visualize. We plot only the defect reports, since we plan

to use this plot in our analysis in the later sections. Since the development spans across

several years, we divided the plot into three parts by the releases.

From the timeline plot, we can see the multiple phases in each build overlap each other. This

means that activities corresponding to different phases like “Build Verification” and “Build

Integration” are conducted in parallel, as opposed to in sequence. Also we see an overlap in

activities across the consecutive software releases, but only by a few weeks. Also from the

density of the defects, it seems that the development activity was busier during the builds 3.x

and 4.0–4.1.x (Part II of the timeline) as compared to other releases.

Since the software is developed in multiple releases, and since the phases within each release

seem to overlap in time, we can ascertain that the software is developed in an incremental

life-cycle (as opposed to waterfall software life-cycle model). We are not sure if each

increment followed an iterative life-cycle.

III. Mission-Specific Software Engineering Details

Flight software provides mission-level capabilities such as guidance, navigation and control

(GN&C); command and data handling (C&DH); entry, descent, and landing (EDL); and

instruments for science and environmental observation [1]. Flight software also consists of

“infrastructure” or “platform” software that provides important services and is customized

and reused across space missions. For the mission we are analyzing, flight software uses

Core Flight System (cFS) system, which is a mission-independent, platform-independent

flight software environment [11] developed at NASA-GSFC. It mainly consists of Core

Flight Executive (cFE), which is the main foundation of the framework, along with OS

abstraction layer. This allows platform-independent software to be developed for the mission

and then ported to mission hardware when it is ready. Readers are welcome to review further

details about cFS in [11].

Prior to performing our analysis, it is important to understand the development activities

performed in each release. Also within each release, the development is divided into several

Sukhwani et al. Page 5

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

phases, such as those listed in the description of the field Phase Found in Table I. This

section summarizes our understanding.

A. Releases (Builds)

The document provided by NASA contained a summary of each build, which listed the

subsystem modules that were developed, the hardware target, and the purpose of that build.

Our goal of reviewing this information was to identify the major and minor builds, and also

the relationship between the minor and major builds (whether the minor builds were planned

or unplanned, and the reason for the same). Unfortunately much of the details provided were

confidential and cannot be reproduced here. However, in Table II, we provide a summary

that would be useful for the analysis conducted in this paper. Since there are many builds,

we provide summary only for builds with more than 5 defects.

We observe that the hardware target evolves during the development. The first few releases

are developed for the commercial off-the-shelf (referred to as COTS) hardware, usually

consisting of the main platform with no peripheral hardware. In this case, it was provided by

the vendor supplying the hardware platform for the main flight. The next set of releases are

built for an emulation platform (referred to as EM) where new flight hardware peripheral are

added as they are received from the suppliers. This platform converges closer to the final on-

board hardware. Then later releases are developed for the FlatSat platform, which is useful

for performing functional / interface tests, system-level tests and procedure validation

(referred to as closed-loop testing) [12]. The last few releases are tested on the actual flight

hardware. We also notice that the software release before the new build target (say 2.0.0a

before EM target) consists of code to integrate the new hardware platform. Overall, our

takeaway is that we need to be aware of the build target and take into account the major

goals of each build, before comparing the software reliability analysis results across builds.

We also observe that in many cases, the minor builds (like 3.1.0, 3.2.0) are branched out

during the development of the major build (like 3.0.0) to add features that were not

completed before handing over the major build to the test team. We assume that while the

testing of the major build was in progress, defects found were corrected in the minor build as

well. In most of such scenarios (examples in Section V-B), we see that in releases following

the release of the major build (like 3.0.0), most of the defects are filed against the minor

build (like 3.1.0). For the exceptional cases, we feel that this could be a clerical error. In

summary, in cases where the requirements for minor builds were subset of the requirements

for the major build, we consider merging the reports for minor builds and major builds, and

analyze them together as a set. Thus, the builds separated by double lines in Table II are

analyzed as a set. Note that we skip the analysis for releases 2.1.0 and 2.2.0, since they had

very less defects and those builds were created for an external test team.

B. Phases

Phase Found field in our dataset refers to the phase in which the defect is introduced. We

attempted to find the set of activities that are defined for each of the phases, unfortunately no

clear definitions were available either in the documents provided to us or in the NASA

Software Assurance Standards document [13]. However, software assurance standards does

Sukhwani et al. Page 6

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

refer to the ISO/IEC 12207-1995 standards for defining the software life-cycle processes.

Hence, we referred to the latest ISO/IEC 12207-2008 standards [14] to seek a better

understanding. We skip the details for brevity.

IV. Software Reliability Analysis: Our Approach

In this section, we present our approach for software reliability analysis. Our objective is to

assess and evaluate the software reliability growth achieved in each of the software releases,

and select the set of growth models that fits the best, from which we can estimate the

number of defects remaining at the time of release, and the failure intensity curve over the

entire observation period.

We now present our analysis approach. Further details about the techniques are provided in

the subsequent sections.

1. Select all the defects belonging to the specific release. Follow additional

guidelines from Section III-A related to merging of defects from different

releases.

2. From the collection, remove the defects that were found before the official

delivery date of the release to the testing team.

3. From the collection, remove the defects that were filed by an independent test

team (like Independent Verification & Validation (IV&V)). Since such teams are

assigned to investigate specific kind of defects [13] (e.g., defects found while

performing static analysis) and since they work independently, these defects

should be analyzed separately if needed.

4. Assuming time between defects as time-between-failures, extract it in units of

days, and perform Trend Analysis (see Section IV–A).

a. If a significant growth or decay trend is detected, we determine the best

Software Reliability Growth Model (SRGM) candidate and discuss the

results (see Section IV–B).

b. If no trend is detected, it is possible to assume that the time-between-

failures are independent and identical distributed. Hence, distributional

analysis allows us to determine the underlying time distribution

between defects determining the best distribution candidate (see Section

IV–C).

A. Trend Analysis

From the software reliability perspective, trend analysis provides relevant insights about the

evolution of the reliability during the software life-cycle. Note that it is necessary to

establish a growth or decay trend before attempting to fit software reliability growth models

[15]. We perform trend analysis using Laplace Trend Test [5], [15] since it is the most

widely used of all the other trend estimation techniques [15], [16]. Moreover, the trend

evolution also provides hints about the most suitable software reliability growth model

candidates [5]. We perform two-sided Laplace trend test at 5% level of significance.

Sukhwani et al. Page 7

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

B. Software Reliability Growth Models

For the software releases that exhibit reliability growth, SRGMs help us understand the

underlying defect correction process. We would like to see if the underlying defect

correction process changes from release to release. From the best-fit SRGM model, we can

estimate the number of faults remaining, and estimate and predict the reliability during the

test and (with some assumptions) during operational phase. Moreover, from NASA GSFC’s

perspective, we would like to establish the baseline failure intensity characteristics that have

been observed over several releases of this mission. This baseline information can then be

used to plan resources for their future missions, and help manage their project more

effectively.

We use the SMERFSˆ3 [17] tool to fit the following SRGM models: Geometric Model

(GEO), Jelinski-Moranda (JM), Littlewood-Verrall linear (LVL), Musa Basic (MB), Musa

Logarithmic (ML). We use SREPT [18] to fit the following finite failure NHPP SRGM

models with the time to detect an individual defect having the following distributions:

Weibull (WB), S-shaped (S), Log-logistic (LogL). We skipped the Littlewood-Verrall

quadratic (LVQ) model from SMERFSˆ3, since it had a valid fit on very few of our datasets.

Refer to [5] for the formulas of mean-value and failure-intensity functions of the SRGMs.

Note that the test intensity is assumed to be constant for the entire duration of the testing

period of each release. We also assume that the operations performed during testing are

representative of operations performed during the flight.

We outline the steps specific for this analysis.

1. Extract the time-between-failures datasets (same as outlined in Section IV).

2. Input this data into the SRGM tools (via text file) and obtain the parameter value

point estimates for all the models. We choose Maximum Likelihood Estimate

(MLE) technique for parameter estimation, since it is considered to be more

robust and yields estimators with good statistical properties [19].

3. Compute the estimated mean-value function and failure-intensity function for all

the models.

4. Evaluate goodness-of-fit using Mean Square Error (MSE), Mean Absolute

Scaled Error (MASE), and Mean Absolute Percentage Error (MAPE) criteria.

5. Compute failure intensity at the end of the observation period .

The performance of an SRGM is judged by its ability to fit the observed fault removal data

(referred as “Historical predictive validity” in IEEE Std. 2008 [20]) as well as predict

satisfactorily the future behavior of the software fault detection / correction process from

observed data (referred as “Future predictive accuracy” in IEEE Std. 2008) [8]. We would

have preferred to perform future predictive accuracy using techniques like u-plot and

prequential likelihood [5], however, for most of the builds considered in our dataset, there

are no data points after the test phase of the same build. Hence, we perform goodness-of-fit

tests using historical predictive validity approach.

Sukhwani et al. Page 8

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Using the historical predictive validity approach, we perform goodness-of-fit using three

techniques: mean squared error (MSE), Mean Absolute Percentage Error (MAPE) and Mean
Absolute Scaled Error (MASE). Since MSE is sensitive to outliers, it is useful to consider

the other two criteria [21], [22]. We rank the models for every dataset using these three

criteria, and use the median rank to determine the best model. In cases where median-ranks

clash, we give preference to models that are observed to fit well on our datasets, viz. S-

Shaped (NHPP), Log-Logistic (NHPP) and Musa-Basic.

As an example, we provide analysis results for Build 4.0.× – 4.1.× in Table III. Thus we see

that the top three best-fit models are S-Shaped (NHPP), Log-Logistic (NHPP) and Weibull

(NHPP). We provide the best-fit models for all releases in Table V.

C. Distributional Analysis

For the datasets for which we cannot establish a trend, we assume all the samples of “Time

between Failure (TBF)” are from independent and identically distributed (i.i.d.) random

variables, in order to identify an underlying distribution. We consider the three popular

distributions, viz. Exponential, Weibull and Gamma, since they are widely used and

applicable to time-between-failure datasets in software reliability applications. We again use

Maximum Likelihood Estimation (MLE) technique to determine the point-estimate of the

parameter values. The density function for the distributions that we used for our analysis are

as follows:

where α is a shape parameter and λ is the scale parameter.

We use Kolmogorov-Smirnov (KS) test as a goodness-of-fit test. It is distribution free, in the

sense that the critical values do not depend on the specific distribution being tested [23].

Also KS test is recommended for continuous distributions. We perform KS test at 5% level

of significance.

Based on the KS test criteria, if multiple distributions are fitting the random sample, we use

Akaike information criterion (AIC) to determine the best candidate among distributions [24].

AIC balances the value attained by the max. log-likelihood value with number of model

parameters. The model with lowest AIC can be chosen as the best model. However, since the

AIC values are too close, it is wiser to choose a simpler distribution with lesser number of

parameters.

Sukhwani et al. Page 9

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

V. Software Reliability Analysis : Results

From the timeline plot (Figure 4), we notice that the defects found in the same release

overlap in time across life-cycle phases such as “Code&Test”, “Build Integration”. From the

discussion in Section III, although we would expect that the different phases of each release

work in a water-fall like development model, that does not seem to be the case. Hence, we

analyze defects across all the life-cycle phases in a single release. Also, as discussed in

Section III-A, we have grouped the releases that had the same requirements to start with. In

order to satisfy a critical assumption that software reliability growth models are applied only

during phases where defects are found and no new substantial code is added, we consider

only the defects filed after the date the build is released to the testing team.

In this section, we present the results obtained from the software reliability analysis. First,

we summarize our results (Subsection V-A). Then, we peek into the analysis of the specific

releases to seek a deeper assessment of our results (Subsection V-B).

A. Summary of the Results

Following the approach presented in Section IV, we first perform trend analysis on the time-

between-failures on the major releases and present our results in Table IV. We notice that

most releases exhibit reliability “Growth” trend. Some releases exhibit “Decay” trend and

we provide insights into the possible reasons / causes in Section V-B.

Next, for the releases which exhibit reliability growth or delay, we fit software reliability

growth models. Otherwise we fit distribution (renewal) models. We summarize our findings

in Table V. We present the top three best-fit models along with the estimated failure intensity

(FI) at the end of the observation period Tn. The model parameters for

the SRGM models are consistent with the expressions found in [5]. We also plot the

estimated failure intensity curves for the best-fit model for all the builds in Figure 5.

Thus we notice that among the SRGMs, Log-Logistic (NHPP) and S-Shaped (NHPP)

feature among the best-fit models across most of the releases. Also since the estimated FI

values are fairly consistent across the top three models, we could consider fitting only a

subset of models for future analysis.

B. Analysis of specific releases

In this section, we provide the trend plot and timeline plot for the subset of releases that did

not achieve a “growth” trend and summarize our findings from the document provided by

NASA. Note that the vertical dotted line in the timeline plots indicate the official start of the

testing period for the respective build.

1) Release 1.0.0—The timeline and trend plot are provided in Figure 6. We see that a lot

of build integration activity was performed at the end of cycle and hardly any build

Sukhwani et al. Page 10

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

verification activity was performed after that, thus this release achieved no growth. This

correlates with a steady climb in the trend plot. From the records, it seems that around the

time of mass defects, the test team was rushing towards the deadline for handing over Build

2.0.0a to the test team (see Figure 4a).

2) Release 2.3.x—The timeline and trend plot are provided in Figure 7. From the records,

Build 2.3.0 was missing one critical software component, which was essential for the FlatSat

hardware testing for Release 3.0 onwards. Once the component was ready, it was integrated

in Build 2.3.1 along with the fixes from Build 2.3.0, and rest of testing proceeds. Also

around mid-November, the team received a new revision of the Interface Control Document

(ICD) for one of the critical subsystem, which needed to be accommodated before the Build

3.0.0 development. Such modifications delayed the testing of Build 2.3.1, thus resulting in

burst of defects starting December. Similar to Release 1.0.0, this release involved a lot of

Build Integration activity, presumably for the upcoming FlatSat testing. Thus this release

fails to achieve reliability growth as well.

3) Release 3.x—The timeline and trend plot are provided in Figure 8. We note that Build

3.0 is a large build, covering most of the cFS application. However, it runs into issues early

on, mainly due to a missed cFE release deadline (cFE is developed by a separate team). It

was ready to be incorporated in Build 3.1, however due to major changes involved, it was

eventually integrated for Build 4.0.

Several technical issues encountered during this release. The first issue is a software defect

in one of the components, causing the watchdog timer to perform power-on reset instead of

processor reset. This component was sourced from an external vendor. So a code work-

around was applied, till the vendor released a new version of the code, which was integrated

in Build 4.0. Another issue was a hardware problem in the FPGA of one of the

communication devices on the FlatSat. This was also fixed before releasing Build 4.0 to the

test team.

We find that the Builds 3.1, 3.2 and 3.3 were created along the way, to address missing

requirements and testing from the previous releases. We see a progressively decreasing

defect count with each build. Also from the document and the defect reports, we find that

large number of components are addressed in this release. Although the document lists

several issues, we found it hard to correlate with the trend plot, and thus we are unable to

explain the peaks observed in the trend plot. We also tried excluding the first one or two

months of data points and then perform trend analysis, but we still find that the release

exhibits no growth trend. Overall, due to constant changes in the build throughout the

testing, the build failed to achieve growth. Also since many critical pieces (particularly the

new cFE release) were pushed to Release 4.0, the testing team switched to the new release

right away.

4) Release 2.0.0a—The timeline and trend plot are provided in Figure 9. This build

mainly focuses on the integration of interfaces for C&DH, GN&C, to prepare for the next

release that will be tested on the emulation hardware. We are unable to explain the spike of

defects in around mid-March. From the timeline and trend plot, the activity seems well

Sukhwani et al. Page 11

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

spread throughout the phases. It is trending towards reliability growth eventually, but the

testing activity switched to a new release right after.

VI. Discussion

In this section, we discuss implications of performing software reliability analysis on flight

software systems. We also discuss some of the problems specific to flight software

development that affected the software reliability growth, and whether software reliability

analysis helped spot such problems.

A. Results obtained from Software Reliability analysis

We summarize some of the pertinent results obtained from performing the software

reliability analysis. From the trend analysis results, we obtain a first-hand idea of whether

the build achieved a growth. In addition, the Laplace trend plot helps us spot any potential

issues occurring during the development (see examples in Section V-B). Then we attempt to

fit SRGMs, which provides us with the parameters for estimated failure intensity and

mean value functions. We then plot the failure intensity trend experienced across the

testing phase, which provides insights into the testing process. If a similar failure intensity

trend is expected in a future project, this plot can help us estimate the staffing requirements

across the life-cycle [25]. From our interaction with NASA-GSFC and from some of the

staffing related issues mentioned in the records, performing such analysis on a baseline

mission could be a valuable asset for the future missions. This could help correlate activities

performed in each release with the Laplace trend observed and the nature of the best-fit

growth models. Unfortunately, we could not obtain any records regarding the staffing during

the testing process, so we could not perform any further analysis. SRGM model parameters

for finite-failure models also provide the estimated number of defects remaining at the end

of testing period.

Overall, since different releases have different goals, it is hard to assess the reliability of the

overall mission by modeling reliability growth in each release. Nonetheless, software

reliability analysis for each release provides pertinent insights that could be useful for

managing the mission development.

B. Problems encountered during flight software development

While investigating reasons for lack of growth achieved in specific software releases, we

came across variety of qualitative issues that caused problems during the software

development. Our observations are consistent with those highlighted in the literature [1],

[26], [9], [2], [10]. In this subsection, we summarize some of our observations and discuss

whether software reliability analysis techniques were helpful to spot such issues.

1) Integration Issues—One of the most common integration issue was missing or

delayed hardware components on a test setup or final flight hardware. Since these hardware

components are usually procured from external agencies, delays occur in selecting the right

vendor and/or agreeing upon the requirements. This delays the contractors’ delivery

schedule. Also if there is a mismatch between the expected hardware specification and the

Sukhwani et al. Page 12

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

actual hardware delivered, then flight software code needs to be reworked to accommodate

this. Another form of integration issue was shifting the test process across different hardware

setups over the course of the development. In order to support the new hardware platform,

new integration code was added in the releases prior to moving onto new hardware platform

(e.g., Releases 2.0.0a, 2.3.x in our case). We find that such releases usually fail to achieve

reliability growth.

2) Hardware test environment issues—From the event logs and list of resources

allocated to each build development, it seems that the team ran into a few issues related to

managing the test environment. One issue was the delay in procuring an EM setup from

another mission project, thus resulting in testing delays. Another issue was a limited number

of hardware setups available for COTS testing. In one case, the test setup’s computer started

malfunctioning, resulting in teammates queuing up on other setups.

3) External Software—This mission was built on top of a flight software platform (called

Core Flight Executive (cFE)). Note that three different releases of cFE were used during the

mission development. One of the issues encountered was a change in the code directory

structure of a new cFE release (coinciding with Release 2.0.0a), resulting in restructuring the

flight software code and thus delaying the new release. Another issue was the delay in an

awaited cFE release, resulting in postponing the testing with new cFE release for the next

flight software release. Overall, issues related to using COTS software for flight software

has been highlighted in the literature [9], [10] as well. However, the efforts of developing a

reusable flight software system like cFE has been regarded a step in the right direction [1],

[27], and we need to evolve our development process to accommodate this better.

C. Threats to validity

For our research, we were provided the defect reports for the mission and provided a

document to aid our understanding of the reports. The results of our analysis are subjected to

the validity of the information collected in the defect reports, whether the fields have been

populated properly by the team. One of the most important fields for our analysis is the

Build Found field. As a sanity check, we verified that the points close-by are also classified

with the same Build Found. Also, we found only one defect report that had Created Date
way beyond the defects from the same Build, and hence we discarded it as a typo error.

Another important field was the Created Date. We did not find any reports missing this field.

Another important field was the Title, which carried a keyword indicating the defects filed

by a separate test team (like IV&V, V&V). We exclude such defects from our analysis. The

information from rest of the fields would not influence the analysis results directly. For the

fields that were missing any value, we replaced them with (missing). Regarding our

analysis, the steps and results were first cross-verified by authors based at Duke University,

and then the results were shared with collaborators at NASA-Goddard for final validation.

External validity of our results are limited by the domain of interest (flight software) and by

the organization (NASA-GSFC) [26]. Just like flight software, software for other mission-

critical systems like aircraft or even drones run on complex embedded systems and are

developed in an incremental manner, and hence we conjecture that the future studies will

Sukhwani et al. Page 13

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

help generalize the conclusions to similar systems. One of the best examples would be the

future flight software missions developed at NASA-GSFC using the cFE/cFS system.

D. Product line approach in Flight Software

Every space mission is unique in terms of mission requirements. Traditionally flight

software has been developed in a “clone and own” manner, where new mission flight

software was ported from a previous successful mission’s flight software, and adopted with

new hardware platform. However, this resulted in laborious, error prone and excessive

software requirements and design changes. Since 2005, the Flight Software systems branch

at NASA Goddard took a product line approach to FSW development and developed a Core

Flight Software (cFS) System [11]. This integrates with Core Flight Executive (cFE) and OS

abstraction layer and enables teams to write software independent of the underlying system

hardware and OS. This platform has already been reused in several flight software missions

supported by GSFC, and has significantly reduced the cost and effort of developing such

missions. This is the future of flight software development for years to come.

Although the mission we analyzed is developed using cFS system, we still find issues as

listed in Section VI-B. Thus mission management should continue improving the processes

to ensure good software reliability characteristics across all the releases.

VII. Related Work

Although flight software domain has been at the forefront of the software reliability

research, there are few empirical studies performing software reliability analysis for flight

software defects found during the development phase.

Recent empirical studies in the area of flight software anomalies has been conducted by

Duke University in collaboration with NASA - Jet Propulsion Laboratory (JPL) [28], [22].

In this study, flight software defects from 18 space missions has been analyzed for their fault

type characteristics. The first paper [28] identifies the relationships between fault type and

characteristics like failure effects, and failure risk. It also studies the fault type proportions

across the mission duration. For a subset of 8 space missions, the second paper [22] analyzes

the time-between-failure characteristics of the failures observed, by first performing trend

analysis and then fitting either SRGMs or distribution fn. depending on the trend analysis

results. Also the analysis was conducted separately for different fault types, and results were

interpreted accordingly. The analytical techniques developed and used in [22] form the seeds

of the analysis of our paper. However, note that the above two papers analyze software

defects that have been found during the operational phase of the mission, whereas in our

paper, we analyze reports from the development phase of a mission. Also we analyze

software developed in multiple increments, which means we perform reliability analysis at

every major milestone of the development.

Anomalies found during operational phase of NASA-JPL missions are analyzed by two

other research groups as well. The first group [26] analyzed safety-critical anomalies from

seven deep-space missions using Orthogonal Defect Classification (ODC) [7] techniques.

The second group [9] analyzes anomalies found in three long-life spacecraft missions using

Sukhwani et al. Page 14

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

timeline of anomalies observed and frequency of various fields. In addition to flight

software, these two papers analyzed anomalies across ground software, flight procedures,

and ground procedures as well, thus providing a wider view of the challenges encountered

during the mission operation from software reliability perspective. However, these papers

provide limited view of the nature of defects and challenges encountered during the

development phase, and also they do not perform any statistical defect modeling analysis.

Authors in [29] analyze anomalies found in four mission-critical software systems used by

European Space projects. In this research, 240 anomaly reports found during both

development and operation phase were analyzed using ODC. However, the authors found the

projects were developed in waterfall manner, hence was not developed in multiple releases.

Also they do not provide any relevant details, such as the hardware platforms used for

testing.

VIII. Conclusion and Future Work

We performed software reliability analysis of the defect reports from the development life-

cycle of a flight software. We observed that software for this mission has been developed

across multiple releases, spanning 35 build versions. After detailed investigation, we found

that a set of major and minor builds that were created to address same set of requirements

can be analyzed as a single software release, and thus we analyzed 9 software releases of

this mission. We find that many of the releases exhibit either growth or no trend. For the

releases that experience decay, we perform causal analysis and find that the main cause of

problems were integration issues, issues with COTS and hardware test environment. These

observations are consistent with those in the literature. Since the flight software development

has taken a product line approach, it is clear that the future GSFC missions will be

developed in a similar pattern, and hence we feel that these results can be used as a baseline

for future flight software missions. We also provide clear guidelines on performing such

analysis on similar mission-critical software application, and also share the challenges we

experienced. Overall, software reliability analysis provides techniques to model the defect

trend and estimate the number of defects remaining. However, it provides limited insights

into the day-to-day challenges encountered during testing. As an ongoing investigation, we

are currently classifying defect reports using Orthogonal Defect classification (ODC) [7],

[26] and fault triggers classification [30]. Also, there have been attempts in the recent

literature [31] to design software reliability modeling techniques for software developed in

an incremental and iterative life-cycle. We understand that it is possible that such models

would provide better fit for our dataset. As a future work, we plan to compare their

performance with the traditional SRGMs.

Acknowledgments

This research was supported by the NASA NSSC grant no. NNX14AL90G. This research was also supported in
part by IBM under a faculty award and an IBM student fellowship. This work was supported by the Spanish
National Institute of Cybersecurity (INCIBE) according to the Rule 19 of the Spanish Digital Trust plan (Spanish
Digital Agenda) and University of León under contract X43.

Sukhwani et al. Page 15

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

References

1. “NASA Study on Flight Software Complexity”, NASA office of Chief Engineer. Tech Rep. 2009.
[Online]. Available: http://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf

2. Madden WA, Rone KY. Design, Development, Integration: Space Shuttle Primary Flight Software
System. ACM Comm. Sep.1984 27(9):914–925.

3. Leveson NG. Role of Software in Spacecraft Accidents. Journal of Spacecraft and Rockets. 2004;
41(4):564–575.

4. Foreman V, Favaro F, Saleh J. Analysis of Software Contributions to Military Aviation and Drone
Mishaps. Reliability and Maintainability Symp (RAMS). Jan.2014 :1–6.

5. Lyu M. Handbook of Software Reliability Engineering IEEE Computer Society Press McGraw Hill.
1996

6. Li J, Stålhane T, Conradi R, Kristiansen J. Enhancing Defect Tracking Systems to Facilitate
Software Quality Improvement. IEEE Software. Mar; 2012 29(2):59–66.

7. Chillarege R, Bhandari I, Chaar J, Halliday M, Moebus D, Ray B, Wong M-Y. Orthogonal Defect
Classification - A Concept for In-Process Measurements. IEEE Trans on Soft Eng. Nov; 1992
18(11):943–956.

8. Musa, J. Software Reliability Engineering : More Reliable Software, Faster and Cheaper. 2nd.
AuthorHouse; 2004.

9. Green NW, Hoffman AR, Garrett HB. Anomaly Trends for Long-Life Robotic Spacecraft. Journal
of Spacecraft and Rockets. Jan-Feb;2006 43(1):218–224.

10. Malcom H, Utterback HK. Flight Software in the Space Department: A Look at the Past and a
View Toward the Future. John Hopkins APL Technical Digest. 1999; 20(4):522–532.

11. Aeronautics, N., S. A. (NASA). Core Flight System. 2015. [Online] Available: https://
cfs.gsfc.nasa.gov/

12. Michael Wright, NA., S. A. (NASA). NASA FlatSat. 2008. [Online] Available: http://ntrs.nasa.gov/
archive/nasa/casi.ntrs.nasa.gov/20080040717.pdf

13. NASA. May Software Assurance Standard 8739.8. 2005. [Online]. Available: http://
www.hq.nasa.gov/office/codeq/doctree/87398.pdf

14. Systems and software engineering – Software life cycle processes. ISO; Geneva, Switzerland:
2008. no. ISO/IEC 12207:2008

15. Goel AL, Yang K. Software Reliability and Readiness Assessment Based on the Non-
Homogeneous Poisson Process. Advances in Computers. 1997; 45:197–267.

16. Gaudoin O. Optimal Properties of the Laplace trend test for Software Reliability models. IEEE
Trans on Rel. Dec; 1992 41(4):525–532.

17. Farr, W. SMERFS Cubed. http://www.slingcode.com/smerfs/downloads/, accessed: 2016-04-01

18. Ramani S, Gokhale SS, Trivedi KS. SREPT: Software Reliability Estimation and Prediction Tool.
Performance Evaluation. 2000; 39(14):37–60.

19. Pham H. Handbook of Reliability Engineering Springer. 2003

20. IEEE Recommended Practice on Software Reliability. IEEE STD 1633-2008. Jun.2008 :c1–72.

21. Hyndman RJ, Koehler AB. Another Look at Measures of Forecast Accuracy. Int Journal of
Forecasting. 2006; 22(4):679–688.

22. Alonso J, Grottke M, Nikora A, Trivedi K. The Nature of the Times to Flight Software Failure
during Space Missions. IEEE Int Symp on Soft Rel Eng (ISSRE). Nov.2012 :331–340.

23. NIST. Kolmogorov-Smirnov Goodness-of-fit test. http://www.itl.nist.gov/div898/handbook/eda/
section3/eda35g.htm, accessed: 2016-04-01

24. Akaike H. A New Look at the Statistical Model Identification. IEEE Trans on Auto Control. Dec;
1974 19(6):716–723.

25. Kan, S. Metrics and Models in Software Quality Engineering. 2nd. Addison-Wesley; 2002.

26. Lutz R, Mikulski I. Empirical Analysis of Safety-Critical Anomalies during Operations. IEEE
Trans on Soft Eng. Mar; 2004 30(3):172–180.

Sukhwani et al. Page 16

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

http://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf
https://cfs.gsfc.nasa.gov/
https://cfs.gsfc.nasa.gov/
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080040717.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080040717.pdf
http://www.hq.nasa.gov/office/codeq/doctree/87398.pdf
http://www.hq.nasa.gov/office/codeq/doctree/87398.pdf
http://www.slingcode.com/smerfs/downloads/
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm

27. Wilmot J. A Core Plug and Play Architecture for Reusable Flight Software Systems. IEEE Int Conf
on Space Mission Challenges for IT. 2006

28. Grottke M, Nikora A, Trivedi K. An Empirical Investigation of Fault Types in Space Mission
System Software. IEEE/IFIP Int Conf on Dependable Systems and Networks (DSN). Jun.2010 :
447–456.

29. Silva N, Vieira M. Experience Report: Orthogonal Classification of Safety Critical Issues. IEEE Int
Symp on Soft Rel Eng (ISSRE). Nov.2014 :156–166.

30. Cotroneo D, Grottke M, Natella R, Pietrantuono R, Trivedi K. Fault Triggers in Open-Source
Software: An Experience Report. IEEE Int Symp on Soft Rel Eng (ISSRE). Nov.2013 :178–187.

31. Fujii T, Dohi T, Fujiwara T. Towards Quantitative Software Reliability Assessment in Incremental
Development Processes. 2011 33rd Int Conf on Soft Eng (ICSE). May.2011 :41–50.

Sukhwani et al. Page 17

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Fig. 1.
Frequencies by DTT Type and Severity

Sukhwani et al. Page 18

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Fig. 2.
Frequencies by DTT Type and Build Found

Sukhwani et al. Page 19

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Fig. 3.
Frequencies by DTT Type and Phase Found field

Sukhwani et al. Page 20

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Fig. 4.
Timeline of defects reports founds across various Builds and Phases in the dataset

Sukhwani et al. Page 21

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Fig. 5.
Plot of Estimated Failure Intensity (FI) for all Builds

Sukhwani et al. Page 22

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Fig. 6.
Release 1.0.0

Sukhwani et al. Page 23

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Fig. 7.
Release 2.3.x

Sukhwani et al. Page 24

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Fig. 8.
Release 3.x

Sukhwani et al. Page 25

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Fig. 9.
Release 2.0.0a

Sukhwani et al. Page 26

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Sukhwani et al. Page 27

TABLE I

Description of Important Fields In The DTT

Field Name Description

DTT ID A sequential identification no. that uniquely identifies a DTT report

Type Type of report, whether it is defect report or change request. A defect report is used to formally document an error in
configuration-controlled product. A change request report is used to formally document a request to change a
configuration-controlled product.

Title & Description Explanation of defect or change request report

Status Current status of the report. Possible options are “Submitted”, “Assigned”, “In Work”, “Work Completed”, “Build
Integration”, “In Test”, “Test Completed” “Ready for Closure”, “Closed”, “Closed with Defect, “On Hold”, or
“Rejected”.

Subsystem Subsystem corresponding to the report

Phase Found Software life-cycle phase in which the defect is found / change report is filed. Possible options are “Requirements
Analysis”, “Preliminary Design”, “Detailed Design”, “Code”, “Unit Test”, “Build Integration”, “Build Verification”,
“System Acceptance”, “System Validation”, “Spacecraft I&T”, “Customer”, “Operations & Maintenance”. Collated
into “Requirements Analysis”, “Design”, “Code&Test”, “Build Integration”, “Build Verification”, “System
Validation”, “Customer”

Build Found The software build in which the defect is found / change report is filed

Severity Severity based on the originator’s assessment of the impact on the FSW-related activities. Possible options are
“Critical”, “Moderate”, “Minor”.

Date Created Date when the report is submitted

Date Assigned Date when a software developer is assigned responsibility to investigate and resolve the report.

Date Work Completed Date when the DTT solution and related work is completed by the assigned.

Date Closed Date when the DTT is closed.

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Sukhwani et al. Page 28

TABLE II

Summary of Builds Strategy

Build (Re-lease) Name Major Goals Build Target (Hardware)

1.0.0 Infrastructure build to setup the build process and code repository. Inherit flight
software (FSW) infrastructure code from a previous mission and integrate with the
flight software applications currently developed

COTS

2.0.0a Implement / test most GN&C interfaces, also functional C&DH interfaces for smooth
integration of FSW for Emulation (EM) boards

COTS

2.0.0b Further development of C&DH, GN&C modules EM

2.1.0 Build for Engineering Test Unit (ETU) team. Fix defects and missing requirements
from 2.0.0b

EM

2.2.0 Further development of C&DH. Fix defects and missing requirements from 2.1.0 EM

2.3.0 Build for FlatSat testing. Fix defects and missing requirements from 2.x builds EM

3.0.0 Complete all cFS applications FlatSat

3.1.0, 3.2.0 Fix defects in release 3.0.0 FlatSat

4.0.0 Meet all flight software requirements and start Integration & Test. Deliver final cFS
applications and configurations

FlatSat

4.1.0, 4.1.1 Complete cFS applications, and other tasks that were not completed by release 4.0.0 FlatSat

4.2.x Release for regression testing. Also cleanup before end-to-end testing FlatSat

4.3.0 – 4.6.x Set of cleanup builds during end-to-end testing FlatSat, Flight Hardware

4.7.0, 4.7.1 Set of cleanup builds during pre-ship Flight Hardware

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Sukhwani et al. Page 29

TA
B

L
E

 II
I

Su
m

m
ar

y
of

 S
rg

m
 A

na
ly

si
s

Fo
r

B
ui

ld
 4

.0
.X

 –
 4

.1
.X

M
od

el
C

ri
te

ri
a

V
al

ue
C

ri
te

ri
a

R
an

k
M

ed
ia

n
R

an
k

R
M

SE
M

A
SE

M
A

P
E

R
M

SE
M

A
SE

M
A

P
E

G
E

O
11

.4
7

9.
90

0.
40

4
4

5
4

JM
14

.7
4

12
.8

6
0.

61
5

5
6

5

LV
L

28
8.

16
28

7.
40

10
.0

2
8

8
8

8

M
B

16
.4

9
13

.9
4

0.
39

6
6

4
6

M
L

20
.0

5
16

.8
9

0.
38

7
7

3
7

W
B

9.
25

7.
56

0.
37

3
3

7
3

S
4.

80
3.

92
0.

12
3

1
1

2
1

L
og

L
7.

99
5.

77
0.

11
2

2
1

2

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Sukhwani et al. Page 30

TABLE IV

Laplace Trend Test Results for Software Releases

Release Sample Size Laplace factor Reliability Trend

1.0.0 16 4.0202 Decay

2.0.0a 28 −0.0551 No Trend

2.0.0b 43 −3.103 Growth

2.3.x 14 4.204 Decay

3.x 120 −1.0613 No Trend

4.0.x – 4.1.x 144 −3.6373 Growth

4.2.x 42 −1.9817 Growth

4.3-4.6.x 34 −1.6726 No Trend

4.7.x 6 0.2799 No Trend

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Sukhwani et al. Page 31

TA
B

L
E

 V

Su
m

m
ar

y
of

 B
es

t-
Fi

tti
ng

 M
od

el
s

fo
r

So
ft

w
ar

e
R

el
ea

se
s

B
ui

ld
 A

na
ly

si
s

A
na

ly
si

s

M
od

el
 R

an
k

 (
fa

ilu
re

s/
da

y)
M

od
el

 P
ar

am
et

er
s

(r
ou

nd
 t

o
3

di
gi

ts
)

1
2

3
1

2
3

1
2

3

1.
0.

0
SR

G
M

L
og

L
(N

H
PP

)
W

ei
bu

ll
(N

H
PP

)
–

0.
12

05
0.

10
42

–
α=

23
.4

85
,

λ
=

0.
00

7,
k

=
 3

.9
69

N
 =

 1
68

.8
38

,
α

=
 1

.1
5,

β
=

 3
e-

4

–

2.
0.

0a
D

is
tn

.
W

ei
bu

ll
G

am
m

a
–

0.
05

64
0.

12
14

–
λ

=
0.

44
2,

α=
0.

66
1

λ
=

0.
11

8,
α=

0.
54

–

2.
0.

0b
SR

G
M

L
og

L
(N

H
PP

)
S (N

H
PP

)
G

eo
0.

03
47

0.
06

74
0.

22
03

α=
44

.4
31

,
λ

=
0.

02
2,

k=
3.

24

α=
45

.2
1,

β=
0.

03
7

β=
0.

97
9,

D
=

0.
55

4

2.
3.

x
SR

G
M

(n
o

fi
t)

–
–

–
–

–
–

–
–

3.
x

D
is

tn
.

G
am

m
a

W
ei

bu
ll

–
0.

06
24

In
f

–
λ

=
0.

25
2,

α=
0.

48
8

λ
=

0.
79

3,
α=

0.
62

1
–

4.
0.

x
–4

.1
.x

SR
G

M
S (N

H
PP

)
L

og
L

(N
H

PP
)

W
ei

bu
ll

(N
H

PP
)

0.
10

73
0.

05
61

0.
16

31
α=

15
7.

85
,

β=
0.

01
0

α=
15

2.
91

,
λ

=
0.

00
6,

k=
2.

80
5

N
=

18
2.

01
,

α=
1.

15
,

β=
0.

00
15

4.
2.

x
SR

G
M

M
L

S (N
H

PP
)

W
ei

bu
ll

(N
H

PP
)

0.
13

95
0.

06
83

0.
10

64
b 0

=
52

.4
22

,
b 1

=
0.

00
6

α=
46

.5
9,

β=
0.

01
8

N
=

55
.8

89
,

α=
1.

15
,

β=
0.

00
3

4.
3-

4.
6.

x
D

is
tn

.
G

am
m

a
W

ei
bu

ll
–

0.
02

2
0.

06
1

–
λ

=
0.

05
9,

α=
0.

45
4

λ
=

0.
38

7,
α=

0.
58

2
–

4.
7.

x
D

is
tn

.
G

am
m

a
W

ei
bu

ll
E

xp
.

0.
04

04
0.

06
26

0.
12

λ
=

0.
05

4,
α=

0.
45

3
λ

=
0.

35
2,

α=
0.

58
4

λ
=

0.
12

IEEE Int Conf Softw Qual Reliab Secur. Author manuscript; available in PMC 2017 December 20.

	Abstract
	I. Introduction
	II. Summary of the Defect Reports
	A. DTT Type v/s Severity
	B. DTT Type v/s Build Found
	C. DTT Type v/s Phase Found
	D. Timeline plot

	III. Mission-Specific Software Engineering Details
	A. Releases (Builds)
	B. Phases

	IV. Software Reliability Analysis: Our Approach
	A. Trend Analysis
	B. Software Reliability Growth Models
	C. Distributional Analysis

	V. Software Reliability Analysis : Results
	A. Summary of the Results
	B. Analysis of specific releases
	1) Release 1.0.0
	2) Release 2.3.x
	3) Release 3.x
	4) Release 2.0.0a

	VI. Discussion
	A. Results obtained from Software Reliability analysis
	B. Problems encountered during flight software development
	1) Integration Issues
	2) Hardware test environment issues
	3) External Software

	C. Threats to validity
	D. Product line approach in Flight Software

	VII. Related Work
	VIII. Conclusion and Future Work
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V

