
This is an extended version of the article ”Michael Eischer and Tobias Distler. 2021. Egalitarian Byzantine Fault Tolerance. In Proceedings of
the 26th Pacific Rim International Symposium on Dependable Computing (PRDC ’21), Perth, Australia, 1–4 December 2021.”

Egalitarian Byzantine Fault Tolerance
(Extended Version)

Michael Eischer, and Tobias Distler
Friedrich-Alexander University Erlangen-Nürnberg (FAU)

Email: {eischer,distler}@cs.fau.de

Abstract—Minimizing end-to-end latency in geo-replicated sys-
tems usually makes it necessary to compromise on resilience,
resource efficiency, or throughput performance, because exist-
ing approaches either tolerate only crashes, require additional
replicas, or rely on a global leader for consensus. In this paper,
we eliminate the need for such tradeoffs by presenting ISOS, a
leaderless replication protocol that tolerates up to f Byzantine
faults with a minimum of 3f + 1 replicas. To reduce latency
in wide-area environments, ISOS relies on an efficient consensus
algorithm that allows all participating replicas to propose new
requests and thereby enables clients to avoid delays by submitting
requests to their nearest replica. In addition, ISOS minimizes
overhead by limiting message ordering to requests that conflict
with each other (e.g., due to accessing the same state parts) and
by already committing them after three communication steps if
at least f + 1 replicas report each conflict. Our experimental
evaluation with a geo-replicated key-value store shows that these
properties allow ISOS to provide lower end-to-end latency than
existing protocols, especially for use-case scenarios in which the
clients of a system are distributed across multiple locations.

Index Terms—State-Machine Replication, Byzantine Fault Tol-
erance, Geo-Replication, Leaderless Consensus

I. INTRODUCTION

Distributing a replicated service across several geographic
sites offers the possibility to make the service resilient against
a wide spectrum of faults, including failures of entire data
centers. Unfortunately, traditional state-machine replication
approaches [1], [2] in such environments incur high latency
due to electing a leader replica which is then responsible for
establishing a total order on all incoming client requests. Rely-
ing on a single global leader replica in wide-area environments
comes with the major drawbacks of (1) creating a potential
performance bottleneck, (2) disadvantaging clients that reside
at a greater distance to the current leader, and (3) introduc-
ing response-time volatility, because overall latency can vary
significantly depending on where the acting leader is located.
Although it is possible to rotate the leader role among repli-
cas [3], this technique only slightly mitigates the problem since
the rotation process itself introduces coordination overhead in
the form of (at least) an additional communication step.

Several existing works [4], [5], [6], [7], [8] address these
issues by building on the insight that for guaranteeing lin-
earizability [9] it is not actually necessary to totally order all
client requests that are submitted to a service. Instead, the
efficiency of message ordering in many cases can be improved
by taking the semantics of requests into account [10] and
only ordering those requests that conflict with each other,
for example due to operating on the same application-state
variables. In recent years, applications of this principle led

to a variety of protocols that explore different points in the
design space of replicated systems. Specifically, this includes
protocols that have been designed to tolerate crashes [5], [6],
Byzantine fault-tolerant (BFT) protocols achieving efficiency
at the cost of additional replicas [4], [8], as well as protocols
that rely on a global leader replica to ensure progress in case
of disagreements between different replicas [7]. While on the
one hand illustrating the effectiveness and flexibility of the
underlying concept, this variety of protocols on the other hand
also means that existing approaches require compromising on
resilience, resource efficiency, or throughput performance.

To eliminate the need for such tradeoffs, our goal was to
develop a protocol that combines all three desirable properties
while still providing low latency. The result of our efforts
is ISOS, a state-machine replication protocol that tolerates
Byzantine faults, demands only the minimum group size
necessary for BFT in asynchronous environments (i.e., 3f + 1
replicas to tolerate f faults), and operates without global leader
replica. To minimize end-to-end latency in geo-replicated
settings, ISOS offers a fast path that enables replicas to execute
client requests after three consensus communication steps if
either (a) there currently are no conflicting requests or (b) each
conflict is identified by at least f +1 replicas. In the (typically
rare) case in which none of the two scenarios applies, ISOS
switches to a fallback path that is then responsible for resolv-
ing the discrepancies between replicas. Since neither of the
two paths in ISOS requires the election of a global leader, we
refer to this concept as egalitarian Byzantine fault tolerance.

In summary, this paper makes the following contributions:
(1) It presents ISOS’s efficient BFT consensus algorithm that
only orders conflicting requests and avoids a global leader dur-
ing both normal-case operation as well as conflict-discrepancy
resolution. (2) It shows how ISOS’s request-execution stage
is able to safely operate with a bounded state, and this
despite the fact that faulty replicas possibly introduce request-
dependency chains of infinite length. (3) It details ISOS’s
checkpointing mechanism that enables the protocol to garbage-
collect consensus information about already ordered requests;
garbage collection is a relevant problem in practice, but often
not implemented in other protocols (e.g., EPaxos [5]). (4) It
formally proves the correctness of both ISOS’s agreement and
execution stage. Notice that due to space limitations, we limit
Section IV-H to the presentation of a proof sketch; the full
proof (as well as a pseudocode summary of ISOS’s agreement
protocol) is available in Appendix A. (5) It experimentally
evaluates ISOS with a key-value store in a geo-distributed
setting deployed in Amazon’s EC2 cloud.
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II. SYSTEM MODEL

In this work we focus on stateful applications that are
replicated across multiple servers for fault tolerance. To remain
available even in the presence of data-center outages, the
replicas of a system are hosted at different geographic sites, as
illustrated in Figure 1. Clients of the service typically reside
in proximity to one of the replicas, often within the same data
center. As a result of such a setting, overall response times in
our target systems are dominated by the latency induced by the
state-machine replication protocol executed between servers.

We assume that the replicated service must provide safety
in the presence of Byzantine faults as well as an asynchronous
network. To further be able to ensure liveness despite the FLP
impossibility [11], there need to be synchronous phases during
which the one-way network delay between all pairs of replicas
is below a threshold ∆, which is known to replicas. Clients
and replicas communicate over the network by exchanging
messages that are signed with the sender’s private key, denoted
as 〈...〉σi

for a sender i. Recipients immediately discard
messages in case they are unable to verify the signature.

Clients invoke operations in the application by submitting
requests to the server side. With regard to the execution of
requests, we define a predicate conflict(a, b) which holds if
there is an interdependency between two requests a and b.
Specifically, two requests are in conflict with each other
if their effects (i.e., changes to the application state) and
outcomes (i.e., results) vary depending on the relative order in
which they are executed by a replica. In addition, we define
that conflict(a, b) always holds for requests issued by the
same client. Several previous works [5], [6], [8], [12], [13],
[14] relied on similar predicates and concluded that for many
applications determining request conflicts is straightforward.
In key-value stores, for example, requests typically contain the
key(s) of the data set(s) they access. Consequently, a write can
be identified to conflict with another write or read to the same
key. In contrast, two reads of the same data set are independent
of each other due to not modifying application state and their
results not being influenced by their relative execution order.

With our work presented in this paper we target use-case
scenarios in which conflicting requests only constitute a small
fraction of the application’s overall workload (e.g., less than
5% [5]). In practice, this for example is the case for key-
value stores with high read-to-write ratios [15] or coordination
services for which the vast majority of requests access client-
specific data structures (e.g., to renew session leases [16]).

III. BACKGROUND & PROBLEM STATEMENT

Providing the agreement stage of a replicated system with
information about request conflicts makes it possible to signif-
icantly increase consensus efficiency by limiting the ordering
to requests that interfere with each other [10]. In this sec-
tion, we analyze existing approaches that apply this general
concept. Notice that (although tackling a related problem) our
discussion does not include the recently proposed ezBFT [17],
as since publication the protocol has been found to contain
safety, liveness, and execution consistency violations [18].
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Figure 1. Geo-distributed state-machine replication

A. Existing Approaches

Based on their design goals and characteristics, existing
protocols can be classified into the following three categories.
Crash Tolerance. One of the first leaderless consensus algo-
rithms focusing on conflicting requests was EPaxos [5], which
enables all replicas in the system to initiate the agreement
process for new client requests. In geo-distributed deployments
where clients are scattered across the globe (see Figure 1), this
property often significantly improves latency as each client
can directly submit requests to its local replica, instead of
all clients having to contact the same central leader. If a
quorum of replicas agrees on a proposed request’s conflicts,
EPaxos allows the proposing replica to immediately commit
and process the request; otherwise, the replica is required to
execute a sub-protocol responsible for resolving the conflict
discrepancies. Building on the same general idea, the recently
proposed Atlas [6] protocol offers several improvements over
EPaxos, including for example the use of smaller quorums
as well as the ability to commit requests early even if the
conflict reports of different replicas do not match exactly (see
Section VI for details). Both EPaxos and Atlas tolerate crashes.
BFT with Additional Replicas. The quorum-based Q/U [4]
offers resilience against Byzantine faults without the need for
a global leader, however to do so it requires 5f + 1 replicas.
Byblos [8], a BFT protocol tailored to permissioned ledgers,
reduces the replication cost to 4f + 1 servers by determining
the execution order of transactions based on a leaderless
non-skipping timestamp algorithm that is driven by clients.
Global Leader Replica. Byzantine Generalized Paxos [7]
shows that it is possible for a BFT protocol to only order con-
flicting requests with a minimum of 3f +1 replicas. However,
to resolve request-conflict discrepancies between replicas the
protocol resorts to a global leader which then sequentializes
the affected requests. For this purpose, followers need to pro-
vide the leader with information about all requests they have
previously voted for, making conflict resolution an expensive
undertaking, as confirmed by our experiments in Section V.

B. Problem Statement

The analysis above has shown that existing approaches
explore different tradeoffs with regard to fault model, replica-
group size, and the existence of a global leader replica. In



contrast, our goal in this paper is to integrate several desirable
properties within the same state-machine replication protocol:
• Byzantine Fault Tolerance: The protocol should tolerate

up to f replica faults as well as an unlimited number of
faulty clients that possibly collude with faulty replicas.

• Resource Efficiency: To also support small deployments,
the protocol must require a minimum of 3f + 1 replicas.

• Leaderlessness: To avoid a bottleneck and enable clients
to submit requests to their nearest replica, the protocol
must not rely on a single global leader replica. This
should not only apply to normal-case operation, but also
to the task of reconciling discrepancies between replicas.

• Low Latency: In the absence of discrepancies, the agree-
ment process should complete within three communica-
tion steps, which is optimal for the targeted systems.

• Bounded State: To avoid an infinite accumulation of
consensus state, in contrast to other leaderless proto-
cols (e.g., EPaxos), the protocol should comprise a check-
pointing mechanism for garbage-collecting such state. In
addition, the protocol’s execution stage should also be
able to operate with a bounded amount of memory when
determining the request execution order based on the
conflict dependencies reported by the agreement stage.

In the following, we show that it is possible to unite these
properties in a single state-machine replication protocol.

IV. ISOS

ISOS is a leaderless BFT protocol designed to minimize
latency in wide-area settings. This section first gives an
overview of ISOS and then provides details on different
protocol mechanisms; for pseudo code refer to Appendix A.

A. Overview

ISOS requires a minimum of N = 3f+1 replicas to tolerate
f faults and enables each of the replicas to order client requests
without the involvement of a global leader. This allows clients
to submit their requests to the nearest replica and thereby avoid
lengthy detours. When a replica receives a request from a
client, the replica acts as request coordinator and manages the
replication of the request to all other replicas, which for this
specific request serve as followers. That is, to prevent bottle-
necks as well as disruptions due to costly election procedures,
replica roles in ISOS are not assigned globally as in many
other BFT protocols [19], but instead on a per-request basis.

To order client requests as coordinator, each replica ri
maintains its own sequence of agreement slots which are
uniquely identified by sequence numbers si = 〈ri, sci〉, with
sci representing a local counter. Apart from its own agreement
slots, each replica also stores information about other replicas’
agreement slots for which the local replica acts as follower.
Consensus Fast Path. Having received a new request, a
coordinator allocates its next free agreement slot and creates a
dependency set containing all conflicts the new request has
to previous requests already known to the coordinator. As
illustrated in Figure 2 for request A, the coordinator then
initiates the consensus process by forwarding the request

Client 0

Client 1

Replica 0

Replica 1

Replica 2

Replica 3

RequestA

A: { }
{ }

{ }

RequestB

B: {A}

{A}

{A}

Dependency Set

Figure 2. Fast-path ordering of two conflicting requests A and B in ISOS

together with the dependency set to its followers. In a next
step, a coordinator-selected quorum of 2f followers react by
computing and broadcasting their own dependency set for the
request. If all of these followers report the same dependencies
as the coordinator, the consensus process completes at the end
of another protocol phase, that is after three communication
steps; we refer to this scenario as ISOS’s fast path. Notice
that the fast path in ISOS is not exclusive to non-conflicting
requests, but as illustrated by the example of request B in
Figure 2 can also be taken by conflicting client requests.
Reconciliation & View Change. If the coordinator determines
that the fast-path quorum for a request is no longer possible,
it triggers ISOS’s reconciliation mechanism which is respon-
sible for resolving the request-conflict discrepancies between
replicas by deciding on a consistent dependency set. In case of
a faulty leader or faulty followers in the coordinator-selected
quorum, the replicas initiate a view change for the affected
agreement slot and continue to perform reconciliation.
Request Execution. ISOS replicas rely on a deterministic al-
gorithm to determine the execution order of requests based on
the dependency sets they agreed on in the consensus process.
Collecting dependency sets from a quorum of replicas ensures
that conflicting requests, even when proposed by different co-
ordinators at the same time, will pick up a dependency between
them and thus guarantee a consistent execution order. For non-
conflicting requests, there are no dependencies to consider,
meaning that a replica is allowed to independently process
such a request once it has been committed by the agreement
stage. After executing a request, the replicas send a reply to
the client which waits for f + 1 matching replies to ensure
that at least one of the replies originates from a correct replica.
Checkpointing. ISOS relies on checkpointing to limit the
amount of memory required by the agreement protocol and
to allow replicas that have fallen behind to catch up. To
create a consistent checkpoint, all replicas have to capture a
copy of the application state after executing the exact same
set of requests. As each replica can independently propose
and execute requests, in contrast to traditional protocols such
as PBFT [2], in ISOS there are no predefined points in
time (e.g., specific sequence numbers) at which all replicas
have the same application state. To solve this problem, ISOS
introduces checkpoint requests which are agreed upon by the
replicas and act as a barrier separating the requests that should
be covered by a checkpoint from the ones that should not.



B. Fast Path

When a new request r = 〈REQ, x, t, o〉σx
for command o

from client x arrives at a replica, the replica serves as coordina-
tor for the request; t is a client-local timestamp that increases
for each request and enables replicas to ignore duplicates.
DepPropose Phase. To start the fast path, the coordinator
selects its agreement slot with the lowest unused sequence
number and computes the dependency set containing sequence
numbers of requests that conflict with request r. For this
purpose, the coordinator takes all known requests from both its
own and other replicas’ agreement slots into account. Requests
of the same client are automatically treated as conflicting with
each other, independent of their content. This ensures that all
correct replicas will later execute the requests of a client in
the same order and therefore discard the same requests as
duplicates. As a consequence, faulty clients cannot introduce
inconsistencies between correct replicas by assigning the same
timestamp to two non-conflicting requests. On correct clients,
on the other hand, the client-specific request dependencies
have no impact as correct clients commonly only submit a new
request after having received a result for their previous one.

To limit the size of the set, the coordinator for each replica
only includes the sequence number of the latest conflict-
ing request, thereby treating the replica’s earlier requests as
implicit dependencies [5]. This approach potentially intro-
duces (unnecessary) additional dependencies, however it offers
two major benefits: (1) a compact dependency set in general
is significantly smaller than a full set explicitly containing all
conflicts would be, and (2) since correct replicas only accept
and process compact dependency sets, a faulty replica cannot
slow down the agreement process by distributing huge sets.

Having assembled the dependency set D for request r in
agreement slot si, the coordinator co selects a quorum F con-
taining the IDs of the 2f followers to which it has the lowest
communication delay. As shown in Figure 3 (left), the coordi-
nator then broadcasts a 〈DEPPROPOSE, si, co, h(r), D, F 〉σco

message together with the full request to all of its follower
replicas; h(r) is a hash that is computed over client request r.
DepVerify Phase. Follower replicas accept a DEPPROPOSE
if the message originates from the proper coordinator and is
accompanied by a client request with matching hash h(r). A
follower only sends a DEPVERIFY in the next protocol phase if
it is part of the quorum F . In such case, follower fi calculates
its own dependency set Dfi for request r and broadcasts the
set in a 〈DEPVERIFY, si, fi, h(dp), Dfi〉σfi

message to all
replicas, with dp referring to the corresponding DEPPROPOSE.

Followers strictly process the DEPPROPOSEs of a coordi-
nator in increasing order of their sequence numbers, thereby
ensuring that a coordinator cannot skip any sequence numbers.
Furthermore, they only compile and send the DEPVERIFY
for a DEPPROPOSE once they know that consensus processes
have been initiated for all agreement slots listed in the
DEPPROPOSE’s dependency set. A follower has confirmation
of the start of the consensus process if it fully processed a
DEPPROPOSE, received f + 1 DEPVERIFYs, or triggered a

DepPropose
DepVerify

DepCommit

Replica 0

Replica 1

Replica 2

Replica 3
fp-verified

DepPropose
DepVerify

Prepare
Commit

Not fp-verified

Figure 3. Fast path (left) and abandoned fast path + reconciliation (right)

view change for a slot. Waiting for the conflicting slots to
begin ensures that all dependencies in the dependency set
will eventually complete agreement and thus guarantees that
a faulty coordinator cannot block execution of a client request
by including dependencies to non-existent requests.
DepCommit Phase. When a replica receives a DEPVERIFY it
checks that the included hash h(dp) matches the slot’s DEP-
PROPOSE and that the sender is part of the quorum F . As
before for the DEPPROPOSE, the replica then waits until it
knows that all agreement slots contained in the dependency
set Dfi will finish eventually. To continue with the fast path, a
replica must complete the predicate fp-verified, which requires
a valid DEPPROPOSE from the coordinator and matching DEP-
VERIFYs from the 2f followers selected in the quorum F . The
set of DEPVERIFYs matches the DEPPROPOSE if either all
DEPVERIFYs have the same dependency set as in the DEP-
PROPOSE or if all additional dependencies are included in
at least f + 1 DEPVERIFYs. In the latter case, at least one
correct replica has reported the additional dependencies, which
ensures that these dependencies will be included in the fast
path or the reconciliation path (see Section IV-C), independent
of the behavior of faulty replicas. The DEPPROPOSE and DEP-
VERIFYs yield a Byzantine majority quorum of 2f+1 replicas,
thereby guaranteeing that only a single proposal can complete,
as correct replicas only accept the first valid DEPPROPOSE.

Once fp-verified holds, a replica broadcasts a corresponding
〈DEPCOMMIT, si, ri, h( ~dv)〉σri

message in which ~dv refers
to the set of DEPVERIFYs received from the followers in F .
As each correct replica includes DEPVERIFYs from the same
followers, they all will use the same set ~dv to calculate h( ~dv).

An agreement slot in ISOS is fp-committed once a replica
has obtained matching DEPCOMMITs from 2f + 1 replicas
(possibly including itself). At this point, the replica forwards
the request to the execution (see Section IV-F), together with
the union of the dependency sets of the DEPPROPOSE and
DEPVERIFYs. The quorum guarantees that if a request com-
mits, then enough replicas have fp-verified it and consequently
the request will be decided by (potential) later view changes.

C. Reconciliation Path

If a replica observes that completing fp-verified is not
possible due to diverging dependency sets, the replica aban-
dons the fast path and starts reconciliation (as illustrated
on the right side of Figure 3). The main responsibility of
ISOS’s reconciliation mechanism is to transform the diverging



dependency sets from the fast path into a single dependency set
that is agreed upon by all correct replicas. To ensure that fast
path and reconciliation path cannot reach conflicting decisions
regarding the dependency set, a correct replica that has reached
fp-verified (and therefore already sent a DEPCOMMIT on the
fast path) does not contribute to the reconciliation path.
Prepare Phase. Upon switching to the reconciliation path,
a replica stops participating in the fast path and broadcasts
a 〈PREPARE, vsi , si, ri, h( ~dv)〉σri

message in which ~dv is the
set of previously received DEPVERIFYs; vsi denotes a view
number, which in contrast to traditional BFT protocols [2] in
ISOS is not global, but a variable specific to the individual
agreement slot. That is, for each request that enters reconcili-
ation the view number starts with its initial value of −1.
Commit Phase. After a replica has obtained 2f+1 PREPAREs
matching the set of known DEPVERIFYs, the replica has rp-
prepared the agreement slot and continues with broadcasting
a 〈COMMIT, vsi , si, ri, h( ~dv)〉σri

message. Having collected
2f + 1 COMMITs from different replicas with matching hash
h( ~dv), the replica has rp-committed the request and forwards
it to the execution, together with the union of the dependency
sets of all DEPVERIFYs and the associated DEPPROPOSE.
Invariant. An agreement slot in ISOS can either fp-commit
or rp-prepare. As sending a DEPCOMMIT and sending a
PREPARE are mutually exclusive, correct replicas can either
collect enough DEPCOMMITs from a quorum to fp-commit the
fast path or enough PREPAREs to rp-prepare the reconciliation
path, but never both, thus ensuring agreement among replicas.

D. View Change
In case the agreement for a slot fails to complete within a

predefined amount of time (see Section IV-E), replicas in ISOS
initiate a view change for the specific agreement slot affected.
ViewChange Phase. Once a replica decides to abort a view,
the replica stops to process requests for the old view and
broadcasts a 〈VIEWCHANGE, vsi , si, ri, certificate〉σri

mes-
sage for the new view vsi to report the agreement-slot state in
the form of a certificate of one of the following types:
• A fast-path certificate (FPC) consists of a DEPPROPOSE

message from the original coordinator and a set of
2f corresponding DEPVERIFY messages from different
followers matching the DEPPROPOSE, thereby confirm-
ing that the agreement slot was fp-verified.

• A reconciliation-path certificate (RPC) consists of the
original DEPPROPOSE, 2f matching DEPVERIFYs, and
2f +1 matching PREPAREs from different followers. The
PREPAREs must be from the same view. Together, these
messages confirm the agreement slot to be rp-prepared.

If available, a replica includes an RPC for the highest view
in its own VIEWCHANGE message, resorting to an FPC as
alternative. If neither of the two certificates exists, the replica
sends the VIEWCHANGE message without a certificate.

In case a replica receives f+1 VIEWCHANGEs for sequence
number si with a view higher than its own, the replica switches
to the f + 1-highest view received for that agreement slot and
broadcasts a corresponding VIEWCHANGE message.

NewView Phase. The view change for a request is managed
by a coordinator that is specific to the request’s agreement
slot si. For a new view vsi , the coordinator is selected as
co = (si.ri + max(0, vsi)) mod N . Having collected valid
VIEWCHANGEs for its view from a quorum of 2f+1 replicas,
the coordinator determines the result of the view change. For
this purpose, it deterministically selects a request based on the
certificate with the highest priority: first RPC, then FPC.

If both a reconciliation-path certificate and a fast-path cer-
tificate exist at the same time, it is essential for the coordinator
to determine the view-change result based on the reconci-
liation-path certificate. According to the reconciliation-path
invariant, this path can only rp-prepare if the fast path does not
fp-commit. Thus, the fast-path certificate stems from up to f
replicas that tried to complete the DEPCOMMIT phase but did
not finish it, meaning that the certificate can be ignored. The
reconciliation path, on the other hand, might have completed
and thus the view change must keep its result. If no certificate
exists, the view-change result is a no-op request with empty
dependencies, which later will be skipped during execution.

To install the new view, the coordinator broadcasts a
〈NEWVIEW, vsi , si, co, dp,

~dv, V CS〉σco message in which dp
is the DEPPROPOSE, ~dv are the accompanying DEPVERIFYs,
and V CS is the set of 2f + 1 VIEWCHANGEs used to
determine the result. If no certificate exists, dv is replaced
by a no-op request and ~dv is empty. After having verified that
the coordinator has correctly computed the NEWVIEW, the
other replicas follow the coordinator into the new view. There,
the NEWVIEW’s DEPPROPOSE and DEPVERIFYs are used
to resume with the reconciliation path at the corresponding
step (see Section IV-C), just for a higher view. In case a request
is replaced with a no-op during the view change, the request
coordinator proposes the request for a new agreement slot.

E. Progress Guarantee

In the following, we discuss several liveness-related scenar-
ios and explain how ISOS handles them to ensure that requests
proposed by correct replicas eventually become executable.
Fast Path. Faulty replicas in ISOS may try to prevent correct
replicas from making progress by not properly participating in
the consensus process. For example, a faulty replica ri may
send a DEPPROPOSE for a sequence number si, but only to
one correct replica rj and not the others. Replica rj thus must
include sequence number si as dependency in its own future
proposals, meaning that other replicas can only process rj’s
proposals if they also know about si. To ensure that the system
in such case eventually makes progress despite replica ri’s
refusal to properly start the consensus for si, correct followers
in ISOS start a propose timer with a timeout of 2∆ whenever
they receive a DEPPROPOSE; ∆ is the maximum one-way
delay between replicas (see Section II). If the propose timer
expires or a view change is triggered and the follower has
not collected 2f matching DEPVERIFYs in the meantime, the
follower broadcasts the affected DEPPROPOSE (which does
not include the full client request, see Section IV-B) to all
other follower replicas, thereby enabling them to move on.



Agreement. To monitor the agreement progress of a slot,
replicas in ISOS start a commit timer with a timeout of 9∆
once they know that the consensus process for a slot has
been initiated. This is the case if a replica has (1) sent its
DEPPROPOSE, (2) (directly or indirectly) received a valid
DEPPROPOSE and learned that its dependencies exist or
(3) obtained f +1 DEPVERIFY messages proving that at least
one correct replica has accepted a DEPPROPOSE for this slot.
If the commit timer expires, a replica triggers a view change.
The value of the commit timeout is explained in Appendix A.

Forwarding the DEPPROPOSE after the propose timer ex-
pires (see above) and listening for DEPVERIFY messages
ensures that every correct replica will eventually learn that
a proposal for the agreement slot exists and thus start the
commit timer. This in turn guarantees that either f +1 correct
replicas commit a client request or trigger a view change.
Recovering the Fast-Path Quorum. If the quorum F proposed
by a fast-path request coordinator includes faulty replicas, it is
possible that these replicas do not send DEPVERIFY messages
and thus prevent requests from being ordered in the agreement
slot. In such case, after the agreement slot was completed with
a no-op by a view change, the request coordinator selects a
different set of 2f followers and proposes the request for a
new agreement slot. This ensures that eventually all replicas in
quorum F are correct which allows the agreement to complete.
Lagging Replicas. As the active involvement of 2f + 1 repli-
cas is sufficient to commit a request in ISOS, there can be up to
f correct but lagging replicas that do not directly learn the out-
come of a completed agreement process. Furthermore, as the
agreement processes of different coordinators advance largely
independent of each other, different replicas may lag with
respect to different coordinators. To resolve circular-waiting
scenarios under such conditions, an ISOS replica can query
others for committed requests. If f + 1 replicas (i.e., at least
one correct replica) report a request to have committed for an
agreement slot, the lagging replica also regards the request as
committed. Since 2f+1 replicas are required to complete con-
sensus, for each completed slot there are at least f +1 correct
replicas that can assist lagging replicas in making progress.
Crashed Replicas. If a coordinator crashes, the effects of the
crash are limited to the slots the coordinator has started prior to
its failure. Once these slots have been completed (if necessary
through view changes), there are no further impairments as
the failed coordinator does no longer propose new requests,
and thus there are no new dependencies on the coordinator.

F. Request Execution

Using committed requests and their dependency sets as
input, the execution stage of a replica is responsible for deter-
mining the order in which the replica needs to process these
requests. For correct replicas to remain consistent with each
other, they all must execute conflicting requests in the same
relative order. Non-conflicting requests on the other hand may
be processed by different replicas at different points in time. In
the following, we explain how ISOS ensures that these require-
ments are met even if faulty replicas manipulate dependencies.
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Replica 1

Replica 2

Replica 3

〈0, 0〉 〈0, 1〉 〈0, 2〉
〈1, 0〉 〈1, 1〉

〈2, 0〉 〈2, 1〉 〈2, 2〉
〈3, 0〉 〈3, 1〉

〈0, 0〉 〈0, 1〉 〈0, 2〉
〈1, 0〉 〈1, 1〉

〈2, 0〉 〈2, 1〉 〈2, 2〉
〈3, 0〉 〈3, 1〉

Agreement Slots

Strongly Connected Components

Figure 4. Strongly connected components in an execution dependency graph

Regular Request Execution. For each committed request,
the execution builds a dependency graph whose nodes are
not yet executed requests which are connected by directed
edges as specified in the requests’ dependency sets. This graph
is constructed by recursively expanding the dependencies of
the request. If a dependency refers to a not yet committed
agreement slot, the graph expansion waits until the dependency
is committed. The execution then calculates the strongly
connected components in the dependency graph and executes
them in inverse topological order. As illustrated in Figure 4,
each strongly connected component represents either a single
request or multiple requests connected by cyclic dependencies.
The inverse topological order ensures that dependencies of all
requests in a strongly connected component are executed first.
For each such component, the requests are sorted and then
executed according to their slot sequence number to ensure an
identical execution order on all replicas. The execution uses
the timestamp in a client request to filter out duplicates.
Handling Dependency Chains. As the dependency collection
for a request is a two-step process (see Section IV-B), it is
possible that DEPVERIFY messages include dependencies to
agreement slots that were proposed after the request itself.
These slots in turn can also collect dependencies to additional
future slots resulting in a temporary execution livelock [5] that
delays the execution of a request until all its dependencies are
committed. Such dependency chains can either arise naturally
when processing large amounts of conflicting requests [5] or
due to faulty replicas manipulating dependency sets by includ-
ing dependencies to future requests in their DEPVERIFYs.

To handle this kind of dependency chains with a bounded
amount of memory, ISOS replicas limit how many requests are
expanded. Specifically, for each coordinator the execution only
processes a window of k agreement slots. The start of each
window points to the oldest agreement slot of the coordinator
with a not yet executed request. Dependencies to requests
beyond this expansion limit are treated as missing and block
the execution of a request. This bounds the effective size
of dependency chains, while still allowing the out-of-order
execution of non-conflicting requests within the window.

To unblock request execution, replicas use the following
algorithm: First, a replica tries to normally execute all com-
mitted requests within the execution window. Then, for each
coordinator the replica constructs the dependency graph of the
oldest not yet executed request, called root node, and checks
whether its execution is only blocked by missing requests
beyond the execution limit. If this is the case, the replica
ignores dependencies to the latter requests and starts execution.



However, it only processes the first strongly connected com-
ponent and then switches back to regular request execution.

The intuition behind the algorithm is that the execution of
root nodes occurs when only requests beyond the expansion
limit are still missing (i.e., at a time when all replicas see
the same dependency graph). For dependencies to other nodes
ISOS’s compact dependency representation (see Section IV-B)
automatically includes a dependency on the root node for the
associated coordinator, this ensures that dependent root nodes
are executed in the same order on correct replicas.

G. Checkpointing

The checkpoints of correct replicas in BFT systems must
cover the same requests in order to be safely verifiable by
comparison [20]. Traditional BFT protocols [2], [21], [22]
ensure this by requiring replicas to snapshot the application
state in statically defined sequence-number intervals. In ISOS,
this approach is not directly applicable because instead of
one single global sequence of requests, there are multiple
sequences (i.e., one per coordinator) that potentially advance at
different speeds. To nevertheless guarantee consistent check-
points, ISOS replicas rely on dedicated checkpoint requests to
dynamically determine the points in time at which to create
a snapshot. As illustrated in Figure 5, a checkpoint request
conflicts with every other request and therefore acts as a barrier
such that each regular client request on all correct replicas is
either executed before or after the checkpoint request.
Basic Approach. A checkpoint request in ISOS is a special
empty request that is known to all replicas and when pro-
cessed by the execution triggers the creation of a checkpoint.
Each correct replica is required to propose the checkpoint
request for every own agreement slot with sequence number
sci mod cp interval = 0; cp interval is a configurable
constant that also defines the minimum size of the agreement
ordering window (i.e., 2 ∗ cp interval), that is the number of
slots per coordinator for which a replica needs information.

Relying on a checkpoint request to determine when to create
a snapshot in ISOS has the key benefit that replicas, as a
by-product of the consensus process for this request, also
automatically agree on the client requests the checkpoint must
cover. Specifically, based on the checkpoint request’s depen-
dency set replicas know exactly which client requests they are
required to execute prior to taking the application snapshot.

Having created the checkpoint, a replica broadcasts a
〈CHECKPOINT, cp.seq, ri, barrier, h(cp)〉σri

message to all
other replicas; cp.seq is a monotonically increasing checkpoint
counter, barrier refers to the requests included in the check-
point (i.e., the dependency set plus the checkpoint request
itself), and h(cp) represents a hash of the checkpoint content.

Once a replica has collected 2f + 1 matching checkpoint
messages from different replicas, the messages form a check-
point certificate that proves the stability of the checkpoint.
After obtaining such a certificate, a replica can garbage-collect
all earlier state covered by the checkpoint, including requests
kept for conflict calculations. As a substitute, a replica from
this point on uses barrier as minimum dependency set.

Replica 0

Replica 1

Replica 2

Replica 3

Checkpoint

Barrier

Figure 5. Checkpoint request serving as barrier for regular client requests

Checkpoint-specific View Change. While regular agree-
ment slots may eventually result in a no-op being commit-
ted (see Section IV-D), ISOS guarantees that the proposal of a
checkpoint request will eventually succeed within its original
checkpoint slot. Our solution to achieve this relies on an
auxiliary DEPVERIFY that a replica additionally includes in its
VIEWCHANGE when starting a view change for a checkpoint
slot. The auxiliary DEPVERIFY contains a placeholder hash
as well as a dependency set for the checkpoint request. If
the replica has previously participated in the fast path, the
dependency set is identical with the one from the replica’s own
DEPPROPOSE or DEPVERIFY, otherwise the replica computes
a new dependency set for the checkpoint request. Notice that
due to the fact that the content and sequence numbers of
checkpoint requests are known in advance, a replica is able
to create such an auxiliary DEPVERIFY even if it has not
received the actual DEPPROPOSE for the checkpoint slot.

Utilizing the auxiliary DEPVERIFYs, we are able to extend
the certificate list of Section IV-D with a third option: a
checkpoint request certificate (CRC) that is selected if neither
of the two other certificates is available. The CRC consists of
2f + 1 auxiliary DEPVERIFYs verified to only include known
dependencies and can be used in the new view to agree on a
common dependency set. Since for checkpoint slots, the CRC
is always available as a fallback, there is no need for a view-
change coordinator to introduce a no-op request.
Checkpoint-specific Execution. Being generally treated like
regular client requests, a checkpoint request can be part
of a dependency cycle in which some requests should be
processed before the checkpoint, while others are to be exe-
cuted afterwards. To handle such a scenario, ISOS’s execution
processes strongly connected components in a special way if
they contain checkpoints. First, it merges the dependency sets
of all checkpoint requests included in a strongly connected
component, adding the checkpoint requests themselves to the
merged set. Next, the merged set is bounded to not exceed
the expansion limit described in Section IV-F, and to include
all requests before the first not yet executed request of each
replica. The resulting set now acts as a barrier defining which
requests should be covered by the checkpoint and which
should not. In the final step, the execution uses the barrier to
only execute client requests before the barrier, followed by the
merged checkpoint request. For the remaining requests after
the barrier, a new dependency graph is constructed and used to
order requests. Restarting the execution algorithm for these re-
quests ensures that they are executed the same way as a lagging
replica would do if it applied the checkpoint to catch up.



H. Correctness (Proof sketch; full proof in Appendix A)

Safety. All correct replicas that commit a slot must decide
on the same request and dependencies. A correct replica
can only commit on the fast or reconciliation path if it has
collected a quorum of DEPVERIFYs or PREPAREs, which
ensures that all replicas agree on the same request. As shown
in Section IV-C, committing the fast or reconciliation path is
mutually exclusive, meaning that within a view all replicas
arrive at the same result. The final dependencies for a slot
are defined by the DEPPROPOSE and the set ~dv of 2f DEP-
VERIFYs whose hash h( ~dv) is included in the DEPCOMMIT
and COMMIT messages, respectively. This ensures that all
replicas agree on the dependencies. After a successful commit,
at least f + 1 correct replicas have collected a certificate for
the fast or reconciliation path, and thus the certificate will be
included in future view changes.
Execution Consistency (as used in EPaxos [5]). If two
conflicting requests A and B are committed, all replicas will
execute them in the same order. This is achieved by ensuring
that the two requests are connected by a dependency such
that either A depends on B, or B depends on A, or both
depend on each other. All three cases result in the execution
consistently ordering the requests before processing them.
The dependencies for a request are collected from a quorum
of 2f + 1 replicas using DEPPROPOSE and DEPVERIFY
messages. If requests A and B are proposed by different
replicas at the same time, their dependency collection quorums
will overlap in at least f + 1 replicas, of which at least one
replica must be correct. This replica will either receive A or B
first and thus add a dependency between them. Therefore, two
conflicting requests are always connected by a dependency.

Note that a malicious coordinator proposing different DEP-
PROPOSEs to its followers cannot cause missing dependencies.
Either the same DEPPROPOSE is fully processed by at least
f+1 correct replicas (which ensures dependency correctness),
the faulty DEPPROPOSEs are ignored, or none of the DEP-
PROPOSEs gathers 2f DEPVERIFYs, thus causing the slot to
be filled with a no-op during the following view change. In the
latter case, no dependencies from or to the slot are necessary,
as a no-op command does not conflict with any other request.

The dependency cannot be lost when switching between
protocol paths or during a view change. The reconciliation
path carries over the dependency sets from the fast path and
cannot introduce new dependencies in the agreement process.
Replicas that learn about a client request in a view change have
no influence on the dependency calculations for the request.
Invariant. The view change either selects the (only) request
that was fp-verified or rp-prepared, or a no-op. We proof
this by induction. Only a single DEPPROPOSE can collect 2f
matching DEPVERIFYs in a slot. Thus, no fast or reconcili-
ation path certificate can exist for any other request, as con-
structing a certificate requires a matching set of DEPVERIFYs
from a quorum of replicas. The view change only selects a
request with a certificate or a no-op, and hence all future recon-
ciliation-path executions can only decide one of the two. This

guarantees that a slot either commits the request initially sent
to a majority of replicas or a (by definition) non-conflicting
no-op. Requests that were not properly proposed to a quorum
of replicas will therefore be replaced with a no-op. This
ensures that all ordered requests have proper dependency sets.

V. EVALUATION

In this section, we experimentally evaluate ISOS together
with other protocols in a geo-replicated setting. For a fair com-
parison, we focus on BFT protocols and implement them in a
single codebase written in Java: (1) PBFT [2] represents a pro-
tocol that pursues the traditional concept of relying on a central
global leader replica to manage consensus. (2) CSP, short
for Centralized Slow Path, refers to a hybrid approach which,
similar to Byzantine Generalized Paxos (BGP) [7], combines
a leaderless fast path with a leader-based slow path for conflict
resolution. We decided to create CSP because BGP requires its
leader replica to share large sets of previously ordered requests
to resolve conflicts, which in practical use-case scenarios
results in unacceptable overhead. Since CSP’s slow path does
not suffer from this problem, we expect CSP’s results to
represent a best-case approximation of BGP’s performance.
(3) ISOS in contrast to the other two protocols is entirely
leaderless, in both the fast path as well as during reconciliation.

We conduct our experiments hosting the replicas in virtual
machines (t3.small, 2 VCPUs, 2GB RAM, Ubuntu 18.04.5
LTS, OpenJDK 11) in the Amazon EC2 regions in Oregon,
Ireland, Mumbai, and Sydney. Our clients run in a separate
virtual machine in each region. CSP’s slow-path leader resides
in Oregon. All messages exchanged between replicas are
signed with 1024-bit RSA signatures. As the communication
times between replicas vary between 59 and 127 ms, we set
∆ to 200 ms. Replicas use cp interval = 2,000 to create
new checkpoints and an expansion limit of 20 for the request
execution. Each coordinator accumulates new client requests in
batches of up to 5 requests before proposing them for ordering.

As application for our benchmarks, we use a key-value store
for which clients issue read and write requests in a closed
loop. Write requests modifying the same key conflict with
each other. In contrast, read requests for a key only conflict
with write requests but not with other read requests.

A. Latency

In our first experiment, we use a micro benchmark (200
bytes request payload, 10 clients per region) to compare the
response times experienced by clients in the three systems. To
control the rate of requests that can conflict with each other, we
follow the setup of EPaxos [5] and ATLAS [6] and let clients
issue write requests for a fixed key with a probability p, and for
a unique key otherwise. We use conflict rates of 0%, 2%, and
5% to evaluate typical application scenarios of ISOS; for com-
parison, EPaxos considers low conflict rates between 0% and
2% as most realistic [5]. In addition, to present the full picture
we repeat our experiment with conflict rates of 10% and 100%
for completeness. For PBFT, which is not affected by the
conflict rate, we instead measure the latency for each possible



0

100

200

300

400

500

600

700

800

Clients in
Oregon

Clients in
Ireland

Clients in
Mumbai

Clients in
Sydney

R
es

po
ns

e
ti

m
e

[m
s]

PBFT Leader in Oregon Ireland Mumbai Sydney

CSP 5% CSP 10% CSP 100%

ISOS 0% ISOS 2% ISOS 5% ISOS 10% ISOS 100%

Figure 6. 50th ( ) and 90th ( ) percentiles of response times for clients at
different geographic locations, issuing requests with various conflict rates.

leader location. The results of this experiment are presented
in Figure 6. For clarity, we omit the CSP numbers for low
conflict rates of 0% and 2% as they are dominated by the fast
path and thus similar to the corresponding results of ISOS.

In PBFT, the median response times for clients in a region
heavily depend on the current location of the leader replica.
For clients in Ireland, for example, the response times can
increase by up to 56% when the leader replica is not located
in Ireland but in a different region. This puts all clients at a
disadvantage whose location differs from that of the leader.
In contrast, for typical low conflict rates of 2%, ISOS in each
region achieves median and 90th percentile response times
similar to those of the best PBFT configuration for that region.
However, PBFT due to its reliance on a single leader replica
can only provide optimal response times for a single region
at a time, whereas ISOS’s leaderless design enables clients to
submit their requests to a nearby replica and thus provides
optimal response times for clients in all regions at once.

For conflict rates of 5% and higher, the median and 90th
percentile response times for CSP rise up to 517 ms, which
is a result of the additional communication step required by
the central leader to initiate the agreement on conflicting
dependencies. For comparison, the response times of ISOS are
significantly lower even for a conflict rate of 100% where most
requests are ordered via the reconciliation path. This illustrates
the benefits of ISOS’s design choice to refrain from a global
leader, not only on the fast path but also during reconciliation.

B. Throughput

In our second experiment, we assess the relation between
throughput and response times for up to 1,000 evenly dis-
tributed clients and different request sizes (see Figure 7).
For PBFT and requests with 200 bytes payload, the average
response time stays below 369 ms for up to 400 clients and
starts to rise afterwards. The throughput reaches nearly 1,875
requests per second at which point it is limited by the leader
replica saturating its CPU. For low conflict rates of 0% and
2% ISOS, on the other hand, achieves response times below
304 ms for up to 400 clients and reaches a throughput of up to
2,079 requests per second. This represents an improvement of
18% lower latency and 11% higher throughput over PBFT,
showing the benefit of clients being able to submit their
requests to a nearby replica instead of forwarding it to a central
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Figure 7. Relation between average throughput and response time for client
requests with different payload sizes of 200 bytes (left) and 16 kB (right).

leader. Comparing CSP and ISOS for conflict rates above 5%
shows that CSP provides higher response times and thus lower
throughput than ISOS, which is a consequence of the additional
communication step necessary to initiate CSP’s slow path.

Issuing large requests with 16 kB payload from up to 600
clients, we observe that PBFT reaches a maximum throughput
between 632 and 764 requests per second depending on the
leader location. At this point, the network connection of
the leader, which has to distribute the requests to all other
replicas, is saturated and prevents further throughput increases.
In contrast, ISOS reaches a maximum throughput of 1,328 re-
quests per second, outperforming PBFT by up to 110%. The
throughput advantage even holds for conflict rates as high as
10%. ISOS benefits from its leaderless design in which all
replicas share the load of distributing requests, allowing it to
handle larger requests than a protocol using a single leader.

C. YCSB

In our third experiment, we run the YCSB benchmark [23]
with a total of 200 clients that are evenly distributed across all
regions and issue a mix of reads and writes. The database is
loaded with 1,000 entries of 1kB size. The key accessed by a
client request is selected according to the Zipfian distribution
which skews access towards a few frequently accessed ele-
ments and is parameterized using the standard YCSB settings.

Figure 8 shows the throughput achieved for different shares
of read and write requests. For the write heavy 50/50 bench-
mark, ISOS and PBFT achieve similar average throughputs of
nearly 600 requests per second. Consistent with the previous
benchmarks, the throughput of CSP stays below that of ISOS.
For the 95/5 and 100/0 workloads, ISOS outperforms PBFT
by 17% and 20%, respectively. Due to a high fraction of read
requests, these workloads have a low conflict rate, thereby
allowing ISOS to take full advantage of its leaderless design.
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VI. RELATED WORK

Optimized Leader Placement. One method to reduce the
response time for systems with a central leader replica is to
optimize its placement. Archer [24] uses clients to send probes
through the agreement protocol to measure latency and thus
enable the system to select a leader offering low latency. In
AWARE [25], replicas measure the communication latency
between themselves and use the outcome to adjust replica
voting weights to prefer the fastest replicas. In ISOS, these
approaches could be used to select optimal fast-path quorums.
Concurrent Consensus. To distribute the work of a leader, it
is possible to partition a global sequence number space onto
multiple leader replicas. Protocols like BFT-Mencius [26],
Mir-BFT [27], Omada [22] and RCC [28] then run multiple
ordering instances in parallel and merge them according to
their sequence numbers. In comparison to ISOS these proto-
cols primarily focus on throughput and either have to wait
for ordered requests from all replicas or require additional
coordination to handle imbalanced workloads.
Leaderless Consensus. DBFT [29] avoids using a central
leader by letting replicas distribute their proposals using a
reliable Byzantine broadcast and then reaching agreement on
which replicas contributed proposals. This requires at least
four communication steps compared to the three of ISOS’s
fast path, resulting in higher latency. The eventually consistent
PnyxDB [30] uses conditional endorsements based on conflicts
between requests. An endorsement for a request becomes
invalid if a conflicting request could be committed before the
request, causing some requests to be dropped eventually.
Crash Faults. PePaxos [31] is a recent variant of EPaxos [5]
which during execution uses the agreement’s dependency sets
to schedule independent strongly-connected components for
parallel execution. This approach can also be integrated in
ISOS. Atlas [6] uses a fast path based on a preselected
quorum of replicas, allowing it to optimize the reconciliation
of differing dependency sets. Dependencies for an agreement
slot proposed by at least f replicas can be agreed on via the
fast path, allowing Atlas to always take the fast path for f = 1.
ISOS uses a similar optimization for its fast path requiring f+1
replicas to report dependencies to handle Byzantine faults.

VII. CONCLUSION

ISOS is a fully leaderless BFT protocol for geo-replicated
environments. It requires only 3f +1 replicas and offers a fast
path that orders client requests in three communication steps
if request conflicts are reported by at least f + 1 replicas.
Acknowledgments: This work was partially supported by the German
Research Council (DFG) under grant no. DI 2097/1-2 (“REFIT”).
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APPENDIX

A. ISOS Agreement Protocol

1 Variables at each replica:
2 p[sj ] /* DEPPROPOSE for agreement slot sj includes

fast−path quorum F */
3 pr[sj ] /* REQ for DEPPROPOSE of agreement slot sj */
4 v[sj ][fi] /* DEPVERIFY for slot sj from follower fi */
5 step[sj ] ∈ {init,proposed,fp−verified,fp−committed,

rp−verified,rp−prepared,rp−committed,view−change}
6 view[sj ] /* View number for slot sj , initially view[sj ] := −1 */
7 views[sj ][ri] /* Highest view number for slot sj seen for replica ri */
8 cert[sj ] /* Latest own certificate for slot sj */
9 ∆propose := 2∆; ∆commit := 9∆; ∆vc := 3∆;

∆vc−commit := 3∆; ∆query−exec := 4∆

Fast Path

10 Request coordinator co receives new r := 〈REQ, x, t, o〉:
11 assert r correctly signed
12 sj := 〈co, scj〉 /* Smallest free slot */
13 D := conflicts(r)
14 F := Quorum of 2f followers
15 dp := 〈〈DEPPROPOSE, sj , co, h(r), D, F 〉σco , r〉
16 〈p[sj ], pr[sj ]〉 := dp
17 step[sj ] := proposed
18 Broadcast d to all replicas
19 Start commit timeout ∆commit for slot sj

20 Follower fi receives dp := 〈〈DEPPROPOSE, sj , co, h(r), D, F 〉, r〉:
21 pre: step[sj ] = init
22 assert F is a valid fast−path quorum
23 assert pr[sj ] = ∅ ∧ sj .co = co /* First propose from coordinator */
24 wait(D ∪ sj−1) /* sj−1 is the previous slot from coordinator co */
25 If p[sj ] = ∅:
26 Start commit timeout ∆commit for slot sj
27 Start propose timeout ∆propose for slot sj
28 p[sj ] := dp.DEPPROPOSE

29 If r 6= ⊥:
30 assert r correctly signed
31 Dfi := conflicts(r)
32 pr[sj ] := r
33 step[sj ] := proposed
34 If fi ∈ F:
35 Broadcast 〈DEPVERIFY, sj , fi, h(dp), Dfi 〉σfi
36 Replica ri receives m := 〈DEPVERIFY, sj , fi, h(dp), Dfi 〉:
37 pre: step[sj ] = proposed ∧ h(p[sj ]) = h(dp)
38 assert v[sj ][fi] = ∅ /* First verify from follower */
39 assert fi ∈ m[sj ].F /* Follower is in fast−path quorum */
40 wait(Dfi)
41 v[sj ][fi] := m

42 ~dv := {v[sj ][fi] | ∀fi ∈ p[sj ].F}
43 If | ~dv | = 2f:
44 Stop propose timeout ∆propose for slot sj
45 D := ∪Dfi ∈ ~dv
46 /* Every dependency is reported by at least f + 1 followers */
47 If {d ∈ D | |{fi | ∀fi : d ∈ v[sj ][fi].D}| ≥ f + 1} = D:
48 /* Slot sj is now fp−verified at replica ri */
49 step[sj ] := fp−verified
50 Broadcast 〈DEPCOMMIT, sj , ri, h( ~dv)〉σri
51 Else:
52 Enter reconciliation path, stop participating in fast path

53 Replica ri receives 〈DEPVERIFY, sj , ∗, ∗, ∗〉 from f + 1 replicas:
54 Start commit timeout ∆commit for slot sj

55 Replica ri receives 〈DEPCOMMIT, sj , ∗, h( ~dv)〉
with identical h( ~dv) from 2f + 1 replicas:

56 pre: step[sj ] = fp−verified ∧ h({v[sj ][fi] | ∀fi}) = h( ~dv)
57 Stop propose/commit timeout ∆propose and ∆commit for slot sj
58 exec[sj ] := 〈pr[sj ],∪Dfi ∈ ~dv〉
59 Forward 〈pr[sj ], D, sj〉 to execution, with D := ∪Dfi ∈ ~dv

60 wait(D):
61 For d ∈ D:
62 Wait until either
63 p[d] 6= ∅ /* received a valid DEPPROPOSE */
64 received f + 1 correctly signed DEPVERIFY

65 received f + 1 correctly signed VIEWCHANGE

66 conflicts(r):
67 Return {si|∀si, pr[si] 6= ∅ : conflict(pr[si], r)}

Reconciliation Path

68 Timeout ∆propose for slot sj expires:
69 Broadcast 〈p[sj ],⊥〉 to all replicas
70 Timeout ∆commit for slot sj expires:
71 Move to new view vsj + 1

72 Enter reconciliation path for slot sj at replica ri:
73 step[sj ] := rp−verified
74 ~dv := {v[sj ][fi] | ∀fi}
75 Broadcast 〈PREPARE, view[sj ], sj , ri, h( ~dv)〉σri
76 Replica ri receives 〈PREPARE, vsj , sj , ∗, h( ~dv)〉

with identical h( ~dv) from 2f + 1 replicas:
77 pre: step[sj ] = rp−verified ∧ view[sj ] = vsj

∧ h({v[sj ][fi] | ∀fi}) = h( ~dv)
78 step[sj ] := rp−prepared
79 Broadcast 〈COMMIT, vsj , sj , ri, h( ~dv)〉σri
80 Replica ri receives 〈COMMIT, vsj , sj , ∗, h( ~dv)〉

with identical h( ~dv) from 2f + 1 replicas:
81 pre: step[sj ] = rp−prepared ∧ view[sj ] = vsj

∧ h({v[sj ][fi] | ∀fi}) = h( ~dv)
82 step[sj ] := rp−committed
83 Stop commit timeout ∆commit for slot sj
84 exec[sj ] := 〈pr[sj ],∪Dfi ∈ ~dv〉
85 Forward 〈pr[sj ], D, sj〉 to execution, with D := ∪Dfi ∈ ~dv

View Change

86 Move to new view vsj for slot sj at replica ri:
87 If propose timeout ∆propose for slot sj is active, trigger its expiry
88 Stop commit/vc timeout ∆commit and ∆vc for slot sj
89 dp := 〈p[sj ], pr[sj ]〉; ~dv := {v[sj ][fi] | ∀fi}
90 /* Update certificate if current view fp−verified / rp−prepared */
91 If step[sj ] ∈ {fp−verified, fp−committed}:
92 cert[sj ] := 〈FPC, dp, ~dv,−1〉
93 Else If step[sj ] ∈ {rp−prepared, rp−committed}:
94 ~prep := set of 2f + 1 PREPAREs with h( ~dv)

95 cert[sj ] := 〈RPC, dp, ~dv, ~prep, view[sj ]〉
96 view[sj ] := vsj
97 views[sj ][ri] := vsj
98 step[sj ] := view−change
99 Start query execute timeout ∆query−exec for slot sj

100 Broadcast 〈VIEWCHANGE, vsj , sj , ri, cert[sj ]〉σri
101 Replica ri receives 〈VIEWCHANGE, vsj , sj , rk, ∗〉:
102 pre: vsj > views[sj ][rk] /* View of a replica must only increase */
103 views[sj ][rk] := vsj
104 /* Move to f+1−highest known view */
105 vn := f + 1-highest in {views[sj ][rl] | ∀rl}
106 If vn > view[ri]:
107 Move to new view vn /* Sends new VIEWCHANGE message */

108 co := (sj .co+ max(0, vsj )) mod N



109 View-change coordinator co for view vsj receives valid
V CS := {〈VIEWCHANGE, vsj , sj , ∗, ∗〉} from 2f + 1 replicas:

110 pre: step[sj ] = view−change ∧ view[sj ] = vsj
111 assert ∀V C ∈ V CS : V C is valid

∧ (V C.cert = ∅ ∨ V C.cert.view ≤ V C.vsj )

112 Pick dp, ~dv from
113 reconciliation-path result for highest view if RPC certificate exists
114 fast-path result if FPC certificate exists
115 null otherwise
116 Broadcast 〈NEWVIEW, vsj , sj , co, dp,

~dv, V CS〉σco
117 Replica ri receives valid V CS := {〈VIEWCHANGE, vsj , sj , ∗, ∗〉}

from 2f + 1 replicas:
118 pre: step[sj ] = view−change ∧ view[sj ] = vsj
119 Start VC timeout ∆vc for slot sj
120 Stop query execute timeout ∆query−exec for slot sj
121 Timeout ∆vc for slot sj expires:
122 Move to new view vsj + 1

123 Replica ri receives 〈NEWVIEW, vsj , sj , co, dp,
~dv, V CS〉:

124 pre: step[sj ] = view−change ∧ view[sj ] = vsj
125 assert co is view-change coordinator for view vsj
126 assert ∀V C ∈ V CS : V C is valid
127 assert dp, ~dv correctly picked based on V CS
128 〈p[sj ], pr[sj ]〉 := dp
129 v[sj ][∗] := ∅ /* Cleanup DEPVERIFYs */
130 ∀dv ∈ ~dv : v[sj ][dv.fi] := dv
131 If sj .i = ri ∧ dp = null:
132 permute−fast−quorum()
133 Re-propose request in a new slot
134 Start commit timeout ∆commit with reduced timeout

∆vc−commit for slot sj
135 Enter reconciliation path
136 Timeout ∆query−exec for slot sj expires:
137 Broadcast 〈QUERYEXEC, sj , rj〉σri to all replicas
138 Replica ri receives 〈QUERYEXEC, sj , rj〉:
139 pre: exec[sj ] 6= ∅
140 〈dp,D〉 := exec[sj ]
141 Send 〈EXEC, sj , ri, dp,D〉σri to replica rj
142 Replica ri receives 〈EXEC, sj , ∗, dp,D〉 from f + 1 replicas:
143 pre: exec[sj ] = ∅
144 exec[sj ] := 〈dp,D〉
145 Forward 〈dp,D, sj〉 to execution with dependencies D

B. Proof

We show that ISOS provides the following properties:
• Validity: Only correctly signed client requests are exe-

cuted.
• Consistency: Two correct replicas commit the same

request and dependencies for a slot. [5]
• Execution Consistency: Two interfering requests are

executed in the same order on all correct replicas. [5]
• Linearizability: If two interfering requests are proposed

one after another, such that the first request is executed
at some correct replica before the second request is
proposed, then all replicas will execute the requests in
that order.

• Agreement Liveness: In synchronous phases a client
request will eventually commit. [5]

• Execution Liveness: In synchronous phases a client will
eventually receive a result.

We write pi to refer to a variable p from the perspective of
replica ri.

We make the following standard cryptography assumptions:
A message m signed by replica ri is denoted as 〈m〉ri . All
replicas are able to verify each other’s signatures. A malicious
replica is unable to forge signatures of correct replicas. All
replicas drop messages without a valid signature.

By h(m) we refer to the hash of a message m calculated
using a collision resistant hash function, that is h(m) 6=
h(m′)⇒ m 6= m′.

Messages for a slot are delivered eventually by retransmit-
ting them unless the slot was garbage collected in the mean-
time. That is we assume reliable point-to-point connections
between all replicas until slots are garbage collected. Once a
replica has successfully completed a view change for a slot,
then it is no longer necessary to retransmit messages for earlier
views. It is also not necessary to retransmit DEPPROPOSE and
DEPVERIFY messages once a new view was entered for the
slot. In addition, for each message type only the message from
the highest view in which the message type was sent has to
be retransmitted.

We first show the properties for ISOS without checkpointing
and extend the pseudocode and proofs to include checkpoint-
ing later on.

1) Validity:

Theorem A.1 (Validity). Only correctly signed client requests
are executed.

Proof: The execution algorithm only executes committed
requests. For a client request to execute it must reach Line 59
or 85 in the Agreement Protocol in variable p[sj ] or be
received via EXEC messages in Line 145. p[sj ] is set in
• Line 16 and 32: The validity of the client request was

verified after receiving.
• Line 128: The value can be null or a value from a

certificate. As each valid certificate contains 2f DEP-
VERIFYs from the initial view, one must be from a
correct replica and as a correct replica only creates a
valid DEPVERIFY once after verifying the client request
(L. 35), the request must be correct. Otherwise, a correct
replica must have created two DEPVERIFYs which yields
a contradiction.

Requests received via EXEC are only forwarded to the
execution if a replica receives f + 1 matching EXECs. Thus,
at least one EXEC is from a correct replica which must have
processed the request according to one of the two previous
cases.

The null request is skipped during execution and thus only
correctly signed client requests are executed.

2) Consistency: We first establish some notation:

Definition A.2. A slot sj is verified if a correct replica
collects a valid DEPPROPOSE dp, 2f valid DEPVERIFYs from
different replicas with matching h(dp) and each DEPVERIFY
is from a replica in the fast-path quorum dp.F .

Definition A.3. A slot sj is fp-verified if a correct replica
verified it and each dependency in the DEPVERIFYs occurs
at least f + 1 times.



Definition A.4. A slot sj is fp-committed if a correct replica
collects 2f + 1 DEPCOMMITs from different replicas with
matching h( ~dv).

Remark A.5. Note that fp-committed implies fp-verified as
DEPCOMMITs are only sent by replicas which fp-verified the
slot.

Definition A.6. A slot sj is rp-verified if a correct replica
verified it and it is not fp-verified.

Definition A.7. A slot sj is rp-prepared if a correct replica
collects 2f + 1 PREPAREs from different replicas with match-
ing h( ~dv).

Definition A.8. A slot sj is rp-committed if a correct replica
collects 2f + 1 COMMITs from different replicas with match-
ing h( ~dv).

Remark A.9. Similar to fp-committed, rp-committed implies
rp-prepared and rp-prepared implies rp-verified.

Definition A.10. A slot sj is committed if a correct replica
fp-committed or rp-committed it.

Theorem A.11 (Consistency). Two correct replicas commit
the same request and dependencies for a slot.

We first proof the following auxiliary lemmas.

Lemma A.12. A slot sj cannot both be fp-committed and
rp-prepared in view = −1.

Proof: By contradiction. Assume that a slot is both fp-
committed and rp-prepared in view = −1. As the slot was rp-
prepared a correct replica received 2f + 1 PREPAREs (L. 76).
This requires f + 1 correct replicas to have entered the
reconciliation path (via L. 52 and 72). To be fp-committed,
another replica must have received 2f + 1 DEPCOMMITs. As
sending a DEPCOMMIT (L. 50) and entering the reconciliation
path (L. 52) are mutually exclusive, a correct replica must have
done both which yields a contradiction.

Lemma A.13. The content of a reconciliation-path certificate
(RPC) cannot be manipulated.

Proof: As each protocol phase includes hashes of the pre-
vious phase, faulty replicas can only manipulate the last round
of messages included in a certificate. For an RPC only the
PREPAREs can be manipulated, however, these only confirm
the values selected by the DEPPROPOSE and DEPVERIFYs.

Lemma A.14. A faulty replica can only create a manipulated
but valid fast-path certificate (FPC) if not fp-committed.

Proof: A faulty replica could construct a faulty FPC using
manipulated DEPVERIFYs, allowing the replica to include
manipulated dependency sets. A replica only takes the fast
path, if each dependency was reported in at least f + 1 DEP-
VERIFYs (L. 47). This requirement is also necessary for an
FPC to be valid.

Only a single DEPPROPOSE can be verified, which requires
2f matching DEPVERIFYs, as each correct replica only sends
a DEPVERIFY for the first DEPPROPOSE for a slot. Thus
correct replicas use the same fast-path quorum F to create
an FPC and all valid FPCs must use the same F . To change
the dependency sets faulty replicas only have the option to
create manipulated DEPVERIFYs.

We now proof the Lemma by contradiction. Assume fp-
committed holds. Then a correct replica has received 2f DEP-
VERIFYs in which each dependency is part of 0 (nonexistent
dependency) or f + 1 DEPVERIFYs.
• 0 occurrences: A manipulated FPC can either not include

the dependency, in which case the FPC is unchanged. Or
include a new dependency up to f times, which causes
the FPC to become invalid.

• f + 1 or more occurrences: A manipulated FPC can
either include the existing dependency at least f + 1
times, in which case the outcome of applying the FPC
is unchanged. Or include a dependency only between 1
and f times, which causes the FPC to become invalid.

Lemma A.15. A manipulated FPC can only be used if neither
fp-committed nor rp-committed.

Proof: If fp-committed, then no manipulated FPC can
exist. If rp-committed, at least f + 1 correct replicas have
rp-prepared and thus at least one RPC is contained in one
of the 2f + 1 VIEWCHANGEs required for the view change.
Thus the FPC is ignored. As fp-committed and rp-prepared
are mutually exclusive and rp-committed implies rp-prepared,
no valid FPC can exist.

Now we proof Theorem A.11:
Proof: Case 1: A replica ri commits 〈c,D, sj〉 via the

fast-path (L. 59). c is the request committed with dependen-
cies D for slot sj .
• Case 1.1: Another replica rk commits 〈c′, D′, sj〉 with

c 6= c′ ∨D 6= D′ via the fast-path.
– Case c 6= c′:

Proof: Then pi[sj ] 6= pk[sj ], as c 6= c′. h(p[sj ]) is
part of the DEPVERIFYs. Therefore, h( ~dv) must dif-
fer. Then ri and rk each need 2f + 1 DEPCOMMITs
with different h( ~dv), which due to the properties of a
Byzantine majority quorum would require a correct
replica to send two DEPCOMMITs, which yields a
contradiction.

– Case D 6= D′:
Proof: With D := ∪Dfi ∈ ~dv it follows, that
for a differing fast-path quorum F or dependency
sets Dfi , ri and rk must use different h( ~dv). Now,
the proof of the previous case applies.

• Case 1.2: rk commits in view −1 via the reconciliation
path.
Proof: Then rp-committed holds which requires 2f +
1 COMMITs (L. 80) of which f + 1 must originate
from correct replicas. This implies rp-prepared which



according to Lemma A.12 conflicts with fp-committed.

• Case 1.3: rk commits 〈c′, D′, sj〉 with c 6= c′ ∨D 6= D′

in view ≥ 0 via the reconciliation path.
Deferred to Case 3.

Case 2: A replica ri commits 〈c,D, sj〉 via the reconciliation
path in view = −1 (L. 85).
• Case 2.1: rk commits 〈c′, D′, sj〉 with c 6= c′ ∨D 6= D′

via the fast-path.
Proof: See Case 1.2.

• Case 2.2: rk commits in view −1 via the reconciliation
path.
Proof: This requires two sets of 2f + 1 PREPAREs with
different h( ~dv) which would require a correct replica to
send two different PREPAREs.

• Case 2.3: rk commits 〈c′, D′, sj〉 with c 6= c′ ∨D 6= D′

in view ≥ 0 via the reconciliation path.
Deferred to Case 3.

Case 3: A replica rk commits m′ := 〈c′, D′, sj〉 via the
reconciliation path in view ≥ 0.

Proof: We proof this by induction: Once a replica com-
mits m := 〈c,D, sj〉, with c 6= c′ ∨D 6= D′, in some view,
then no replica can commit or prepare a different result m′ in
views > view.

Base case: view′ = view + 1:
Assume that m committed in view and that m′ prepares /

commits in view′. A correct replica only decides a result in
view view′ after receiving a valid NEWVIEW. No manipulated
RPC and FPC are used according to Lemma A.13 and A.15.
• Case view = −1∧ fp-committed: No RPC can exist, as

fp-committed and rp-prepared are mutually exclusive. As
the fast-path committed, at least f + 1 correct replicas
have fp-verified the slot. These will include an FPC in
their VIEWCHANGE. As the view-change coordinator has
to wait for 2f + 1 VIEWCHANGEs, at least one VIEW-
CHANGE will include the FPC. The FPC would include
m, which contradicts the assumption.

• Case view = −1∧ rp-committed : f + 1 correct replicas
must be rp-prepared and thus provide the view-change
coordinator with an RPC, which must be included in the
NEWVIEW. No correct replica can be fp-committed, as it
is mutually exclusive with rp-prepared. Therefore, if valid
RPC and FPC exist, then the FPC is from a faulty replica
and must be ignored. Thus, the selected RPC contains m
which yields a contradiction.

• Case view ≥ 0: The slot must have rp-committed
and thus, similar to the previous case, the view change
correctly selects the RPC. Therefore, the RPC contains
m which yields a contradiction.

Induction step: view′ > view + 1:
To commit a slot, 2f + 1 replicas have to send a DEP-

COMMIT or COMMIT. One VIEWCHANGE with a correspond-
ing certificate from a correct replica must be part of the
2f + 1 VIEWCHANGE messages. A correct replica always
sends its newest certificate (L. 91-95), and therefore one of the

VIEWCHANGEs used by the view-change coordinator includes
a certificate from the highest view vmax in which a request
has committed.
• Case vmax ≥ 0: Thus the reconciliation path must have

committed in vmax, and therefore the correct certificate
is selected (L. 112-115).

• Case vmax = −1: The existence of an RPC shows that
not fp-committed and thus the RPC must be selected. If
only an FPC exists, then not rp-committed and therefore
it is valid to select the FPC.

Case 4: A replica rk commits 〈dp,D, sj〉 after receiving
f + 1 valid 〈EXEC, sj , ∗, dp,D〉 messages (Line 136-145).
This case allows lagging replicas to catch up and learn the
agreement result as described in Section IV-E.

Proof: At least one of the EXEC messages is from a
correct replica, which either has committed the slot itself in
which case the previous cases apply. Or the correct replica
has learned from another correct replica that the slot was
committed.

The cases are exhaustive.
3) Execution Consistency: Execution pseudo code

146 Variables at each replica:
147 k /* Size of execution window */
148 committed, executed /* Sets containing all slots which have been

commmitted or executed so far */
149 exp(ri) := min{vmin | vmin /∈ executed ∨ vmin.i = ri}

/* First not executed request for replica ri, defines the lower
bound of the execution window */

150 expk := {v|v.si < exp(v.i) + k}
/* Executed slots and slots in execution window */

151 rhist[∗] := ⊥ /* History variable for dependency graph calculation */

Request Execution

152 /* Calculate dependency graph for slot v */
153 rdeps(v):
154 D′ := {v}
155 While D 6= D′:
156 D := D′

157 For v ∈ D:
158 If v /∈ executed:
159 D′ := D′

⋃
d∈deps(v)(v → d) ∪ {d}

160 Else:
161 D′ := D′ ∪ rhist[v]
162 Return D
163
164 /* Calculate dependency graph for slot v. Excludes slots outside the

execution window */
165 rdepsexp(v):
166 D′ := {v} ∩ expk
167 While D 6= D′:
168 D := D′

169 For v ∈ D:
170 If v /∈ executed:
171 D′ := D′

⋃
d∈deps(v),d∈expk

(v → d) ∪ {d}
172 Else:
173 D′ := D′ ∪ rhist[v]
174 Return D



175 While True:
176 Update slots committed in the meantime
177 /* repeat loop until no further suitable v exists */
178 For all v ∈ (expk \ executed) ∧ rdeps(v) ⊆ (committed ∩ expk):
179 ~sc := find not executed strongly-connected components in

rdeps(v) in inverse topological order
180 For sc ∈ ~sc:
181 /* normal case execution */
182 execute(sc, rdeps(sc))
183 For all v ∈ (expk \ executed) ∧ rdepsexp(v) ⊆ committed:
184 ~sc := find not executed strongly-connected components in

rdepsexp(v) in inverse topological order
185 /* unblock execution case */
186 execute(~sc[0], rdepsexp(~sc[0]))
187
188 execute(~v, d):
189 For c ∈ sort(~v):
190 Execute request c
191 rhist[v] := d
192
193 sort(~v):
194 Return ~v sorted by sequence numbers v.seq and use replica id v.i as

tie breaker

Similar to the Execution Consistency property in
EPaxos [5], we show:

Theorem A.16 (Execution Consistency). All replicas execute
all pairs of committed, conflicting requests in the same order.

The relation conflict(a, b) states that two requests a and
b conflict with each other. The dependencies which were
committed for a slot a are given by deps(a). We first show that
conflicting requests have dependencies on each other, before
showing that conflicting requests are executed in the same
order on all replicas.

Lemma A.17. If conflict(a, b) then, a has a dependency on
b in deps(a) or the other way around.

Proof: For a request r one DEPPROPOSE and 2f DEP-
VERIFY, that is in total 2f + 1 replicas, provide dependencies
for the request.

For a and b at least one correct replica ri receives both
requests.
• ri receives a before b: Then a ∈ deps(b).
• ri receives b before a: Then b ∈ deps(a).
Therefore, the dependency is included when the slot is

committed via the fast or reconciliation path in view = −1.
When a replica rp-prepares the slot, then its RPC must by
construction also include the dependency. As an FPC must
include f DEPVERIFYs and a DEPPROPOSE from correct
replicas or f + 1 DEPVERIFYs from correct replicas, one of
these messages includes the dependency. This is the case as a
faulty replica cannot change the fast-path quorum F afterwards
and thus cannot change which replicas contribute to an FPC.

In case no FPC or RPC is part of the view change, then
a null request is selected. As that request does not conflict
with any other request, no dependencies are required.

Note that the requirement for an FPC or RPC which include
DEPPROPOSE and DEPVERIFYs ensures that only the request
coordinator can propose a request for the slot.

Next, we show that conflicting requests are executed in the
same order on all replicas. We start with several definitions
used in the following:

Definition A.18 (SCC trace). A strongly-connected compo-
nents (SCC) trace t is a 0-based vector consisting of executed
SCCs in the order of their execution. We write ti to refer to
the trace belonging to a replica ri.

Definition A.19 (SSCC trace). A special-case strongly-
connected component (SSCC) trace t̂ is the subset of an SCC
trace t containing only the SSCCs, that is all SCCs which were
executed via the unblock execution case (Line 185).

Definition A.20 (Regular SCC). A regular SCC is one which
was executed via the normal case execution (Line 181).

All slots executed as part of a trace are given by
flatten(t) = {v | v ∈ s, s ∈ t}.

For a slot v we write v.i to refer to replica i which is
the request coordinator for that slot. And v.seq to access the
attached counter / sequence number. For two slots v1 and v2
with v1.i = v2.i, we use v1 < v2 as shorthand for v1.seq <
v2.seq.

We write a → b if a directly depends on b, that is b ∈
deps(a). (Logical implications are written as P ⇒ Q.) a ; b
also includes transitive dependencies, that is a ; b ⇔ a →
b ∨ a→ v1 → . . .→ vn → b, with n ∈ N.

rdeps(v) and rdepsexp(v) define dependency graphs start-
ing from a slot v. They return a graph consisting of slots and
edges v1 → v2 between slots in these graphs. By construction
all slots and edges in the graph are reachable from v.

Corollary A.21. An SCC trace fully defines the order in which
requests are executed.

Proof: Slots can only be executed via execute(~v, d),
which groups requests by SCCs. As the execution algorithm
filters out executed slots, each slot is only executed once and
can thus only be part of one SCC. Note that the inverse
topological sorting ensures that slots in an SCC can only
depend on the SCC itself or earlier SCCs. Requests within an
SCC are sorted before execution, which yields a stable order.

Note that by definition executedi = flatten(ti).
We first show the following supporting Lemma:

Lemma A.22. Assume correct replicas ri and rj have two
traces ti and tj where t̂i = t̂j . Then ∀v ∈ flatten(ti) ∩
flatten(tj) : rhisti[v] = rhistj [v], where v is a slot in an
SCC.

That is for all slots executed at both replica ri and rj
(∀v ∈ flatten(ti) ∩ flatten(tj)), the dependency sets used
for ordering are identical on these replicas for each of these
slots.

We proof Lemma A.22 in multiple steps by induction. Base
case of Lemma A.22: The Lemma applies for an SSCC trace t̂
with length 0, that is trace t only contains regular SCCs.



Lemma A.23. When ∀v ∈ flatten(ti) ∩ flatten(tj) :
rhisti[v] = rhistj [v] before executing an SCC s via the
normal case then ∀v′ ∈ s : rdepsi(v′) = rdepsj(v′).

Proof: By construction an SCC is only executed after all
its slots were committed, therefore depsi(v) = depsj(v) =
deps(v) are identical on all replicas for any slot v used during
the calculation of rdepsi(v′) and rdepsj(v′).

We set v1 to be an arbitrary slot of SCC s. As by assumption
no slot of the SCC was executed before, rdeps(v1) must
expand all slots vs of the SCC s via deps(vs) (Lines 159 and
171). As all dependencies of an SCC are executed before the
SCC, then for slot vd in one of these dependencies, rhist[vd] is
identical on all replicas. Therefore rdepsi(v1) = rdepsj(v1).

This completes the proof for SCCs of size 1. In the
following we consider SCCs consisting of at least two slots
and show that if two SCCs at different replicas have at
least one slot in common, then the SCCs are identical. By
definition ∀v2 ∈ SCC, v1 6= v2 : v1 ; v2 ∧ v2 ; v1. Thus
rdepsi(v1) = rdepsi(v2).

Now assume that si 6= sj∧si∩sj 6= ∅: W.l.o.g v1 ∈ si, /∈ sj

and v2 ∈ si ∩ sj . Then v1 ∈ rdepsi(v1) = rdepsi(v2) =
rdepsj(v2) and therefore v1 ∈ sj which yields a contradiction.
Thus si = sj .

In the following we use rdeps(v) and rdeps(s) for slot
v ∈ SCC s interchangeably.

Lemma A.24. Assume replica ri and rj have two traces ti and
tj which only contain SCCs executed via the normal case, that
is |t̂i| = 0 and |t̂j | = 0. Then ∀v ∈ flatten(ti)∩flatten(tj) :
rhisti[v] = rhistj [v], where v is a slot in an SCC.

Proof: W.l.o.g. we assume |ti| = |tj |. A short trace can be
padded with empty ”SCCs” which are equivalent to a no-op.

Base case |ti| = 0: flatten(ti) ∩ flatten(tj) = ∅.
Induction step |t′i| = |ti|+ 1: We define si := t′i[|t′i| − 1]

to be the last element in t′i. We only discuss si, the same
arguments apply for an sj with swapped i and j.

Case 1: si ∈ set(t′i) ∩ set(t′j): Both t′i and t′j contain
s = si. As the SCCs are sorted in inverse topological order,
s is only executed after all SCCs on which s depends were
executed first, that is rdepsi(s) can only contain slots v ∈
s ∪ executed. Note that all slots in the SCC s must already
be committed (and not yet executed) as the SCC would not
be executed otherwise. Per (Agreement) Consistency property
the set D :=

⋃
v∈s deps(v) is identical on all replicas, and

thus s directly depends on the same slots on all replicas.
These slots (and their SCCs) have been executed on both
replicas ri and rj and thus per induction assumption ∀v ∈
D : rhisti[v] = rhistj [v]. Thus rdepsi(s) = rdepsj(s) and
therefore rhisti[s] = rhistj [s].

Case 2: si /∈ set(t′i) ∩ set(t′j) ⇔ si /∈ t′j : We show that
for all sj ∈ t′j : if si 6= sj , then si ∩ sj = ∅. Assume that sj
is the SCC with the lowest index in t′j with si∩ sj 6= ∅. With
Lemma A.23 this results in a contradiction.

The cases are exhaustive.

Thus, we have shown that ∀v ∈ {v|s ∈ set(ti)∩set(tj), v ∈
s} : rhisti[v] = rhistj [v]. We also know that for s1 ∈ ti, s2 ∈
tj : s1 ∩ s2 6= ∅ ⇒ s1 = s2. To complete the proof of
the Lemma we have to show that LHS := flatten(ti) ∩
flatten(tj) equals RHS := {v|s ∈ set(ti) ∩ set(tj), v ∈ s}.
By construction LHS ⊇ RHS, thus we have to show that
LHS 6⊃ RHS.

Assume that is not the case: Pick v such that v ∈ LHS, v /∈
RHS. Then v ∈ s1 ∈ ti, v ∈ s2 ∈ tj .

Case s1 = s2: Contradiction.
Case s1 6= s2: Thus s1 ∩ s2 = ∅, which contradicts v ∈

s1, s2.

Corollary A.25. The compact dependency representation im-
plicitly includes dependencies on all earlier slots of a replica.
That is a dependency from slot a to slot b ensures that
b ∈ deps(a) ⇒ deps(a) ⊇ deps(a, b) = {v|v.i = b.i ∧
v.seq ≤ b.seq}.

Lemma A.26. A regular SCC is only executed by the normal
case execution, whereas an SSCC is only executed by the
unblock execution case.

Proof: To reach a contradiction, assume that a regular
SCC is executed via the unblock execution case. For this, we
must find a slot v ∈ expk ∩ committed, v /∈ executed which
satisfies the following condition: rdepsexp(v) ⊆ committed∧
¬(rdeps(v) ⊆ committed ∩ expk). The first part of the
condition ensures that the unblock execution case can execute
(Line 183) and the second part ensures that the normal case
execution does not apply (Line 178). ⇔ rdepsexp(v) ⊆
committed ∧ (rdeps(v) 6⊆ committed ∨ rdeps(v) 6⊆ expk)
⇔ rdepsexp(v) ⊆ committed ∧ (rdeps(v) \ rdepsexp(v) 6⊆
committed ∨ rdeps(v) 6⊆ expk).

We also make the following observation: rdeps(v) ⊆
expk ⇒ rdeps(v) = rdepsexp(v). If rdeps(v) ⊆ expk then
the check using expk in rdepsexp never skips dependencies
and therefore rdeps(v) = rdepsexp(v).

Assume that the unblock case would execute while
rdeps(v) ⊆ expk, then rdeps(v) \ rdepsexp(v) = ∅ which
prevents the unblock case from executing. Thus, the unblock
case only executes if rdeps(v) 6⊆ expk.

Due to the inverse topological sort order the SSCC sc[0]
in the unblock execution case must have rdepsexp(sc[0]) \
sc[0] ⊆ executed that is all dependencies except sc[0]
must be executed and sc[0] ⊆ rdepsexp(sc[0]). As sc[0] ⊆
expk, rdeps(sc[0]) ⊃ rdepsexp(sc[0]) and therefore ∃xa ∈
rdeps(sc[0]) : (xa → xe) ∈ rdeps(sc[0]) ∧ xe /∈ expk.
Due to Corollary A.25 (xa → exp(xe.i)) = (xa → xr) ∈
rdepsexp(sc[0]), xr ∈ rdeps(sc[0]). By definition xe.seq −
xr.seq ≥ k and therefore always rdeps(sc[0]) 6⊂ expk.
Thus, sc[0] can never be executed via the normal case, which
contradicts the assumption that sc[0] is a regular SCC.

For v ∈ SSCC, as rdeps(v) 6⊂ expk before executing v, it
can never execute via the normal execution case.

Lemma A.26 allows strengthening Lemma A.24 to:



Lemma A.27. Assume replica ri and rj have two traces ti

and tj which only contain regular SCCs, that is |t̂i| = 0 and
|t̂j | = 0. Then ∀v ∈ flatten(ti) ∩ flatten(tj) : rhisti[v] =
rhistj [v], where v is a slot in a (regular) SCC.

Lemma A.28. Assume replica ri and rj have two traces ti

and tj which only contain regular SCCs, that is |t̂i| = 0 and
|t̂j | = 0. If si 6= sj , then si ∩ sj = ∅.

Proof: Follows from the proof of Lemma A.24 and A.26.

Induction step 1 of Lemma A.22: The lemma applies for a
fixed SSCC trace t̂′ with length |t̂|+ 1 where the SSCC is the
last element of trace t′. We refer to it as ŝ := t′[|t′| − 1] =
t̂′[|t̂′| − 1].

Lemma A.29. rhisti[ŝ] = rhistj [ŝ] for a fixed SSCC trace t̂′

with ŝ := t′[|t′| − 1].

Proof: For an SSCC to execute via the unblock case,
the following must hold: rdepsexp(ŝ) ⊆ committed ∧
¬(rdeps(ŝ) ⊆ committed ∩ expk). As shown in the proof
of Lemma A.26 this requires rdeps(ŝ) 6⊆ expk.
rdepsexp(ŝ) depends on deps(v), rhist[v] and expk.

deps(v) is identical across replicas by the (Agreement) Con-
sistency property and rhist[v] is identical across replicas as
SCC dependencies are executed first and thus this follows
from the induction assumption. In the SSCC there must
exist slots vm ∈ expk with a dependency on a slot ve ∈
deps(vm), ve /∈ expk, /∈ rdepsexp(ŝ). We now show that
∀vm ∈ expk : ∀ve ∈ deps(vm), ve /∈ expk : expi(ve.i) =
expj(ve.i). Assume that this is not the case.

By Corollary A.25, deps(vm) ⊇ deps(vm, ve). We set
vr = min({d|d ∈ deps(vm, ve) ∧ d /∈ executed}). By
definition exp(ve.i) = vr. Note that vr must be part of SSCC
as it would have to be ∈ executed otherwise, which contra-
dicts the definition of vr. That is for all replicas rl to which
dependencies are removed in rdepsexp, exp(rl) is defined by
the slots in the SSCC. Thus rdepsiexp(ŝ) = rdepsjexp(ŝ).

Due to Lemma A.26 the SSCC can only be executed via
the unblock execution case.

Lemma A.30. Assume replica ri and rj have two traces ti

and tj where the SSCC ŝ is the last element and t̂i = t̂j . Then
∀v ∈ flatten(ti)∩flatten(tj) : rhisti[v] = rhistj [v], where
v is a slot in an SCC.

Proof: By construction slots are only executed once, thus
either v ∈ flatten(t̂) or v ∈ flatten(ti \ t̂)∩ flatten(tj \ t̂).
Then rhisti[v] = rhistj [v] follows from Lemmas A.27 and
A.29.

Induction step 2 of Lemma A.22: The fixed SSCC trace t̂′

has length |t̂| and the corresponding SCC trace t ends with a
sequence of regular SCCs.

Lemma A.31. At replica ri and rj for two traces ti and tj

with identical SSCCs, that is t̂i = t̂j: ∀v ∈ flatten(ti) ∩
flatten(tj) : rhisti[v] = rhistj [v], where s is an SCC.

Proof: W.l.o.g. we assume |ti| = |tj |. A short trace can
be padded with empty ”SCCs” which correspond to a no-op.
In addition, we assume that there is a position x such that
ti[x] = t̂[|t̂− 1|] = tj [x], that is the last SSCC is at the same
index in both traces. By assumption, all SCCs after the SSCC
are executed regularly.

Base case: |t| = x + 1: Follows from Lemma A.30.
Induction step: |t′| = |t| + 1: We define si := t′i[|t′i| − 1]

to be the last element in t′i. We only discuss si, the same
arguments apply for an sj with swapped i and j.

Case 1: si ∈ set(t′i)∩ set(t′j): The same as Case 1 in the
proof of Lemma A.24, except that the induction assumption
is strengthened with Lemma A.30.

Case 2: si /∈ set(t′i) ∩ set(t′j) ⇔ si /∈ t′j : This never
applies as regular SCCs and SSCCs are disjoint, according to
Lemma A.24 (Case 2) and A.29.

We now finish the proof of Lemma A.22.
Lemma A.22 (repetition). Assume replica ri and rj have
two traces ti and tj:∀v ∈ flatten(ti) ∩ flatten(tj). Then
rhisti[v] = rhistj [v], where v is a slot in an SCC.

Proof: We assume w.l.o.g. that |t̂i| = |t̂j |. A short SSCC
trace can be padded with empty no-op SSCCs.

Base case: |t̂i| = |t̂j | = 0: See Lemma A.27.
Induction step: |t̂i

′
| = |t̂i|+ 1: We only show this for ŝi :=

t̂i
′
[|t̂i
′
| − 1], a symmetrical argument applies for sj .

Case 1: ŝi ∈ set(t̂i
′
) ∩ set(t̂j

′
): All SCCs on which ŝi

depends have already been executed, thus rdepsiexp(ŝ
i) =

rdepsjexp(ŝ
i) as shown in the proof of Lemma A.29.

Case 2: ŝi /∈ set(t̂i
′
) ∩ set(t̂j

′
): We show that if ŝi 6= ŝj ,

for a ŝj ∈ t̂j then ŝi ∩ ŝj = ∅. For that we show that an
SSCC can be identified by a single slot v. An SSCC depends
on D :=

⋃
v∈ŝi exp(v.i). v ∈ D must be part of the SSCC

as otherwise they would have been executed before. Thus,
exp(...) is defined by the SSCC. And therefore ∀v ∈ ŝi :
rdepsiexp(v) = rdepsjexp(v).

The cases are exhaustive.
Theorem A.16 (repetition) (Execution Consistency). All
replicas execute all pairs of committed, conflicting requests
in the same order.

Now we proof the theorem:
Proof: The agreement guarantees that for two conflicting

requests a and b in slots v1 and v2, at least one will depend
on the other. W.l.o.g. assume that v2 ∈ deps(v1) and that v1
and v2 were already executed.

Case 1: v1 and v2 are part of the same regular SCC or
SSCC: An SCC is sorted before executing, thus ensuring a
stable order.

Case 2: v2 ∈ rhist[v1]: Then v2 was executed before v1.
Assume this is not the case: This is only possible if v1 and v2
are part of a single SCC, which contradicts the assumption.

Case 3: v2 /∈ rhist[v1]: v1 must be part of an SSCC, as
only rdepsexp can exclude dependencies from deps(v1).

We first show that the execution behaves as if the
following additional dependencies for each slot exist:

˜deps(v)=̂deps(v) ∪ {x |x.i = v.i ∧ x.seq ≤ v.seq − k}. We



adapt ˜rdeps and ˜rdepsexp to use ˜deps(v). When v is executed,
v ∈ expk thus x.seq ≤ v.seq−k < exp(v.i).seq and thus the
additional dependencies only point to already executed slots.
Therefore, they do not affect the execution.

When the SSCC was executed v1 ∈ expk, v2 /∈ expk. Then
we get: vr = exp(v2.i) ∈ deps(v1) due to Corollary A.25,
vr ∈ ˜deps(v1), vr ∈ ˜deps(v2) and (v1 ; vr∧vr ; v1)∨v1 =
vr as v1 and vr are part of the SSCC. Therefore, v2 can only
execute after the SSCC as vr ∈ SSCC and v2 → vr.

The cases are exhaustive.
In contrast to the SCC trace, the execution pseudocode

starts from individual slots and tests whether a slot and its
dependency graph are executable. Only then the SCCs are
calculated and executed. When the tested slots are part of
the SCC to execute next, then it is trivial to see that both
representations are equivalent. Now suppose slot vb of SCC B
which depends on SCC A is tested first. If both SCCs are
regular SCCs, then SCC A will be executed before B. As
rhist[va] := rdeps(A) for va ∈ A it makes no difference
whether rdeps(B) is calculated before or after executing
SCC A.

If only A is an SSCC, then A is executed first and afterwards
the execution is restarted, which includes a recalculation of
rdeps(vb). If only B is an SSCC, then we arrive at a contradic-
tion, as A must already have been executed. If both are SSCCs,
then one of both is executed and afterwards the execution is
restarted. In all these cases the behavior is equivalent to that
assumed when working with SCC traces. This generalizes to
dependency graphs which contain more than two SCCs.

Remark A.32. It is sufficient for the unblock execution case
to only check slots in exp(∗), that is the root nodes. As shown
in Lemma A.26 at least one slot in every SSCC is ∈ exp(∗).

Remark A.33. rhist can be ignored for an implementation,
as by construction it only contains executed slots. An already
executed slot cannot have dependencies on not yet executed
slots. Therefore, slots in rdeps(v) and rdepsexp(v) can be
split into two sets A ⊆ executed and B ∩ executed = ∅
with executed and not executed slots, respectively. Only slots
in B can depend on slots in A. A similar structure applies
for the SCCs in rdeps(v) or rdepsexp(v). As these SCCs are
skipped if they were executed before, it is equivalent to remove
executed slots from rdeps or rdepsexp as well. The simplest
way to achieve that is to drop rhist completely.

Remark A.34. An implementation can handle rdeps and
rdepsexp using a single graph and immediately remove ex-
ecuted slots. This is easy to see for rdeps alone, the combi-
nation with rdepsexp requires small modifications: Only slots
∈ expk should be processed, all other slots can be regarded
as not yet committed. Then rdeps(v) 6⊆ committed ⇔
rdeps(v) 6⊆ expk. rdepsexp(v) can be emulated by ignoring
dependencies on slots /∈ expk on the fly.

4) Linearizability:

Theorem A.35 (Linearizability). If two interfering reqeusts

are proposed one after another, such that the first request is
executed at some correct replica before the second request is
proposed, then all replicas will execute the requests in that
order.

Proof: Once a request a was executed then all later
conflicting requests b will depend on a and are thus ordered
after a. To prevent the duplicate execution of client requests,
the requests of a client always conflict with each other, which
guarantees a total order for the requests of each client.

5) Agreement Liveness: Similar to the Liveness property in
EPaxos [5], we show:

Theorem A.36 (Agreement Liveness). In synchronous phases
a client request will commit eventually.

We first show that dependencies proposed by correct repli-
cas will be accepted eventually, then show that a slot will
commit and finish by showing that this also holds for a client
request.

Definition A.37. We say that wait (Line 60) accepts a slot
as dependency, if the function does not block permanently, that
is it returns eventually.

Lemma A.38. If a correct replica ri has accepted a DEP-
PROPOSE from replica rj , then all other correct replicas will
accept it as a dependency eventually.

Proof: We show this by induction: For the base case
assume that the DEPPROPOSE contains no dependencies. The
propose timeout stays active at replica ri until it has accepted
2f DEPVERIFYs for the DEPPROPOSE (L. 44).
• Case 1: Coordinator rj is correct.

All replicas will receive the DEPPROPOSE and thus wait
accepts the slot as dependency.

• Case 2: Coordinator rj is faulty.
Assume that replica ri has accepted 2f DEPVERIFYs.
Only f − 1 faulty DEPVERIFYs are possible. Thus, at
least f + 1 of 2f DEPVERIFYs are from correct replicas.
And therefore all replicas will receive f+1 DEPVERIFYs
causing wait to accept the dependency. Otherwise, the
propose timeout will expire, causing a correct replica rk
to broadcast the request. This allows all other replicas to
learn about the slot corresponding to the DEPPROPOSE
as the message was signed by the request coordinator.
Alternatively, if replica ri receives the DEPPROPOSE,
then it will broadcast the message if it fails to collect
2f DEPVERIFYs within the propose timeout.

• Case 3: A view-change triggers at replica ri.
The replica ri broadcasts the DEPPROPOSE to all replicas
if the propose timeout was still active (Line. 87).

• The cases are exhaustive.
For the induction step we look at a later DEPPROPOSE

for which the correct replica ri must also have accepted all
dependencies. Thus, if it is necessary to broadcast the DEP-
PROPOSE it will be accepted eventually as all dependencies
will be accepted due to the induction assumption.



Remark A.39. Note that the view-change special case to
broadcast the DEPPROPOSE (Line. 87) only exists for com-
pleteness, but is not strictly necessary during synchronous
phases. For a view change at least one correct replica rk
must have sent a VIEWCHANGE. This in turn requires that
the replica rk has either received the DEPPROPOSE in which
case it will broadcast the DEPPROPOSE itself if necessary.
Or the replica rk has received f + 1 valid DEPVERIFYs in
which case at least one of these was sent by a correct replica,
which must have received the DEPPROPOSE and therefore also
ensures its distribution. Together with the commit timeout 9∆
which is much larger than the propose timeout of 2∆, the
special case can only trigger if another correct replica has
received and possibly distributed the DEPPROPOSE before.

Lemma A.40. A dependency included in a request proposed
by a correct replica ri will be accepted by all correct replicas
eventually.

Proof: By construction, correct replicas only propose
dependencies, for which they accepted the corresponding DEP-
PROPOSE. Then according to Lemma A.38 the corresponding
messages will be accepted (by wait).

Lemma A.41. wait only accepts slots as dependencies which
will commit eventually.

Proof: The wait function waits for each dependency
until one of the following cases holds (L. 62-65):
• Case 1: f + 1 DEPVERIFYs received.

These include at least one DEPVERIFY from a correct
replica, which must have received a valid DEPPROPOSE
and which will broadcast it if necessary.

• Case 2: f + 1 VIEWCHANGEs received.
At least one VIEWCHANGE is from a correct replica,
which also ensures that a correct replica has received a
valid DEPPROPOSE, see Remark A.39.

• Case 3: DEPPROPOSE accepted.
This enables a replica to broadcast the DEPPROPOSE
itself if necessary.

• The cases are exhaustive.
Together with Lemma A.38 and A.40 eventually the commit
timeout is active at all correct replicas which forces the slot
to commit.

Assume for now that the used timeout values are large
enough to ensure progress.

Lemma A.42. A slot (not request) of a correct coordinator
will commit eventually.

Proof: Case 1: The fast-path quorum F only contains
correct replicas.

Then one of the following can happen:
• Case 1.1: The slot commits without view change.

Proof: Correct replicas enforce that a coordinator does not
leave gaps in its sequence number space (L. 24). During
a synchronous phase, the wait calls in lines 24 and 40
do not block permanently according to Lemma A.40. The

coordinator and the fast-path quorum make up a total of
2f + 1 correct replicas which allows the slot to commit.
In an asynchronous phase the coordinator will retransmit
its DEPPROPOSE until all correct replicas have received
it. Then either the slot will commit or ≥ f + 1 replicas
trigger a view change.
The replicas start the commit timeout after receiving the
DEPPROPOSE or in the case of the request coordinator
after sending the DEPPROPOSE and thus either commit
or request a view change. Once f + 1 correct replicas
have committed, then the remaining f correct replicas can
only trigger a view change with the help of faulty repli-
cas. When the view-change does not start within time-
out ∆query−exec after sending the own VIEWCHANGE,
then a replica issues QUERYEXEC requests to all other
replicas (L. 137). These up to f replicas then receive the
result via EXEC messages from at least f + 1 correct
replicas.

• Case 1.2: A view change is necessary for at least one
replica.
Proof: As soon as f + 1 correct replicas have issued a
VIEWCHANGE for view v+ 1 then eventually all correct
replicas will issue a VIEWCHANGE (L. 105-107). In a
synchronous phase eventually all correct replicas will
enter the view change in the same view v + 1.
The timeout for view v + 2 is only started after ensuring
that at least f+1 correct replicas have reached view v+1
and sent a VIEWCHANGE. This in turn ensures that all
correct replicas will reach view v + 1 at the same time if
the network in synchronous, see also Lemma A.46. Then
all correct replicas will start their view change timeout, as
enough VIEWCHANGEs exist to ensure that a NEWVIEW
can be created eventually. Then either at least f+1 correct
replicas accept the NEWVIEW or f + 1 correct replicas
switch to view v + 2.
After a replica ri accepts a NEWVIEW, then a differ-
ent replica rj will either eventually also receive and
accept the NEWVIEW or switch to a higher view. As
2f + 1 VIEWCHANGEs are necessary to compute a
NEWVIEW, at least f + 1 must be from correct replicas,
thus eventually all replicas start a view change, will
receive 2f+1 VIEWCHANGE and start their view-change
timeouts. Then either the replica accepts the NEWVIEW
or switches to a higher view. After accepting a NEWVIEW
a replica restarts the commit timeout which again ensures
that the reconciliation path completes or another view-
change is started.
The view-change coordinator is rotated in each view such
that eventually a correct coordinator is used, which allows
the slot to commit.

• Case 1.3: DEPPROPOSE and DEPVERIFY (from correct
replicas) contain dependencies not accepted by wait.
Proof: Using Lemma A.40 we immediately arrive at a
contradiction.

• The cases are exhaustive.



Case 2: Fast-path quorum F contains faulty replicas.
We show that faulty replicas in the fast-path quorum F

cannot prevent committing a slot (only its request) and cannot
add dependencies to non-existing slots. The faulty replicas can
exhibit one of the following behaviors:

• Case 2.1: A faulty replica sends multiple DEPVERIFYs.
Proof: The replica can prevent the fast or reconciliation
path from completing when replicas collect diverging
or no ~dv. If the faulty replica prevents the slots from
committing then the commit timeout enforces a view
change. This will result in filling the slot with null after
the view change.

• Case 2.2: A faulty replica does not send a DEPVERIFY.
Proof: Same as the previous case.

• Case 2.3: A faulty replica proposes non-existing depen-
dencies.
Proof: According to Lemma A.41, correct replicas, which
have received the DEPPROPOSE, will time out while
waiting for the dependencies to commit. This will trigger
a view change which will fill the slot with null. Thus,
non-existing dependencies for a slot cannot commit.

• The cases are exhaustive.

The cases are exhaustive.

Lemma A.43. The fast-path quorum F will eventually contain
only correct replicas.

Proof: After filling a slot with null during the view
change, the fast-path quorum is rotated. This will eventually
result in the fast-path quorum F to only contain correct
replicas.

Remark A.44. Note that a faulty replica cannot prevent slots
of correct replicas from committing by proposing manipulated
DEPPROPOSEs. Assume this were the case. Then a correct
replica has to accept a DEPPROPOSE from the faulty coordi-
nator. Then Lemma A.38 applies, which yields a contradiction.
Thus, a faulty coordinator can only cause its DEPPROPOSE to
block permanently in wait which will also prevent all further
slots of the faulty replica from committing (L. 24) until the
faulty DEPPROPOSE is finally accepted.

We now show that the timeout values are sufficient to ensure
progress.

Lemma A.45. A DEPPROPOSE or DEPVERIFY of a correct
replica ri will be accepted after at most 3∆ after sending.

Proof: Replica ri has received the DEPPROPOSE of a
dependency as otherwise it would not include the dependency.
The propose broadcast timeout is 2∆. Thus, after 2∆ replica ri
has either received 2f DEPVERIFYs and thus after an addi-
tional ∆ all replicas have received f + 1 DEPVERIFYs after
which wait accepts the dependency. Or replica ri broadcasts
the DEPPROPOSE which will reach all replicas within ∆.

Lemma A.46. The calculation of a NEWVIEW can complete
within at most 3∆ in synchronous phases.

Proof: Once a correct replicas has received 2f + 1
VIEWCHANGEs then within 2∆ every correct replica will
receive 2f + 1 VIEWCHANGE. This allows the view-change
coordinator to calculate the NEWVIEW which after ∆ arrives
at all replicas. That is, in total a timeout of 3∆ is sufficient.

Lemma A.47. A commit timeout of at least 8∆ allows correct
coordinators to commit in synchronous phases.

Proof: It can take 3∆ each until a DEPPROPOSE and
DEPVERIFY are accepted. The fast path takes another ∆ until
DEPCOMMIT reaches all replicas. On the reconciliation path
PREPARE and COMMIT require up to 2∆. This yields a total
timeout of 8∆. As the timeout cannot start before the DEP-
PROPOSE was sent, this is sufficient in all cases.

After a view change ∆vc−commit = 3∆ is sufficient as the
reconciliation path only requires up to 2∆ and the receipt time
of a correct NEWVIEW can only vary by ∆ between replicas.

Theorem A.36 (repetition) (Agreement Liveness). In syn-
chronous phases a client request will commit eventually.

Now, we show Theorem A.36:
Proof: For slots in which the request was replaced

by null the request coordinator will propose the request
again (L. 133). Together with Lemmas A.42 and A.43 this
ensures that a slot / slots and also eventually a request will
commit. The client also broadcasts its request after a timeout
to all replicas. This ensures that a correct coordinator receives
the request and commits it.

Lemma A.48. The compact dependency representation does
not break Liveness.

Proof: The additional dependencies to replica rj have
sequence numbers sd which are lower than the maximum
sequence number maxsj to which an explicit dependency
exists. That is sd < maxsj = maxrj{d ∈ Di | d.i = rj}. A
correct replica accepts a DEPPROPOSE for maxsj only if it has
seen all earlier sequence numbers, that is wait must already
have accepted these (L. 24). Thus the guarantees provided by
wait also include the earlier additional sequence numbers sd.

The dependency representation does not affect execution
consistency as it can only add, but not remove, dependencies.

6) Execution Liveness:

Theorem A.49 (Execution Liveness). In synchronous phases
a client will eventually receive a result.

Lemma A.50. Any slot included as dependency of a commit-
ted slot will commit eventually.

Proof: The wait calls in Lines 24 and 40 together with
Lemma A.41 ensure that all dependencies of any committed
slot will commit eventually.

Lemma A.51. A committed request will be executed eventu-
ally.



Proof: Lemma A.50 shows that all slots on which a
committed slot depends will commit eventually. In order to
avoid the execution livelock problem discussed in EPaxos [5],
we now show that there is a finite upper bound for the number
of slots which have to commit before a slot can be executed.

A slot s can be executed via the normal case if all slots in
rdeps(s) ⊆ expk. As expk by construction only includes up
to k not executed slots per replica, the number of dependee
slots is bounded.

In addition, the unblock execution case executes slots in
rdepsexp(s) which by construction always is ⊆ expk and thus
all slots executed via the unblock case also only have to wait
for a bounded number of dependencies.

A slot s can only depend on a bounded number of slots
(as all dependencies must have been proposed before). Thus,
if any dependency d among these dependencies is not yet
executed and therefore can prevent execution of s, then it
serves as an upper bound for exp(d.i).seq ≤ d.seq. Other
dependee slots can add further upper bounds on exp(∗) which
restrict the size of the dependency set even further. As the
lowest upper bound per replica is relevant, a dependency chain
can only include additional requests by depending on another
replica which is not yet part of rdeps(s) or rdepsexp(s). As
the number of replicas is fixed, this can only add dependencies
to a bounded number of slots.

The theorem follows by combining Theorem A.36 and
Lemma A.51.

7) Checkpoint Correctness: We now extend the proof and
pseudocode to also include the checkpointing mechanism of
ISOS.

We only show the modified parts of the agreement and
execution pseudocode below. Grey lines are unchanged.

195 Variables at each replica:
196 ∆vc := 5∆

Fast Path

197 Propose checkpoint request CPREQ if sj .seq mod cp interval = 0
198 Follower fi receives dp := 〈〈DEPPROPOSE, sj , co, h(r), D, F 〉, r〉:
199 pre: step[sj ] = init
200 assert (sj .seq mod cp interval = 0)⊕ (r = CPREQ) /* Each

replica must propose a checkpoint request exactly every
cp interval slots */

201 [...]
202 conflicts(r):
203 /* A checkpoint request CPREQ conflicts with all other requests */
204 Return {si|∀si, pr[si] 6= ∅ : conflict(pr[si], r)} ∪ barrier of latest

stable checkpoint

View Change

205 Move to new view vsj for slot sj at replica ri:
206 [...]
207 Else If step[sj ] ∈ {rp−prepared, rp−committed}:
208 [...]
209 Else If sj .seq mod cp interval = 0:
210 Dfi := Dfiused by ri for own DEPPROPOSE / DEPVERIFY or as

fallback conflicts(CPREQ) \ sj
211 dv := 〈DEPVERIFY, sj , fi, h(CPREQ), Dfi 〉σfi
212 cert[sj ] := 〈CRC-PART, CPREQ, dv,−1〉 /* for view −1 /

213 step[sj ] = view−change
214 [...]
215 VC-Coordinator co for view vsj receives valid

V CS := {〈VIEWCHANGE, vsj , sj , ∗, ∗〉} from 2f + 1 replicas:
216 /* A V C ∈ V CS containing a CRC-PART is only considered valid

after wait(V C.dv.Dfi ) has returned */
217 [...]
218 Pick dp, ~dv from [...]
219 If sj .seq mod cp interval = 0 ∧ dp = null:
220 dp := CPREQ

221 ~dv := {V C.dv |V C ∈ V CS} /* Each VC must contain a
DEPVERIFY */

222 Broadcast 〈NEWVIEW, vsj , sj , co, dp,
~dv, V CS〉σco

The execution pseudocode is adapted as follows:

223 execute(~v, d):
224 barrier := ∅
225 If CPREQ ∈ ~v:
226 barrier := ({x | ∀ri : x < exp(ri)}⋃

v∈~v,v.req=CPREQ deps(v) ∪ v) ∩ expk

227 For c ∈ sort(~v):
228 If c 6= CPREQ ∧ (barrier = ∅ ∨ c ∈ barrier):
229 Execute request c
230 rhist[v] := d
231 If barrier 6= ∅:
232 Create execution checkpoint with barrier
233 Restart request execution

As described in Section IV-G a replica broadcast a CHECK-
POINT message after creating a checkpoint. Once a valid
checkpoint is backed by at least 2f + 1 replicas, it becomes
stable. This guarantees that the checkpoint is correct. To apply
a checkpoint, a replica requests the set of 2f + 1 checkpoint
messages along with the checkpoint content and applies the
checkpoint after verifying the correctness of all messages.

The Validity and Consistency properties are not affected
by applying a checkpoint as this does not affect agreement
slots except by garbage collecting old ones. The Execution
Consistency is also maintained as the execution state of a
correct replica is applied. As soon as a correct replica has
a stable checkpoint, all other replicas will eventually be able
to learn about the checkpoint. This in turn allows all correct
replicas to update their state if necessary.

The following Lemma adapts the proof of Theorem A.11
to handle checkpoint requests.

Lemma A.52. For a checkpoint slot, if a checkpoint request
certificate (CRC) is selected during a view-change then the
slot did not commit previously.

Proof: As shown in the proof of Theorem A.11 the new-
view calculation always includes an FPC or RPC if either of
both committed. Thus the CRC cannot be selected.

Lemma A.53. All correct replicas create identical checkpoints
for each checkpoint request.

Proof: A checkpoint request conflicts with all other
requests. This ensures that each request is either executed
before or after the checkpoint request at all replicas due to the
Execution Consistency property. In addition, this guarantees



that all replicas execute a checkpoint request as part of the
same SCC. Thus, all correct replicas execute the same part of
the SCC before creating a checkpoint. As all replicas execute
the same set of requests before a checkpoint, expk is identical
across replicas, and therefore all replicas bound the checkpoint
barrier to the same slots (Line 226).

We now show that the checkpoint barrier is tight. Assume
that a slot x before the checkpoint barrier was not executed.
exp(∗) which is added as lower bound to the checkpoint
barrier cannot add unexecuted slots. For a slot x to be covered
by the checkpoint barrier, the checkpoint request must include
a dependency on x or a slot x′ > x. Then by Corollary A.25
the checkpoint request depends on x which therefore must be
executed first.

Assume that a slot x not covered by the checkpoint barrier
was already executed. That slot must have been executed as
part of a regular SCC or an SSCC.

Assume that slot x was executed as part of an SSCC. The
SSCC consists of at least 2 slots and therefore includes a
dependency on the slot x. Therefore, the SSCC also depends
all slots between exp(x.i) and the slot x. Thus, after execution
of the SSCC exp(x.i) > x. This yields a contradiction as
the lower bound of the checkpoint barrier covers {x′ |x′ <
exp(∗)}.

Assume slot x was executed as part of a regular SCC. x
must either depend on the checkpoint request or vice versa.
When the checkpoint request depends on x, it also depends on
all slot between exp(x.i) and x. Therefore exp(x.i) > x when
the checkpoint is executed, which yields a contradiction. Now,
assume x depends on the checkpoint request. Then x must be
executed after the checkpoint or as part of an SSCC, which
both yields a contradiction.

Thus all replicas create a checkpoint after executing the
exact same set of requests. Applying the checkpoint yields
the same state as a replica has after executing all requests up
to the checkpoint.

We now show that applying a checkpoint or garbage collect-
ing slots after a checkpoint is stable does not affect Execution
Consistency.

Proof: Once a checkpoint is stable, all later requests will
include dependencies on all slots included in the checkpoint.
Compared to an execution without checkpointing this can
only introduce additional dependencies. However, as all slots
included in the checkpoint are already executed, these have no
influence on the request execution.

The following Lemma adapts the proof of Theorem A.36
to handle checkpoint requests.

Lemma A.54. For a checkpoint slot, if the slot did not commit
previously then at least a checkpoint request certificate (CRC)
is selected during a view change.

Proof: The new-view calculation requires 2f + 1 VIEW-
CHANGEs which are sufficient to generate a CRC (Line 219-
221). As shown in the proof of Lemma A.42, eventually all
correct replicas will send a VIEWCHANGE. These messages
and their dependencies will eventually be accepted by wait

allowing the view change to complete (Line 216). Once a CRC
has committed via the reconciliation path, then it is handled
as any other request.

We modify Lemma A.46 as follows:

Lemma A.55. The calculation of a NEWVIEW completes for
a timeout of 5∆ in synchronous phases.

Proof: Once a correct replica has received 2f +1 VIEW-
CHANGEs then within 2∆ every correct replica will receive
2f + 1 VIEWCHANGEs. All VIEWCHANGEs are sent after ∆
and are accepted at most 3∆ later, similar to Lemma A.45.
This allows the view-change coordinator to calculate the NEW-
VIEW which after ∆ arrives at all replicas. That is, in total a
timeout of 5∆ is sufficient.

8) Spatial Complexity: The primary source of memory
usage in ISOS are the agreement slots. If each coordina-
tor maintains 2 ∗ cp interval slots, this yields a total of
N ∗ cp interval ∗ 2 slots. For each slot, ISOS has to store
the attached request and the messages necessary to create
a fast-path or reconciliation-path certificate. The dependency
tracking in the agreement only has to track dependencies to
slots explicitly contained in the compact dependency set, as
that implicitly ensures that all earlier slots will also commit
eventually. Thus, only up to N dependencies are tracked for a
slot in the agreement. That is the memory usage is roughly de-
termined by O(N ∗cp interval∗(|r|+N ∗signature size)).
This is similar to other protocols which forward certificates
during the view-change.

As the execution only processes a window of k agreement
slots for each coordinator and only a single dependency graph
is necessary as described in Remark A.34, the dependency
graph in the execution only contains nodes for up to N∗k slots.
For each slot the request itself is still stored by the agreement,
as otherwise it would have been garbage-collected from both
the agreement and execution, and thus requires no additional
memory. The execution also has to unroll the compact de-
pendency sets and add explicit edges between requests to the
dependency graph. Dependencies on already executed slots are
not necessary for determining the execution order and thus
are not stored. Dependencies to slots beyond the window of
currently executed requests, can be expanded once these slots
enter the window. This yields an upper bound of (N ∗ k)2

for the number of edges. The algorithm to calculate strongly-
connected components uses a stack which in the worst case can
contain all slots in the graph, that is up to N ∗ k elements. In
our evaluation, we have used N = 4 and k = 20, which limits
the number of edges to a few thousands. For these parameters,
the memory usage for the execution is negligible compared to
that for the agreement slots.
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