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Abstract—Recent works have investigated the relevance and
practicality of using techniques such as Differential Privacy (DP)
or Homomorphic Encryption (HE) to strengthen training data
privacy in the context of Federated Learning protocols. As these two
techniques cover different sources of confidentiality threats (other
clients/end-users for the former, aggregation server for the latter),
there is a need to consistently combine them in order to bridge
the gap towards more realistic deployment scenarios. In this paper,
we achieve that goal by means of a novel stochastic quantization
operator which allows us to establish DP guarantees when the noise
is both quantized and bounded due to the use of HE. The paper is
concluded by experiments on the FEMNIST dataset which show that
the precision required to get state-of-the art privacy/utility trade-off
(which directly impacts HE parameters and, hence, HE operations
performances) results in a computation time overhead between
0.2% and 1.1% imputable to HE (depending on the key setup,
either single key or threshold), for the whole training of a 500k
parameters model and state-of-the-art privacy/utility trade-off.

Index Terms—Federated learning, differential privacy,
homomorphic encryption, quantization

I. INTRODUCTION

Federated Learning (FL) [1] is a decentralized framework that
enables multiple agents, called clients, to collaboratively train a
shared global model under the orchestration of a central server
while keeping the training data localized on the client devices
thus helping to protect data privacy and reducing communication
costs. After a common (server-side) arbitrary initialization of the
global model, the FL process consists of successive rounds
of communication between the server and the clients. The
most common approach to optimization for FL is the Federated
Averaging algorithm [2]. At the beginning of each round, the
server selects a subset of clients to take part in training for this
round, we call these particular clients the participants. The server
sends the current global model to the participants and each of
them trains the model locally with several epochs of stochastic
gradient descent (SGD) using its own data. The participants
then communicate only the updated parameters or the updates1

themselves (depending on the setting) back to the server. In our
work, the participants send the updates because their norm is
easier to constrain (necessary for privacy reasons). Finally, the
server computes the weighted average of these updates before
accumulating them into the global model, thereby concluding
the round. The weight associated to a participant in the average
is generally the fraction of training samples owned by the
participant. Throughout the paper, M is the total number of
clients; K is the number of participants per round; the participants
are indexed by k with nk the number of training samples of k.

1Difference between the updated parameters and the old ones.

Along with the reduction of communication load and the
parallelism it allows, a claimed key advantage is the protection
of data due to the fact that each client keeps its own data
locally. However, although FL gives some (imperfect) protection
to the data with regards to the server, it gives rise to a new
type of potential adversaries - the other clients. Several attacks
that take advantage of this new threat were proposed in [3], [4].

The contribution of this paper is an approach to consistently
combine countermeasures of different natures, namely Differ-
ential Privacy (DP) and Homomorphic Encryption (HE), with
the aim to enable the integration of both in more secure FL
frameworks. Indeed, the above-mentioned attacks on the training
data can be mitigated via DP, either if they come from the other
participants of the training process or from the end-users of the
model. Other potential threats come from the central aggregation
server which, without any mechanism to secure the aggregation,
has access to the model updates. HE can then allow to mitigate
these latter threats: the clients send encrypted information to the
server which will do the necessary computations in the encrypted
domain, without seeing either the sent information or the result
of its computations. As a key contribution, we introduce a novel
stochastic quantization operator based on the Poisson distribution,
to consistently articulate DP and HE. This operator behaves as if
it were applied as post-processing of a Gaussian mechanism. As
a result, it keeps the DP guarantees of this standard mechanism
unchanged and does not require any supplementary analysis. We
can then seamlessly get rid of the quantization issue due to the
use of HE. Note that this harmless quantization technique is of in-
dependent interest in a context of communication constraints and
DP requirements, even without use of cryptographic techniques.

The paper is organized as follows. A review of the literature on
the issues of data privacy in an FL context follows this introduc-
tion in Section II. Then, Section III provides the technical prereq-
uisites necessary to understand our solution, that we thoroughly
explain in Section IV. The results of the experiments that we ran
to illustrate the feasibility of our solution are presented in Sec-
tion V, before some perspectives for further work (Section VI).

II. RELATED WORK

The principal focus and key contribution of our paper deals
with the interference between DP and HE. The main issue
induced by this interference is that the range of the messages to
be encrypted (which are the noised updates in our work) has to be
discrete and bounded (and encoded with as few bits as possible
for better efficiency of the HE computations). For various reasons
(not necessarily related to encryption), some authors have studied
the possibility of using discrete noises for differential privacy.



For instance, the authors of [5] propose a secure and communi-
cation efficient distributed learning framework. They perform the
DP analysis of their learning mechanism using a binomial noise
because the effect of quantization on the Gaussian mechanism is
unclear, especially after aggregation if the noise is generated in a
distributed way. The analysis is quite involved and only provides
DP bounds for the multidimensional binomial mechanism for
one round of learning. Indeed, the moments accountant method is
not easily applicable to the binomial distribution. Moreover, the
presented DP guarantee is worse than the Gaussian mechanism’s
one and needs the quantization scale to tend to zero (and hence
the communication cost to infinity) to approach it.

In [6], Koskela et al. present a privacy accountant for discrete-
valued mechanisms for non-adaptive queries using privacy loss
distribution formalism and Fast Fourier Transform. In particular,
they give DP guarantees for the binomial mechanism in one
dimension and extend them in the multidimensional case but
with quite demanding constraints that compel them to brutally
approximate the gradients by their sign in their experiments.
Cannone et al. [7] introduce the discrete Gaussian mechanism
and studied its DP guarantees that scale well with composition,
even in the multivariate case. Nevertheless, contrary to binomial
noise, discrete Gaussian noise is not bounded as required for our
framework. More critically, the discrete Gaussian distribution
is not stable by addition, thus precluding its direct use in a
context of distributively generated noise that a collaborative
learning task with untrusted server requires (see Section IV-A).

In [8], [9], the authors propose FL protocols protected by DP
and secure aggregation (which requires discrete and bounded
values, as HE, but needs communication before learning). These
works respectively use the discrete Gaussian mechanism and
the Skellam mechanism to ensure DP. At the cost of a careful
DP analysis, they show that, for fine enough quantization scale,
their DP guarantees approach the Gaussian mechanism’s ones.
These two works have to make use of conditional randomized
rounding to ensure that the rounding of the unnoised values
does not increase their norm too much. Since we perform
quantization after noising with a quantization that can be
viewed (from the DP perspective) as a post-processing (see
Section IV-B), we do not have such an issue.

The closest work to ours is [10] that uses a binomial law
to ensure DP not by adding noise but by encoding the sensitive
values into a parameter of the binomial law, as we do with the
Poisson law. Thanks to an involved analysis, that makes use of
Kashin’s representation [11], they get a privacy-utility trade-off
from this mechanism that asymptotically reaches the same
order of magnitude as the Gaussian mechanism’s one. The key
difference with our work is that we do not use the discrete noise
to ensure DP but only as a quantization operator that commutes
with the aggregation. By actually adding Gaussian noise and
only treating the Poisson quantization as a post-processing, and
at a negligible cost in accuracy, our work thus proposes a much
simpler way to obtain the very same guarantees as the Gaussian
mechanism, without needing to constrain the quantization scale
and with a straightforward analysis.

III. PRELIMINARIES

A. Differential privacy
Differential Privacy (DP) [12] is a gold standard concept

in privacy-preserving data analysis. It provides a guarantee
that, under a reasonable privacy cost (ϵ, δ), two adjacent
databases produce statistically indistinguishable results. In our
FL framework, the term database denotes the concatenation of
all the clients’ datasets and two databases are adjacent if they
have the same number of clients and differ on a single client,
all the others remaining unchanged. Yet, the differing clients
may have totally different data, making our notion of adjacency
quite conservative (this is called user-level privacy). We define
below the notions of DP and sensitivity and state a fundamental
property of DP, namely immunity to post-processing.

Definition 1. Given (ϵ,δ)∈
(
R∗

+

)2
, a randomized mechanism

M with output range R satisfies (ϵ, δ)-DP if, for any two
adjacent databases d,d′ and for any subset S ⊂R, one has
P[M(d)∈S]≤eϵP[M(d′)∈S]+δ.

Definition 2. Let M be a randomized mechanism. Given a norm
∥·∥, the ∥·∥-sensitivity of M is S= max

d,d′ adjacent
∥M(d)−M(d′)∥

where the maximum is taken over all pairs of adjacent databases.

Proposition 1 ( [13]). Let M be a randomized algorithm,
with output range R, that is (ϵ,δ)-differentially private, with
(ϵ,δ) ∈

(
R∗

+

)2
. Let f : R → R′ be an arbitrary randomized

mapping. Then f ◦M is (ϵ,δ)-differentially private.

To determine the privacy cost (ϵ, δ) of our protocol, we
determine the privacy cost per query and then we compose
the privacy costs of all queries to get the overall cost. To keep
track of the privacy cost along the training we use the moments
accountant [14] and its key properties of composition and tail
bound (Theorems 1 and 2).

Definition 3. The moments accountant is defined for any l∈N∗

as

αM(l) := max
aux,d,d′

log

(
Eo∼M(aux,d)

[(
P[M(aux,d)=o]

P[M(aux,d′)=o]

)l
])

where the maximum is taken over any auxiliary input aux and
any pair of adjacent databases (d,d′).

Theorem 1 ( [14]). Let p∈N∗. Let us consider a mechanism M
defined on a set D that consists of a sequence of adaptive mecha-
nisms M1,...,Mp where, for any i∈{1,...,p}, Mi :

∏i−1
j=1Rj×

D 7→Ri. Then, for any l∈N∗, αM(l)≤
∑p

i=1αMi
(l).

Theorem 2 ( [14]). For any ϵ ∈ R∗
+, the mechanism M is

(ϵ,δ)-differentially private for δ=minl∈N∗exp(αM(l)−lϵ).

B. Homomorphic Encryption
For some of the most popular HE schemes (BGV [15], BFV

[16]) the plaintext domain is defined over the ring Rt=R/tR
with R=Z[x]/f(x) the polynomial ring modulo the function f
and the integer t≥2 with, usually, f(x)=Xn+1 and n a power
of 2. As such, before encryption, each message has to be encoded
as a plaintext consisting in a polynomial of degree smaller than n
with integer coefficients from the range (0, t-1), and all operations
over individual elements are performed modulo (Xn+1), and
modulo t. The ciphertext space for these schemes is Rq=R/qR.



Moreover, a lot of HE schemes, like BFV that we use in our
experiments (Section V), offer a batching capability by which
multiple cleartexts can be packed in one ciphertext resulting
in SIMD (Single Instructions Multiple Data) homomorphic
operations. i.e., Enc(m1, ..., mκ) ⊕ Enc(m′

1, ..., m
′
κ) =

Enc(m1+m′
1,...,mκ+m′

κ) (and similarly so for ⊗). Typically,
several hundreds such slots are available (for BFV, the maximal
number of slots coincides with n), which often allows to
significantly speed up encrypted domain calculations. In order to
apply batching for BFV, t has to be prime and t=1 mod [2n].

In all the mainstream FHEs with decent efficiency, data (on
which calculation is carried out) are encrypted under a unique
public key. In other words, users share the same key pair and
can therefore decrypt other users’ private data. That is a notable
limitation for protocols involving sensitive or confidential data
that different parties cannot or do not want to share.

The improved performance of the FHE has paved the way
for other approaches, more sophisticated than single-user
approaches. Several cryptographic schemes investigate using
multi-key techniques to adapt HE to multi-user settings [17],
such as threshold homomorphic encryption (ThHE) [18]–[21],
multi-key homomorphic encryption (MKHE) [22]–[25] or more
recently, hybrid approaches proposed by [26].

However, these techniques yield much higher computational
overhead than merely FHE. Specifically, the growth of ciphertext
size (at least) linear in the number of users for MKHE leads
to a notable increase in the computational cost of homomorphic
operators. And, to the best of the authors’ knowledge, hybrid
approaches have only been built on BGV [27], limiting the set of
features one can implement. As for ThHE, this technique requires
deleting and re-encrypting all data each time a user leaves.

Although ThHE has a static configuration, the clients are
expected to stay mostly the same in our FL use case. Once the
group is composed, it should remain the same so the server can
train its model correctly. Thus there is no need to re-run the setup.

ThHE schemes allow a subset of the users to collectively
decrypt data encrypted under a joint public key (computed from
all the individual ones in a public way), where the subset size
T is fixed and specified at setup. These schemes ensure that
no single entity holds the decryption key (i.e. the private key).
Each user can only access partial knowledge about this key
(except if the threshold is willingly set at T = 1) and needs
other users to perform the decryption. In a configuration where
a semi-honest adversary may control both the server and a
number of the clients (i.e. where the server effectively colludes
with a number of clients), the threshold can be set to a number
strictly greater than that of expected colluding users. That way,
such an adversary does not possess a decryption ability on
its own and, as a result, remains contained by the protocol in
terms of the information it can access in clear form.

IV. NOISE GENERATION AND QUANTIZATION

A. Distributed noise generation

When willing to protect the training data by DP in a FL
process, having the participants generate the noise in a distributed
way ( [28], [29]) rather than to rely on the server to do so is
desirable to mitigate a server that would communicate the noise
to some clients or end-users and then break the DP guarantees. Of

course this would not be stricto sensu needed for the most basic
threat models dealing only with honest-but-curious non-colluding
adversaries, and a server that has no access to the trained model.
In that case, the central noise would be generated in the clear
domain and homomorphically added to the aggregated updates,
and quantization would not cause any difficulty.

The distributed noise generation, that we here adopt, is
especially practical when one wants the resulting noise to
follow a Gaussian distribution, since this distribution is stable
by addition. The participants simply need to generate Gaussian
noises with well-chosen variances. However, a FL process with
DP still requires adaptations:
1) clipping the updates in L2-norm with the clipping bound

S (i.e. substituting participant k’s vector of updates uk by
min

(
1, S

∥uk∥2

)
.uk) to bound the sensitivity (i.e. the impact

of changing from one dataset to an adjacent one) since
unbounded sensitivity is incompatible with any DP guarantee;

2) adding noise to the gradients (e.g. Gaussian noise);
3) fixing all the coefficients of the mean to 1

K , independently of
the size of the participant’s dataset, to bound the sensitivity
more easily.

B. Poisson quantization

We here propose a new probabilistic quantization operator
that commutes with the sum2, and is therefore harmless for the
DP guarantee of the mechanism. In the following, P(λ) denotes
the Poisson law of parameter λ∈R∗

+ whose support is N and
whose probability mass function is k ∈ N 7→ λk

k! e
−λ. We fix

the quantization scale s∈R∗
+ and the dimension d∈N∗ of the

problem (the number of parameters of the model in our case).

Definition 4. Let µ∈sZ. We define the probabilistic function
Qs,µ : x∈]µ;+∞[7→sY +µ

where Y ∼ P
(
x−µ
s

)
. We call it the Poisson

quantization of scale s and offset µ. Similarly, we define
Qs,µ : x=

(
x(i)
)
i∈J1;dK∈]µ;+∞[d 7→

(
Qs,µ

(
x(i)
))

i∈J1;dK.

Given µ ∈ sZ, for all x ∈]µ;+∞[d, Qs,µ (x)’s support is
included in (sZ)d and its mean is equal to x so we can actually
consider the Poisson quantization as an unbiased quantization
operator. Proposition 2 shows that the Poisson quantization on the
terms of a sum can be considered as a post-processing on the sum.

Proposition 2. Let m∈N∗, x1,...,xm∈R. Let µ∈sZ such that
µ<min{xi|i∈J1;mK}.

∑m
i Qs,µ(xi) has the same distribution

as Qs,mµ(
∑m

i xi).

Proof.
∑m

i Qs,µ (xi) ∼
∑m

i (sYi + µ) = s
∑m

i Yi + mµ
where, for all i ∈ J1; mK, Yi ∼ P(xi−µ

s ). By
stability of the Poisson law by addition, we know that∑m

i Yi∼P
(∑m

i
xi−µ

s

)
=P

(∑m
i xi−mµ

s

)
.

Proposition 2 together with Proposition 1 enable us to
conclude that Poisson quantization has no influence on the DP
guarantee. Indeed, the output distribution is the same as if we
had applied the Poisson quantization after the aggregation of the
continuously noised updates. Since besides adding continuous

2Commutativity must be understood in a large sense, as the offset parameter
of the quantization changes depending on the order of the operators.



Gaussian noises distributively on the updates and sum the
noised updates up afterwards amounts to add a Gaussian noise
to the sum of the unnoised updates, the Poisson quantization
acts as if it was applied on top of the Gaussian mechanism.
Hence, the key advantage of our Poisson quantization operator
is that it allows to reduce the DP analysis back to the vanilla
analysis of the Gaussian mechanism (Section IV-E).

Note that, since Poisson quantization is probabilistic, it might
harm the accuracy of the model. Given µ∈sZ and x∈]µ;+∞[,
the variance of Qs,µ(x) is s2 x−µ

s =s(x−µ). For a small enough
s, this variance is very small since x is bounded, and there is
actually no impact on accuracy in our experiments (Section V).

An important point to notice is that Poisson quantization
implies that the values to quantize have an a priori common lower
bound (otherwise the sum of the quantized values may depend on
these values and not only on their sum). In our case, these values
are the noised updates. The updates are already bounded by the
clipping. As for the noises, the following section shows we can
consider that the noises have a common lower bound in practice.

C. Bounded Gaussian noises
The most common algorithms to sample from a Gaussian

distribution are Box-Muller transform in its Cartesian and polar
forms ( [30], [31]) and the ziggurat algorithm [32]. Knowing
that they rely on a source of uniform randomness, it can be
easily shown that all these algorithms actually generate values
whose range have bounds which are way smaller than the range
of double-precision floats. For 64 bits, the Box-Muller transform
in Cartesian form, the Box-Muller transform in polar form and
the ziggurat algorithm respectively generates samples of the
standard normal distribution whose absolute value is bounded
by 9.42, 13.27 and 15.81. These ”artificial” bounds, that we
cannot avoid in practice anyway, are justified by the very low
probability of a draw outside them: less than 10−20 for the
lowest bound, 9.42, and less than 10−55 for the highest, 15.81.
To get a sample from an arbitrary normal distribution, it suffices
to scale the sample of the standard normal distribution by the
wanted standard deviation and then add the wanted mean. This
discussion allows us to exhibit a lower bound for the Gaussian
noises. As a consequence we can apply Poisson quantization.

D. The problem of the unbounded Poisson distribution is not
a problem

A drawback of Poisson quantization is that it is not bounded,
while the cryptosystem only works on a finite set of values. In-
deed, even if the noised updates are bounded in practice, the quan-
tized noised updates are not. However, we show in this section
that this is actually not a problem for our method. Let us see what
happens if the Poisson sample falls out of the bounds imposed
by the plaintext domain. A modulo operation will automatically
be applied to the individual updates at encryption and to the
aggregated updates on the server side. Observation 1 shows that
these two modulo operations amount to a single modulo operation
on the sum of the updates, which constitutes a post-processing
on this sum and, as such, does not affect the DP analysis.

Observation 1. Let (xi)i∈J1;KK∈ZK , N ∈N∗.
K∑
i=1

(xi mod N) mod N=

K∑
i=1

xi mod N.

Recall that only integer values can be manipulated in the
encrypted domain. This implies that the quantized noised
updates are multiplied by the inverse quantization scale 1

s before
being encrypted, and that the participants rescale the averaged
updates by s once received from the server at the next round.

Let us now consider the influence of this modulo operations on
the accuracy of the model. First of all, the result of the Poisson
quantization may be non-positive due to the negative offset µ. To
avoid this situation, we make the participants send the quantized
updates without adding the (potentially non-positive) offset
µ. When they receive the averaged updates from the server,
they just have to add µ to them after decryption to get the
actual averaged updates. The second case is encountered when
a sample exceeds the plaintext modulus. Nevertheless, this event
is very rare if the modulus is big enough. With the parameters
we use (Section V), we can show, using Chebyshev’s inequality,
that the probability for a quantized gradient (resp. the sum of
the K quantized gradients) to exceed the plaintext modulus is
lower than 1.01×10−9 (resp. 1.61×10−5), to compare to the
number 486,654 of parameters. In any case, our experiments
prove that this has no practical influence on the model accuracy.

E. DP analysis of the Gaussian mechanism

According to the discussion above, our mechanism has the
same DP guarantees as a mechanism where true unbounded and
continuous Gaussian noise is added by the server after aggrega-
tion, a.k.a. the Gaussian mechanism. The noise introduced as a
side-effect by Poisson quantization may even improve the privacy
but, for simplicity, we consider it as banal post-processing. Hence,
the DP analysis reduces to the vanilla Gaussian mechanism’s
analysis. As explained in III-A and pretty much like in [33] for
instance, we use the moments accountant [14] to compose privacy
costs in an efficient way across the multiple learning rounds.

1) Privacy cost from the point of view of a participant: For a
comprehensive analysis, one must not forget that, from the point
of view of a participant k, the noise generated by k does not
participate in the privatization process3. Hence, we must take
into account only the other participants’ noises. The individual
noises added by the participants are calibrated such that their
sum has a certain standard deviation σ i.e. these individual
noises have standard deviation σ√

K
, K being the number of

participants in each round. As a result, the DP guarantee from
the point of view of a single participant must be computed by
substituting σ by

√
K−1√
K

σ, which has an insignificant influence
if K is large (1000 in our experiments). Note that this is still
quite conservative as it assumes that the considered participant
may participate to all training rounds. We can also interestingly
extend our threat model in a straightforward way by considering
that some clients may collude and share their noises with each
other, quite like in [29]. From the point of view of a colluding
client, the noise added by all the colluding clients would be
known and it would therefore not participate in the DP protection
of the data. This would result in a degraded DP guarantee,
obtained by substituting σ by

√
1−χσ, where χ is the ratio of

colluding participants. This modification of the DP guarantees

3For instance, if one knows the noise that was added to a value, one just
has to remove this noise from the noised value to get the initial value.



also applies in the case of some clients dropping out. Figure 2
illustrates the loss of confidentiality due to collusion of clients.

F. Homomorphic encryption protects the data (and the model)
against the server

While considering our learning framework protected by a
distributed noising, it may not be clear why the framework even
needs to make use of cryptography. Indeed, the server receives
the updates from the participants after they have been noised.
However, each individual noise has been calibrated such that
the aggregated noise will obfuscate the sensitive information of
a specific participant. If σ is the standard deviation necessary to
hide the data of one participant, the standard deviation of each
individual noise is σ√

K
. However, since without HE the server

would see each individual noise updates before aggregation,
the individual noise should be equal to σ if it were to protect
the updates from the server. Such a setting is referred to as
local DP in the literature. Yet, in our case, this would result
in an aggregated standard deviation of

√
Kσ (for the sum, or

σ√
K

for the average) which would heavily harm the utility of
the averaged updates and thus the accuracy of the model.

In terms of concrete HE, the fact that we are considering the
simple FederatedAveraging operator allows us to spare much
computation time by using additive-only schemes such as in [34]
where the Paillier cryptosystem is used with batching. In the
experimental results reported in the next section we have used
the BFV cryptosystem which allows for more massive batching
and, as such, results in much lower (amortized) overheads.
Additionally, one key contribution of [34] was to associate
Paillier-based homomorphic calculations to Verifiable Computing
(VC) techniques (e.g. [35]) to further extend the server threat
model beyond the honest-but-curious one and bring execution
integrity, as [36] did with BFV scheme. However, these works
lacked DP. Indeed, adding the DP noise on the server requires a
tag that can only be generated with knowledge of the VC scheme
secret key (i.e. by a client), meaning, in the FL context, that at
least one of the clients would have knowledge of the total noise
added (resulting in a collapse of the DP guarantee regarding this
client, even when that knowledge is uncertain). We could actually
imagine that the server generates K noises that sum to the noise
it added and send each of them to a participant for tag generation
but this would double the communication cost. Hence, associating
DP with VC for server-side computation integrity maintaining
a reasonable communication cost requires a distributed noise
generation as provided in this paper. As such, the noise generation
technique proposed in this work is directly applicable to setups
where homomorphic calculations are paired with VC techniques.

As a very interesting side-effect, the HE layer also hides the
model parameters from the server throughout the training. This
may be valuable when the clients want to keep their model
private, or give only a black-box access to it, either for privacy
or economic reasons (cf. machine learning as a service).

V. EXPERIMENTAL RESULTS

To prove the practicality of the combination of our Poisson
quantization technique with HE, we performed experiments
that enable us to evaluate training performance in terms of
accuracy, precision requirements and computation time. We

chose the Federated Extended MNIST (FEMNIST) dataset4 to
run the experiments. The extended version of MNIST contains
62 classes (digits, upper and lower letters) of hand-written
characters from 3,596 writers and comes with the writer id.
FEMNIST, the federated version, was built by partitioning the
data based on the writer [37]. The network architecture is the
same as in [34]: a standard CNN composed of two convolution
layers (respectively with 5∗5 kernel size and 128 channels, and
with 3∗3 kernel size and 64 channels, each followed by 2∗2
max pooling), a fully connected layer with 128 units and ReLu
activation, and a final softmax output layer (486,654 parameters).

Table I shows the influence on the model accuracy of the
adaptations necessary to ensure DP. Starting from a non-DP
baseline from the state of the art [34], we successively modified
parameters of the framework, each of these modifications being
required by the DP analysis5. The successive steps are:

• reduce the number of learning rounds from 200 to 100, hence
reducing the amount of queries to the datasets and thus the
privacy cost: as shown in Table I, this has a very mild influence
on the model accuracy whereas, for smaller number of learning
rounds, the accuracy starts decreasing more significantly

• increase the total number M of clients (to 3596, the total num-
ber of writers for FEMNIST) and the number K of participants
per round to 1000. This has two advantages. Firstly, we can
make the ratio q= K

M smaller, decreasing the probability of a
target client participating at a given round and thus the proba-
bility of this target releasing any information during this round.
Secondly, the absolute value K is greater, so the information of
the target participant is more diluted in the averaged updates. In
practice, the experiments show that, with a fixed distortion ratio
σ
K , which gives roughly the same model accuracy, and with M
set to 3596 the DP guarantee ϵ decreases when K increases.
We then chose K=1000, in our opinion the largest reasonable
value so that a substantial ratio of the clients can stay idle at
each round. The impact on the accuracy of the increasing of M
and K is due to the larger number of writers, inducing a higher
variety in the training samples (non-IDD across the different
writers) which makes the classification task more complex.

• assign the same coefficient 1
K to all the participants in the

weighted average (rather than the proportion nk

n of training
samples owned by participant k) so that the sensitivity of the av-
erage for every participant is S

K rather than maxk∈J1;KK
nk

n S,
where maxk∈J1;KK

nk

n may be much larger than 1
K

• clip updates with clipping bound S to ensure finite sensitivity
(we took S = 1 which has a mild impact on accuracy and
allows for good DP guarantees)

• on the participant side, quantify the noised updates via
Poisson quantization

• apply a modulo operation on the noised updates on the
participant side, and on their sum on the server side, which
is automatically done by encryption

• add the Gaussian noise necessary to make the learning
process differentially private. We chose σ=6 for the total

4Dataset available at https://www.nist.gov/itl/products-and-services/emnist-
dataset

5Note that the order in which we made these successive adaptations does not
correspond to the order in which they are executed in the learning workflow.
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Fig. 1. Model accuracy and DP guarantee vs noise standard deviation (δ=10−5)
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noise because it gives a good trade-off between privacy and
model accuracy as shown in Figure 1.

We fixed the scale for Poisson quantization to 10−4, as
in [34], since it does not much affect the accuracy. We used
as common lower bound µ of the Gaussian noises the lower
bound from the ziggurat algorithm with 255 rectangles, i.e.
−15.81 (see Section IV-C), multiplied by the standard deviation
of the distribution. This lower bound is greater (in absolute
value) and then more conservative than the lower bounds of
the two other sampling algorithms we considered. Moreover
and quite importantly, ziggurat algorithm with 255 rectangles
is the algorithm chosen by the numpy library we used.

The whole training process is (ϵ, δ)-differentially private,
with ϵ=5.31 and δ=10−5. Actually, for δ=10−5, ϵ=5.306
for an end-user which is not a participant and ϵ= 5.309 for
a participant (see discussion at the end of Section IV-E). More
widely, Figure 2 represents the privacy cost, from the point
of view of a colluding participant i, as a function of the ratio
of participants who collude with i. As expected, we see that
the privacy cost increases smoothly with the ratio of colluding
participants and, up to say 20% of colluding participants (i.e.
200 colluding teachers) the privacy cost remains reasonably
close to the one in the non-colluding case.

These DP guarantees together with the model accuracy of
76.84% give us the same privacy/utility trade-off as [8], [9] got
with secure aggregation. Nevertheless, if communication is a crit-

TABLE I
INFLUENCE OF SUCCESSIVE ADAPTATIONS ON ACCURACY.

Accuracy
State of the art [34] 84.6%
Decrease the number of learning rounds T 83.58%
Increase M and K 81.04%
Assign same coefficients 80.21%
Clipping of the updates 79.26%
Quantization 79.03%
Modulo operation 79.07%
Adding random Gaussian noise 76.84%

TABLE II
COMPUTATION TIME (IN SECONDS) OF HE OPERATIONS WITH A 26-BIT

MODULUS FOR THE full 486654 WEIGHTS MODEL.

Users 1 1000 3596(keys)
Participants 1000 1000 1000(additions to perform)
Context generation 0,0036 0,0073 0,0073
Key generation 0,0019 1,5545 5,5885
Encoding 0,0062 0,0072 0,0072
Encryption 0,1509 0,2358 0,2355
Evaluation 1,2761 3,0368 3,0544
Total decryption latency 0,0279 1,4376 4,6242

ical issue, we may use a greater quantization scale, at the expense
of accuracy, but this would not harm the DP guarantee, contrary to
[8], [9]. Interestingly, we experimentally notice that the quantiza-
tion and the modulo operation have no influence on the accuracy:
the model trained with noise but without quantization or modulo
operation still has an accuracy of 76.84%. Therefore, quanti-
zation comes at no cost, both privacy-wise and accuracy-wise.

The experimental results for HE were realised with BFV
in batched mode and OpenFHE library (version 1.0.3) on an
Intel i7-12700H (20) @ 4.600GHz with 64 GB Ram on Ubuntu
22.04.2 and one core activated. The security level was set to 128
bits and the batch size used was of 8,192. Following this the
overall 486,654 updates can be packed in only 60 ciphertexts
(where each of the 8,192 slots contains one gradient update).
Table II provides the overall homomorphic computation time
for the full model for a 26-bit modulus and 1000 participants
per round resulting in a (fairly practical) order of magnitude
between 1 and 3 seconds of homomorphic calculations (per FL
round) for all three setups (single key, key shared among 1000
participants, key shared among 3596 participants6). Overall,
performing the full FL cycle (without communications) on a
GPU-based HPC cluster takes around 20 hours (i.e., 12 minutes
per FL round), to which between 1.5 secs (single key setup)
and 8 secs (threshold setup) of latency per round should be
added due to the use of FHE (for encryption, evaluation and
decryption). This results in a 0.2% to 1.1% computation time
overhead imputable to the use of HE on the overall procedure.

The choice of a 26-bit modulus is due to an empirical investiga-
tion. For 26 bits or more, the model trains correctly, with almost
no impact of the modulo operation on the accuracy (see Table I).
Below 26 bits, the model does not learn at all. This sharp change

6Due to current OpenFHE limitation to n-out-of-n threshold schemes we
give results for the 1000-out-of-1000 and 3596-out-of-3596 configurations
which respectively give (close) lower and upper bounds for an 1000-ouf-of-3596
configuration which would be more appropriate in our experimental setup.



of behavior is due to the fact that the modulus exponentially
depends on the number of bits and that the distribution of the
quantized noised updates is actually very peaked - the ratio
standard deviation over expectation is lower than 2.22×10−3.

VI. PERSPECTIVES

On the server side, the present work could be extended to
cover more advanced threat models, making the learning process
robust to a server who would, willingly or not, make mistakes
in its computations. As argued in Section IV-F, this could be
done using verifiable computing techniques, as in [34], in a
quite straightforward further work thanks to the fact that the
server is not in charge of adding the random noise necessary to
DP. It should also be emphasized that our quantization technique
may also prove useful when combined with other cryptographic
techniques for computing over encrypted data such as MPC
and Functional Encryption which also have applications in FL.
Of course, our quantization operator also addresses the issue
of communication overload even in a cryptography-free context.

Testing our approach on a larger, more cross-device-oriented
dataset would be quite interesting to further estimate its
scalability. Moreover, this could be advantageous from the
privacy point of view since this would allow to increase M ,
the number of clients and thus having simultaneously a large
number of participants K and a low ratio K

M , conditions that
will both improve the DP guarantees of the learning mechanism.

Another quantization function or a more involved analysis
that would not need to lower bound the random noise added
to the updates would allow us to get rid of the argument of the
imperfect sampling algorithms and to use our framework with
other noise distributions, possibly unbounded, even in practice.
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