
Proteus: A Semantic Context-Aware Adaptive Policy Model

Alessandra Toninelli1, Rebecca Montanari1, Lalana Kagal2, and Ora Lassila3,

1Dipartimento di Elettronica, Informatica e Sistemistica
Università di Bologna

Viale Risorgimento, 2 - 40136 Bologna - Italy
{atoninelli, rmontanari}@deis.unibo.it

2MIT CSAIL

32 Vassar Street, Cambridge, MA 02139, USA
lkagal@csail.mit.edu

3Nokia Research Center Cambridge

3 Cambridge Center, Cambridge, MA 02142, USA
ora.lassila@nokia.com

Abstract

The growing diffusion of portable devices enables users to
benefit from anytime and anywhere impromptu collaboration.
Appropriate policy models that take into account the
dynamicity and heterogeneity of the new pervasive
collaboration scenario are crucial to ensure secure sharing
of information. Collaborating entities cannot be
predetermined and resource availability frequently varies,
even unpredictably, due to user/device mobility, thus
complicating resource access control. Policies cannot be
defined based on entity’s identities/roles, as in traditional
security solutions, or be specified a priori to face any
operative run-time condition, and require continuous
adjustments to adapt to the current situation. To address
these issues this paper advocates the adoption of a semantic
context-aware paradigm to policy specification. Context-
awareness allows operations on resources to be controlled
based on context visibility whereas semantic technologies
allow the high-level description and reasoning about
context/policies. The paper describes Proteus that, as a key
feature, combines these two design guidelines to enable
dynamic adaptation of policies depending on context
changes. In particular, the paper shows how ontologies and
logic programming rules can be used to leverage policy
adaptation.

1. Introduction
The increasing diffusion of portable devices with
wireless connectivity enables mobile users in physical
proximity of each other to spontaneously and
opportunistically form ad-hoc communities. Mobile file
sharing, mobile e-campus, emergency response, and
vehicle coordination are typical collaborative
application examples that illustrate the novel
opportunities promoted by mobile technologies.

However, the complex security challenges that
arise from the increased degree of openness and
dynamicity of the pervasive collaborative scenario are

currently limiting the widespread uptake of anywhere
and anytime collaboration. Collaborating participants
cannot be statically pre-identified; they usually change
frequently, forming continuously varying ad-hoc
coalitions with entities entering and leaving the
coalition dynamically. While roaming, entities can
establish opportunistic collaboration with dynamically
discovered partners of interest without having a long-
term pre-established trust relationship with them. In
addition, the high dynamicity of the operative
conditions under which the interactions between entities
take place complicates security management.
Traditional security systems operate in environments
where changes in the set of both service clients
(users/devices) and accessible resources are relatively
small, rare, or predictable. On the other hand, security
solutions for pervasive environments have to take into
account the frequent changes caused by user/device
mobility in physical user location, in accessible
resources, and in the visibility and availability of
collaborating partners. The conditions defined at design
time to control and govern resource operation and
sharing can be unpredictably different from the ones
that actually hold at execution time when entities
attempt to access some resources.

To protect ad-hoc collaborations, there is the need
for appropriate security models/systems that consider
the high unpredictability, heterogeneity, and dynamicity
of pervasive environments. To address these issues, we
advocate the adoption of a context-centric policy model
that treats context as a first-class principle for policy
specification and enforcement unlike traditional subject-
centric solutions where context is an optional element of
policy definition that is simply used to restrict the
applicability scope of security policies. Hereinafter, at a
high level, the term “context” is defined as any

information that is useful for characterizing the state or
the activity of an entity or the world in which this entity
operates [1]. In our scenarios, it is not possible to define
a policy without the explicit specification of the context
that makes that policy valid. Drawing inspiration from
the RBAC model that exploits the concept of role as a
mechanism for grouping subjects based on their
properties [2], we state that, the same as with role, the
concept of context can provide a mechanism for
grouping policies and for evaluating applicable ones
that simplifies policy management, increases policy
specification reuse and makes policy update and
revocation easier. In pervasive environments, instead of
associating policies directly to the subjects and defining
the contexts in which these policies should be
considered valid and applicable, a system administrator
defines the contextual conditions that govern entity’s
operations on it. When an entity operates in a specific
context, she automatically acquires the ability to
perform the set of actions permitted/obliged in the
current context.

This paper focuses on the advantages stemming from
a context-centric approach to policy management to
leverage policy adaptation. Policy adaptation is crucial
in pervasive environments, being the conditions that
characterize user-resource interactions largely
unpredictable: policies cannot be all specified a priori to
face any operative run-time situations, but may require
dynamic adjustments to be able to govern operations on
resources even in presence of unexpected changes. We
use the generic term “adaptation” to describe the ability
of a policy-based management system to adjust context
and policy specifications in order to enable policy
enforcement in different, possibly unforeseen situations.
For instance, consider the case of an access control
policy. If adaptation support is lacking, a request for a
controlled resource is typically resolved only if the
context specified for activating the policy exactly
matches the query’s context. However, this is too
restrictive in pervasive environments where the
representation of the contexts collected from various
sources is generally different from the one in the policy
specifications, even though often sharing equivalent
meanings. Instead, it is desirable to resolve a resource
query by analyzing the relationships, e.g., semantic
equivalence, between the query’s and the policy’s
contexts and not relying on their exact match.

Policy adaptation requires appropriate modeling of
context information and of policy elements and requires
expressive reasoning about the relationships between
the elements of a pervasive system, i.e., the context and
the management policies. Semantic technologies
represent a key building block for supporting expressive
context/policy modeling, reasoning and adaptation.

This paper describes an implementation of these
ideas in the Proteus1 policy model that integrates the
context-awareness design principle and ontological
technologies to support context/policy modeling and
reasoning and that provides support for dynamically
adapting policies to varying contexts. The Proteus
model extends the model presented in [3] in its support
of policy adaptation.

2. Motivating Example
In the remainder of the paper, to point out the
characteristics of the Proteus model we consider the
case of an international exhibition, like the MotorShow
held in Bologna once a year. On that occasion there are
hundreds of ongoing ad-hoc meetings opportunistically
created among co-located people where different sets of
information/data need to be delivered to a wide number
of on-site community members, e.g., journalists, to
improve effective collaboration on a joint project, such
as fund raising activities to support MotoGP
Championship. Suppose that the journalist Alice
attending the meeting is willing to share some of her
personal data relevant for the project with other co-
located meeting participants. Proper access control
policies govern operations on Alice resources. Once the
meeting is terminated, Alice needs to revoke the
permissions that allow participants to view her
documents.

Suppose that also the following additional policies
apply to Alice: during the meeting Alice’s boss tries to
call her on her corporate mobile phone. When she is in
meeting with a client, Alice cannot normally answer the
mobile phone. Her mobile phone has to automatically
deviate the call to Alice’s answering service. However,
in case her boss is calling during work time and she is
not able to answer the call, Alice is obliged to send him
an SMS to explain why she cannot answer the phone.

As it stems from the example, Alice’s related
policies depend on several contextual information:
access should be granted to those who are currently
located in the same room where the resource owner is
located, if they actually participate in the
activity/project relating to the meeting, and for the
scheduled duration time of the meeting. Alice’s
obligation policies also depend on contextual
information.

This simple example demonstrates the need for a
new approach to policy specification that not only
defines policies based on context information, but also
allows the seamless adaptation of policies based on
current context. For example, let us consider the case of
a meeting that continues beyond its originally scheduled

1 Proteus is the name of a marine god of the ancient Greek mythology
that was able to change his shape into different forms.

end time. It is essential to ensure that meeting
participants can continue to access each other’s
resources as long as the meeting is actually taking place.
It is therefore necessary to adapt previous policies to
prolong resource access permission beyond meeting
scheduled duration. In addition, suppose that Alice
cannot send the SMS message to her boss because of a
poor GSM network coverage in the meeting room or
because of she has exhausted her mobile phone monthly
corporate credit. Policies ruling phone answers and
SMS sending should be adapted to allow Alice to find a
way to communicate with her boss even in the
unexpected above described condition.

Adequate context and policy adjustment mechanisms
give the policy framework the maximum opportunity
for dynamic adaptation to unforeseen situations while
assuring the security administrator that the entity
behavior will be kept within desired bounds. In the
absence of policy adaptation support, for example, in
the meeting scenario, access to the policy owner’s
resources would be denied after the scheduled time,
since the conditions that limit the applicability of the
policy, specifically the condition concerning time,
would be evaluated to be false.

3. The Proteus Framework
Proteus is a semantic context-aware policy model that is
centered around the concept of context. We consider
context to be any characterizing information about
controlled system entities and about their surrounding
world. Contexts act as intermediaries between entities
and the set of operations that they have to and/or can
perform on resources. For each context, policies define
operations on resources. In particular, policies can be
viewed as one-to-one associations between contexts and
allowed/obliged actions. Entities should and/or can
perform only those actions that are associated with the
contexts currently in effect (active context), i.e., the
contexts whose defining conditions match the operating
conditions of the requesting entity and of the
environment as measured by specific sensors embedded
in the system. We define policy activating contexts as
those contexts relevant to specific policies: the
activation of a context either causes the activation of
permissions or determines the actions that should be
performed. Activating contexts of interest are
determined by the defined policies (authorization
activating contexts by authorization policies, obligation
activating contexts by obligation policies).

We note that there may be a great number of policy
activating contexts defined in the system, with each one
defining specific sets of permissions/obligations.
Proteus activates those contexts by following an
approach similar to the one presented in [4]. In
particular, resource access requests trigger the

evaluation of the authorization contexts in effect,
whereas any relevant change in the conditions defining
obligation activating contexts determines the activation
of obligation contexts.

3.1 Semantic Context Model
The Proteus context and policy model is based on an
underlying system model that describes the interactions
occurring in a system using the concepts of entities and
actions. An entity represents any actor or resource in the
system and it is logically characterized by a number of
properties that are expressed as attribute-value pairs. An
action describes an activity an actor is able to perform
on another entity. The action is performed within a
specific operating situation, which we call the action
context. The action context includes attributes that
qualify the action, such as the target on which the action
is performed, and the entity that is performing the
action. An interaction defines an association between an
entity and an action.

A Proteus activating context consists of all
information considered relevant for policies, logically
organized in parts that describe the state of controlled
resources, such as availability or load (the resource
part), the actors operating on resources (the
policy/resource owner and the requestor), such as their
roles, identities or security credentials (the actor part),
and the surrounding environment conditions, such as
time, or other available resources (the environment
part). In particular, Proteus models an activating context
as a set of attributes and predetermined values, labeled
in some meaningful way and associated with desirable
semantics [3]. Instead of a single value, an attribute
could also define constraints for a range of allowed
values. An attribute value can be assigned to a fixed
constant or can be a variable over a value domain. The
current state of the surrounding world is also
represented in terms of attribute/value pairs where the
attribute values represent the output of sensors (with the
term “sensor” used loosely). For an activating context to
be “in effect”, the attribute values that define the current
state of the world have to match the definition of the
context (as given above) [6].

An activating context can be minimal, i.e., formed by
a single attribute/value pair, or composed of minimal
contexts, i.e., defined by multiple attribute/value pairs.
Over attribute/value pairs of minimal contexts it is
possible to operate with unary relationships. Unary
relationships include the:
• is-a/part of relationship that allows to create is-

a/part-of hierarchies of minimal context attributes
and/or of their values.

• negation relationship that allows to define a minimal
context by constraining the values that the attribute
should not assume to make that context in effect.

Two or more minimal contexts can be combined to form
a composed context by using n-ary relationships that
are:
• the logical conjunction relationship that forms a

composed context by logically “and”-ing all the
attribute/value pairs of the minimal constituent
contexts. The composed context is active if all
attribute/value pairs are in effect.

• the logical union relationship that allows to define a
composed context by logically combining all the
attribute/value pairs of the minimal constituent
contexts. The composed context is active whenever
some of its attribute/value pairs are in effect.

Proteus also allows the definition of constraints over
different activating contexts to deal with possible
conflicting situations. Conflicts may arise for various
reasons. For example, two activating contexts may have
common attributes that have incompatible values when
contexts are both active; two activating contexts cannot
be simultaneously valid according to application-
specific requirements, similar to the separation of duty
in traditional RBAC models. These constraints are
intended to be used at design time to support proper
modelling and layout of activating contexts. Proteus
distinguishes overlapping and disjoint activating
contexts in order to support conflicts. Overlapping
activating contexts share at least one context attribute,
even through complex semantic path relations. Disjoint
activating contexts do not have any common attribute.
Overlapping and disjoint activating contexts may be
compatible or incompatible. We define two overlapping
activating contexts to be incompatible if they have an
attribute intersection but they cannot be active together
for any given state. This might happen either because of
a dynamic conflict over the common attribute value
domain, such as in the case of the location of an actor
that cannot be obviously simultaneously in two different
places, or for application-specific/management reasons,
such as in the case of an actor role that cannot be a
student and a teacher simultaneously. We define two
overlapping activating contexts to be compatible if their
common subset of attributes can be satisfied. Similar
considerations apply to disjoint activating contexts.

Context Representation. We adopt description logics
(DL) and associated inferencing mechanisms to model
and process protection context data. In particular, we
use Web Ontology Language (OWL)-based ontologies
as shown in Figure 1A. An activating context is defined
as a subclass of a generic context. Each generic context
consists of several context elements, with each element
characterized by at least an identity property and a
location property defining the physical or logical

position of an entity, and eventually by other additional
specific properties. For example, an action context is a
subclass of a generic context that includes also the
resource context element. In particular, a Proteus
activating context consists of the actor and the
environment context elements. In addition, an activating
context can either be an authorization activating context
or an obligation activating context.

Let us note that the use of DL-based modeling
allows the representation of unary and n-ary
relationships between contexts using the logical
constructs provided by OWL. In particular, nested
contexts are represented by means of the OWL property
subClassOf. We can create OWL class hierarchies both
for context attributes, i.e., context_elements, and for their
values. Conjunction of contexts can be obtained using
the OWL construct intersectionOf; union of contexts is
represented by means of the OWL construct UnionOf.
The contextual intersection of two activating contexts is
determined by checking whether they define OWL
restrictions on the same properties for the same
context_elements. Incompatibility between activating
contexts is represented by means of the OWL
disjointWith property. Negation of contexts could be
represented using the OWL construct ComplementOf.
However, since most reasoners do not properly support
negation, we have decided not to include the negation
construct in our DL-based context model.

The use of DL in context modeling and reasoning
has well-known benefits [6]. For instance, by
considering activation contexts as classes and a set of
sensor inputs (i.e., the current state of the world) as
individuals, DL-based reasoning calculates the
activation contexts that are in effect by verifying which
activation context classes the current state is an instance
of, and by figuring out how defined activating contexts
relate to each other (nesting, etc.).
However, DL-based reasoning may not always be
sufficient. Our model needs more expressive context
reasoning in order to be effective. On the one hand, we
need to correlate contexts using not only class
definitions (as in pure DL-based reasoning) but also
property path relationships between anonymous
individuals. For instance, in the meeting example we
need to state that if the resource owner is located in a
certain place and the resource requestor is located in the
same place, the two are co-located. On the other hand,
we need to bind the context attribute values to specific
instances depending on application-specific context
attribute/value relationships. For instance, to enforce the
meeting-related authorization policies, we must be able
to determine, at each moment, what the actual current
project is, so that the corresponding resources belonging
to each actor are identified and protected. To overcome
some DL-based reasoning restrictions we combine it

with LP-based reasoning. In particular, following the
approach described in [3], we define two types of rules:
context aggregation rules to support reasoning using
property path relationships and context instantiation
rules to provide OWL assertions for attribute values.
For instance, the condition of co-location between two
collaborating entities at a meeting is expressed with an
aggregation rule, whereas the condition of current
project with an instantiation rule.

Meeting_Action ≡ Access_Action ∃action_context.Meeting_Action_Context

Current_Project_Resource ≡ Project_Resource

∃is_resource_of_project.Current_Project

Meeting_Action_Context ≡ Action_Context ∃resource.Current_Project_Resource

Meeting_Actor ≡ Actor ∃is_currently_working_on.Current_Project
∃located.Meeting_Space ∃is_involved_in.Current_Project

Meeting_Context ≡ Auth_Activating_Context ∃owner.Meeting_Actor

∃requestor.Co-located_Meeting_Actor

Co-located_Meeting_Actor ≡ ... (see Table 1)

Meeting Activating Context Specification

Meeting_Action ≡ Access_Action ∃action_context.Meeting_Action_Context

Current_Project_Resource ≡ Project_Resource

∃is_resource_of_project.Current_Project

Meeting_Action_Context ≡ Action_Context ∃resource.Current_Project_Resource

Meeting_Actor ≡ Actor ∃is_currently_working_on.Current_Project
∃located.Meeting_Space ∃is_involved_in.Current_Project

Meeting_Context ≡ Auth_Activating_Context ∃owner.Meeting_Actor

∃requestor.Co-located_Meeting_Actor

Co-located_Meeting_Actor ≡ ... (see Table 1)

Meeting Activating Context SpecificationB

Context

Action_Context

Auth_Activating
Context

Oblig_Activating
Context

Resource

Context_Element

EnvironmentActor

subClassOf

subClassOf

subClassOf

resource

Activating_Context

environmentactor

owner

requestor

A

 Figure 1. Context ontology model and an OWL authorization
activating context specification example.

Both types of rules are expressed according to the

following pattern:

if context attributes C1...Cn then
context attribute Cm

The above pattern corresponds to a Horn clause, where
predicates in the head and in the body are represented
by classes and properties defined in the context and
application-specific ontologies.

Authorisation Activating Context Example. As an
example of context representationwe focus on an OWL-
based authorization activating context representation
related to the meeting scenario depicted in Section 2. As
Figure 1B shows, this example assumes that each actor
taking part in the meeting owns a set of resources that
relate to the project/activity the meeting is about and
shares these resources with the other participants. In
particular, the authorization activating context shown in
Figure 1B grants access to these resources under certain
conditions: the resources must be specifically pertaining
the project discussed at the current meeting; the
resource owner must be involved in the meeting’s
project as “project partner”, must be currently working
on the project-related set of resources, and must be
located in the place where the meeting is planned to
take place to guarantee that he is attending the meeting.

The entities requesting access to these resources must
be involved in the project as “project partners”, must be
co-located with the resource owner, and must be
currently working on project-specific resources on their
devices.

The activating context may have attribute values
assigned to constants or to variables. In the latter case,
attributes are assigned proper values by combining DL-
based and LP-based reasoning over the context ontology
and the context aggregation and instantiation rules.

Colocated Meeting Actor Specification

Colocated_Meeting_Actor ≡ ∃is_currently_working_on.Current_Project
∃is_involved_in.Current_Project

∃colocated_with.Resource_Owner

Instantiation Rules to be applied in case of an ordinary scheduled meeting
Scheduled_Calendar_Slot (?x) ∧ Meeting (?x) →
Current_Meeting (?x)

Current_Meeting_Rule

Current_Meeting(?x) ∧ Project(?y) ∧
meeting_on_project(?x,?y) → Current_Project(?y)

Current_Project_Rule

Colocated Meeting Actor Specification
Colocated_Meeting_Actor ≡ ∃is_currently_working_on.Current_Project

∃is_involved_in.Current_Project

∃colocated_with.Resource_Owner

Instantiation Rules to be applied in case of an ordinary scheduled meeting
Scheduled_Calendar_Slot (?x) ∧ Meeting (?x) →
Current_Meeting (?x)

Current_Meeting_Rule

Current_Meeting(?x) ∧ Project(?y) ∧
meeting_on_project(?x,?y) → Current_Project(?y)

Current_Project_Rule

Table 1. Colocated Meeting_Actor class specification and

instantiation rules.

Table 1 shows the definition of the Co-
located_Meeting_Actor context element and provides
examples of LP rules. In the activating context of the
meeting policy, shown before, the resource owner
property must belong to the Co-located_Meeting_Actor
class. Let us consider the restrictions applying to the
properties is_currently_working_on and is_involved_in.
These properties are restricted to a variable value,
represented by the Current_Project class. This is
intrinsically a variable value since the current project
varies over time due to the changing activities of the
resource owner and requestor, thus corresponding to
different instances at different time instants. The
instantiation rules in Table 1 are used to determine the
correct instance of the current project class at access
request time. In particular, let us consider the first
couple of rules shown in Table 1. The first rule
establishes that, if the user’s calendar shows a meeting
for the current time, then that meeting has to be
considered the current meeting. The second rule states
that the project discussed at the current meeting is the
current project. Once the facts about the user’s calendar
are inserted into the refinement fact base, the first rule is
triggered and the inferred current meeting instance is
used as a new fact to trigger the second rule. For
instance, if Ducati-Meeting is scheduled on the user
calendar, and Ducati-Project is the corresponding project,
then Current_Project is replaced by Ducati-Project in the
Colocated_Meeting_Actor specification. A new activating
context is thus instantiated with the Ducati-Project value
and the corresponding policy generated with the
instantiated activating context.

3.2 Semantic Policy Representation
Administrators specify OWL-based policies

representing ontological associations between actions
and policy activating contexts ontology definitions.
Figure 2A shows an authorization policy example that
controls access to the meeting resources andFigure 2B
presents an obligation policy example.

A
Meeting_Policy

Meeting_Context

controlsactivating_context

Meeting_Action Meeting_Action_Contextaction_context

Meeting_Policy ≡ Pos_Authorization_Policy ∃controls.Meeting_Action
∃activating_context.Meeting_Context

Meeting_Policy ≡ Pos_Authorization_Policy ∃controls.Meeting_Action
∃activating_context.Meeting_Context

B
Boss_Notification_Policy

Not_Answered_to
_Boss_Context

triggersactivating_context

SendSMS_Action SMS_to_Boss_Action_Context

Boss_Notification_Policy ≡ Obligation_Policy

∃triggers.SendSMS_to_Boss_Action

∃activating_context.No_Answer_Boss_Context

Boss_Notification_Policy ≡ Obligation_Policy

∃triggers.SendSMS_to_Boss_Action

∃activating_context.No_Answer_Boss_Context

action_context

Figure 2. Proteus authorization and obligation policy
examples.

Using OWL-based context and policy representation
enables the simplification of policy specification and the
evaluation, given a certain state, of which contexts are
active of the world consequently determining the valid
permissions/obligations on the basis of specified
policies. In addition, the above-described relationships
and constraints over contexts can be exploited to take
the maximum advantage of OWL-based reasoning in
the process of determining active permission and/or
obligations. The logical constructs over contexts are
used to infer new contexts and policies from existing
ones. Proteus relationships and constraints thus lead to
an increase policy reuse and a reduction in the number
of policies that administrators need to define.

In particular, if some contexts are organized in a
hierarchy, the instances of the more specific contexts
are instances of the more general ones. Hence, if a
policy associates some permission/obligation with the
more general context, the same permission results
associated to the more specific contexts in virtue of the
subclass relationship between contexts.

In the case of a negative context, it is sufficient to
specify one policy whose activating context is the
context that must not be in effect to make the associated
permission/obligation valid. In this way, the permission
will be valid for any state of the world that does not
make the defined activating context in effect, thus using
only one policy and applying it in many possible
different states.

If a context is defined by intersection it is in effect
when each minimal context that it includes is in effect.
Therefore, any permission/obligation that is associated
to each of the constituent minimal contexts gets

automatically associated with the context composed by
intersection.

Finally, a context composed by union of minimal
contexts is in effect if at least one of the minimal
contexts that it includes is in effect. Therefore, the
policy developer can specify just one policy to associate
the union of contexts with a permission/obligation
instead of several policies that associate the same
permission to each constituent minimal context.

4. Semantic Context-aware Adaptation
The Proteus framework exploits context-awareness and
semantic technologies to provide three different kinds of
adaptation: policy adaptation, action adaptation and
context adaptation. Policy adaptation consists of
“instructing” the system such that, even though an
activating context has changed, it should be still
considered active if certain context conditions hold.
Policy adaptation automatically prolongs the validity of
an active policy even in presence of changes in its
corresponding activating context. Action adaptation
represents the ability to find alternative
permitted/obliged actions in case the permitted/obliged
actions as determined by the current state of the world
cannot be performed. Finding alternative set of actions
provides a powerful means of allowing an entity to
continue to operate. Context adaptation consists of
identifying an alternative context where
permitted/obliged actions can be performed. Context
adaptation can be useful in case of dynamic policy
conflicts, such as when an entity is obliged to perform
an action that it is not allowed to. Instead of changing
the set of permitted/obliged actions, Proteus tries to
identify a different activating context where the actions
can be performed.

The following subsections describe how Proteus
supports the various types of adaptation by using the
meeting scenario.

4.1 Policy Adaptation
To describe how policy adaptation works we focus on
the case of validity prolongation of the authorization
policy of Figure 2A. Suppose that the meeting has gone
beyond the allotted time. Given this state, the group of
instantiation rules of Table 1 cannot be applied because
there are no valid facts in the head of these rules.
Therefore, a new set of instantiation rules has to be
defined to cover the situation of an extended meeting
(see Table 2). In particular, the first rule determines the
owner’s current project on the basis of her past and
current activities, independently from her calendar
schedule. For instance, if the last instance of current
project (determined at pre-defined intervals or at access
request time) was the Ducati-Project, if the calendar does
not show any event for the current time, and if the actor

is working on the Ducati-Project, then the Ducati-Project is
still the current project instance. The second rule checks
for the last and the current scheduling in the actor
calendar. If there is no current event, and the last event
was a meeting, and that meeting was about the current
project (as determined with the first rule), then the last
meeting is also the current one. In our example, the
current meeting instance is the Ducati-Meeting. The
meeting prolongation causes new facts to be inserted in
the fact base, which make the set of rules shown in
Table 2 valid, while the rules in Table 1 are not valid
any more. In particular, the first rule in Table 2 is
triggered and the inferred current project instance is
used as a new fact to trigger the second rule. Then, the
authorization activating context is instantiated by re-
writing it with the newly inferred context element
values and the corresponding policy generated with the
instantiated activating context. To evaluate the validity
of the policy, an activating context instance is created
that represents the current state of the world, and it is
compared with the activating context of the meeting
policy by making use of ontology classification to
recognize whether the former is an instance of the latter.
A more detailed description of the combined LP- and
DL-based reasoning process is provided in [3].

4.2 Action Adaptation
Proteus is able to handle the temporary inability of an
actor to perform an authorized/obliged action by finding
alternative actions. To describe how Proteus supports
action adaptation we focus on the case of obligation
policy failure in our meeting scenario. In particular,
consider the obligation policy stating that whenever an
incoming call from the boss is not answered (activating
context), an SMS must be sent (action) to the boss
(action context). Suppose that in the system an
authorization policy is defined stating that when Alice is
in a meeting with a client and there is an incoming call
on her corporate mobile phone (activating context), the
phone software must redirect the call (action) on the
answering service (action context). In addition, suppose
that when the obligation activating context is valid,
Alice is not able to send the SMS because there is very
poor GSM network coverage in the meeting room.
Therefore, she is currently not able to perform the
obliged action, i.e., to send the SMS. Proteus provides
adaptation support by looking for an alternative action
to the one that Alice is not able to perform. For
example, Alice could send an email to her boss with the
same SMS content if an authorization policy is defined
that allows this.

Scheduled_Calendar_Slot(?x) ∧ Idle(?x) ∧
Past_Calendar_Slot(?y) ∧ Meeting(?y) ∧
Current_Project(?z) ∧
meeting_on_project(?y,?z) → Current_Meeting(?y)

Current_Meeting_Rule-2

Actor(?y) ∧ Last_Current_Project(?x) ∧
is_currently_working_on(?y,?x) ∧
Scheduled_Calendar_Slot(?z) ∧ Idle(?z) →
Current_Project(?x)

Current_Project_Rule-2

Instantiation Rules to be applied in case of a meeting prolongation

Scheduled_Calendar_Slot(?x) ∧ Idle(?x) ∧
Past_Calendar_Slot(?y) ∧ Meeting(?y) ∧
Current_Project(?z) ∧
meeting_on_project(?y,?z) → Current_Meeting(?y)

Current_Meeting_Rule-2

Actor(?y) ∧ Last_Current_Project(?x) ∧
is_currently_working_on(?y,?x) ∧
Scheduled_Calendar_Slot(?z) ∧ Idle(?z) →
Current_Project(?x)

Current_Project_Rule-2

Instantiation Rules to be applied in case of a meeting prolongation

Table 2. Instantiation rule examples to support policy

adaptation.

Action adaptation requires the definitions of
semantically equivalent actions. To represent alternative
semantically equivalent actions, Proteus adopts a DL-
based specification of the obligation policy where the
obliged action is defined as a variable value, i.e., the
currently possible communication action, and LP-based
instantiation rules to instantiate the value (see Table 3).
In particular, the first rule states that the communication
action should be “send an SMS”, if the actor is able to
perform it. In the case it is not possible for the actor to
send an SMS, then he could send an email. Let us note
that this set of instantiation rules defines an explicit
priority order between the alternative actions. Different
solutions might be adopted to express a priority, e.g.,
setting a “mostly preferred” value or a preference
hierarchy and encoding them as predicates in the rules.
However, it is worth noting that a predicate that allows
the selection of only one rule must be specified to
prevent inconsistencies during DL-based reasoning.

The alternative action is determined by following
the same reasoning process described in Section 4.1. In
particular, once the facts about Alice ability/inability to
send SMS or email are inserted into the fact base, the
second rule in Table 3 is triggered, which causes the
possible communication action to be instantiated as the
action of sending email. The policy specification is then
re-written with the instantiated action value and
evaluated by means of DL classification.

Boss_Notification_Policy ≡ Obligation_Policy
∃triggers.SendSMS_to_Boss_Action

∃activating_context.Not_Answered_to_Boss_Context

Boss_Notification_Policy ≡ Obligation_Policy
∃triggers.SendSMS_to_Boss_Action

∃activating_context.Not_Answered_to_Boss_Context

SendSMS_Action(?x)∧ Actor(?y) ∧
is_not_able(?y,?x) ∧
SendEmail_Action(?z) ∧ is_able(?y,?z) →
Possible_Communication_Action(?z)

Possible_CommunicationRule-2

SendSMS_Action(?x) ∧ Actor(?y) ∧
is_able(?y,?x) →

Possible_Communication_Action(?x)

Possible_CommunicationRule-1

Instantiation Rules to provide action adaptation

SendSMS_Action(?x)∧ Actor(?y) ∧
is_not_able(?y,?x) ∧
SendEmail_Action(?z) ∧ is_able(?y,?z) →
Possible_Communication_Action(?z)

Possible_CommunicationRule-2

SendSMS_Action(?x) ∧ Actor(?y) ∧
is_able(?y,?x) →

Possible_Communication_Action(?x)

Possible_CommunicationRule-1

Instantiation Rules to provide action adaptation

Boss_Notification_Policy ≡ Obligation_Policy

∃triggers.Possible_Comm_Action_2Boss

∃activating_context.No_Answered_Boss_Context

Possible_Comm_Action_2Boss ≡ Possible_Communication_Action ∃target.Boss

Notification Policy Specification
Boss_Notification_Policy ≡ Obligation_Policy

∃triggers.Possible_Comm_Action_2Boss

∃activating_context.No_Answered_Boss_Context

Possible_Comm_Action_2Boss ≡ Possible_Communication_Action ∃target.Boss

Notification Policy Specification

Table 3. Instantiation rule examples to provide action

adaptation.

4.3 Context Adaptation
To describe context adaptation in Proteus we focus on
the case of obligation policy failure due to a dynamic
conflict with a defined authorisation policy [7]. In
particular, we consider the obligation policy that forces
Alice to send a SMS to her boss whenever an incoming

call from the boss is not answered. Let us also suppose
that Alice has a fixed amount of monthly credit on her
corporate mobile phone. Once this credit is exhausted,
Alice must pay for her own calls. It is the end of the
month and Alice has no more corporate credit available
on her phone. Therefore, in order to make any call, she
needs to explicitly agree to be charged the calls she will
make from now on. In alternative, Alice could exploit a
end-of-year benefit available to all employees: during
the month of December, calls from corporate mobiles
are free. Suppose that Alice cannot perform the obliged
action not because of a technical impediment, but to the
fact that Alice is not permitted to perform that action.
For example, Alice is not authorized to send any SMS
since Alice has exhausted her corporate monthly credit.

The above scenario can be described in terms of the
authorization policies shown in Table 4. Let us note that
we do not assume any default system behaviour, e.g.,
everything that is not explicitly permitted is prohibited
or vice-versa. In particular, (A1+) states that if the
phone user has valid credit, it is permitted to make calls
and send SMS. (A2-) states that if the phone user does
not have valid credit, it is not permitted to make any
call, nor send any SMS. (A3+) states that during the
month of December employees that chose the “Xmas
Promotion” are always permitted to make calls and send
SMS to local numbers regardless of their credit. Let us
note that the Not_Valid_Credit and the
Promotion_Activation activating contexts represent
examples of compatible disjoint contexts.

(A 2-) Specification

A1_Policy ≡ Pos_Authorization_Policy ∃controls.Call+SMS_Action

∃activating_context.Valid_Credit_Context

Xmas_Promotion_Context ≡ Auth_Activating_Context
∃environment.December_Env ∃requestor.Promotion_Code_Employee

A3_Policy ≡ Pos_Authorization_Policy
∃controls.Local_Call+SMS_Action

∃activating_context.Xmas_Promotion_Context

(A 3+) Specification

A2_Policy ≡ Neg_Authorization_Policy ∃controls.Call+SMS_Action

∃activating_context.Not_Valid_Credit_Context

(A 1+) Specification

(A 2-) Specification

A1_Policy ≡ Pos_Authorization_Policy ∃controls.Call+SMS_Action

∃activating_context.Valid_Credit_Context

Xmas_Promotion_Context ≡ Auth_Activating_Context
∃environment.December_Env ∃requestor.Promotion_Code_Employee

A3_Policy ≡ Pos_Authorization_Policy
∃controls.Local_Call+SMS_Action

∃activating_context.Xmas_Promotion_Context

(A 3+) Specification

A2_Policy ≡ Neg_Authorization_Policy ∃controls.Call+SMS_Action

∃activating_context.Not_Valid_Credit_Context

(A 1+) Specification

Table 4. Authorisation policy examples for the meeting
scenario.

To handle the situation of an actor not permitted to
perform an obliged action, Proteus provides support for
identifying an alternative context that makes the action
permitted for that actor and that can be activated given
the current state. In particular, to find the alternative
activating contexts that permit the action (which we call
hereinafter target contexts) Proteus first searches all
defined positive authorization activating contexts that
have the obliged action associated with and analyse
their semantic relationship with the currently activating
contexts in effects. On the basis of these relationships,
Proteus can determine whether the found contexts can

be activated given the current state of the world. Figure
3 depicts the algorithm executed by Proteus.

Let us now consider our example policies. The
currently active contexts, which are determined by
applying the combined LP and DL-based reasoning
described in Section 4.1, are the activating contexts of
the meeting policy, of the obligation policy and of the
A2- policy. The target contexts are the contexts of A1+
and A3+. We will call these contexts AC2, AC1 and
AC3, respectively.

The first step consists in verifying whether there are
attribute values in the current state that cannot be
modified to meet the constraints defined in F. For
instance, if the month is currently June, AC3 cannot be
activated. Let us now suppose that month is December.
By further applying the algorithm, we compare AC2
and AC1. These contexts are overlapping since they
both include an attribute about credit. In addition, their
values are incompatible because a credit cannot be valid
and not valid at the same time. Therefore, the activation
of AC1 is possible only if there exists a transformation
path from AC2 to AC1, such as a rule stating that if the
monthly credit is exhausted and the user agrees to be
charged the call costs, then the credit becomes valid.

Find all authorization activating contexts associated to the obliged action and

all the activating contexts currently in effect.

Let F be each found activating context and E be each activating context in effect.

Q0 = Are there any attribute values in the current state that cannot be modified
and make the activation of F impossible?

If Q0 = true
F cannot be activated

Else
{

Q1= Are F and E overlapping?
If Q1 = true

Q2 = Are their common attribute values compatible?
If Q2 = true

F can be activated - success
If Q2 = false

Q3 = Is there a transformation path P from F to E?
If Q3 = true

F can be activated (using P) - success
If Q3 = false

F cannot be activated - failure
If Q1= false (F and E are disjoint)

Q4 = are F and E incompatible for application-specific reasons?
If Q4 = true

F cannot be activated - failure
If Q4 = false

F can be activated - find a way

Figure 3. Proteus algorithm for context adaptation.

Let us now apply the comparison to AC2 and AC3.
These contexts are disjoint because they do not share
any context attribute. In addition, there is no
incompatibility between them since A3 does not depend
on the phone credit. Hence, Proteus decides that AC3
can be activated.

It is worth emphasizing that Proteus only focuses on
determining whether a context can be activated and not

on how this can be achieved. Our model does not aim at
providing a support for deriving strategies to achieve
the activation of some context. Therefore, in order to
find out and execute an appropriate transformation path
from one context to another, additional support for goal-
based reasoning, e.g., abductive reasoning, is needed.
Proteus currently provides support for the specification
of LP-rules to express transformation path, but it cannot
handle goal-based reasoning over it. Planning
techniques can thus be integrated with Proteus to
elaborate strategies for the activation of a particular
context.

5. Related Work
Several research efforts have addressed the issue of
security in dynamic environments. We do not intend to
provide a general survey of the state-of-the-art security
and policy-based management solutions in dynamic
environments, but only to focus on the research that
either integrates context-awareness and semantic
technologies into security policy frameworks for
pervasive environments or addresses the need for
dynamic adaptation of policies.

Considering context as a first-design principle is a
very recent research direction with only few context-
dependent policy model proposals, mainly in the field of
access control. The importance of taking context into
account for securing pervasive applications is
particularly evident in [4] that allows policy designers
to represent contexts through a new type of role called
environment role. Environment roles capture relevant
environmental conditions that are used for restricting
and regulating user privileges. Permissions are assigned
both to roles (both traditional and environmental ones)
and role activation/deactivation mechanisms regulate
the access to resources. Environmental roles are similar
to our contexts in that they act as intermediaries
between users and permissions. However, because
environmental roles are statically defined in terms of
attribute-constant value pairs they cannot be used for
policy adaptation. In addition, unlike our approach, in
[4] there is no integrated support for representing at a
high level of abstraction and reasoning about
environmental roles and policies.

 The approach proposed in [8] overcomes the
semantic gap between contexts specified in the policy at
design time and contexts collected from dynamic
context sources in pervasive environments: an access
request is allowed if the query context is semantically
equivalent to the context specified in the policy rule.
This approach is similar to our proposed policy model
in that it exploits semantic information contexts, but it
only addresses access control issues. In addition, no
adaptation support is provided to handle unforeseen
context conditions.

The attribute-based access control model adopted in
[12] is similar to our context-based approach in that it
defines a level of indirection between entities and the
set of operations they can perform on resources.
Attributes represent the set of properties that can be
associated to a system entity, e.g., subject, resource or
environment, similarly to the Proteus definition of
context. However, the approach proposed in [12] only
focuses on attribute representation and does not provide
any support for policy/context adaptation.

The importance of adopting a high level of
abstraction for the specification of all policy building
elements (such as subjects, actions, and context) is
starting to emerge in well-known policy frameworks,
such as KAoS and Rei [9]. KAoS and Rei represent,
respectively, significant examples of DL-based and LP-
based policy languages. In particular, KAoS uses OWL
as the basis for representing and reasoning about
policies within Web Services, Grid Computing, and
multi-agent system platforms [10]. Contextual
information is represented as ontologies and is used to
constrain the applicability of policies. The KAoS
approach, however, relying on pure OWL capabilities,
encounters some difficulties with regard to the
definition of certain kinds of policies, specifically those
requiring the definition of variables. Rei adopts OWL-
Lite to specify policies and can reason over any domain
knowledge expressed in either RDF or OWL [11]. A
policy consists of a list of rules expressed as OWL
properties of the policy and a context represented in
terms of ontologies that is used to restrict the policy’s
applicability. Though represented in OWL-Lite, Rei
allows the definition of variables that are used as
placeholders as in Prolog. In this way, Rei overcomes
one of the major limitations of the OWL language, i.e.,
the inability to define variables. On the other hand, the
choice of expressing Rei rules similarly to declarative
logic programs prevents it from exploiting the full
potential of the OWL language. In particular, the Rei
engine is able to reason about domain-specific
knowledge, but not about policy specification. Our
policy model shares some commonalities with regard to
context/policy representation with both KAoS and Rei,
but differs in how it deals with context. Our approach
considers context as the primary basis that allows one to
deduce which policies apply to a subject acting in the
system whereas KAoS and Rei, similarly to traditional
approaches, exploit context to build filtering
mechanisms for policy applicability.

The policy model in [8] also exploits semantic
technologies. In particular, contexts and policies are
defined by adopting an OWL-based representation, and
OWL inference rules are exploited to derive
relationships among contexts.

6. Conclusions and Future Work
The dynamicity and heterogeneity of pervasive
scenarios call for context-centric policy models. We
propose a semantic context-aware policy model, which
treats context as a first-class principle for policy
specification and adopts policy definition approach
based on DL ontologies and LP rules. We are currently
working on implementing a prototype for the meeting
scenario using OWL to specify ontologies and SWRL to
encode rules. We are also working on the design of a
deployment model that includes different components in
charge of monitoring contexts, installing policies into
the system, performing policy refinement and
evaluation, and enforcing policies.

Future work will include integration of additional
techniques to identify and execute appropriate
transformation path that allow the proper change of
contexts. Proteus currently provides support for the
specification of LP-rules to express transformation path,
but it cannot handle goal-based reasoning that is
required find and execute an appropriate transformation
path from one context to another. We are currently
evaluating the possibility of integrating Proteus with
planning techniques to elaborate strategies for the
activation of a particular context.

7. Acknowledgement
This work is partly supported by MURST PRIN Project
“MOMA: a middleware approach to Mobile
MultimodAL web services”.

8. References
[1] Dey, A, et al., “A conceptual framework and a toolkit for

supporting the rapid prototyping of context-aware
applications.”, Human-Computer Interaction, Vol. 16,
2001.

[2] Sandu, R., et al. : “Role based access control models”,
IEEE Computer, Vol.29, No.2, 1996.

[3] Toninelli A., et al., “A Semantic Context-Aware Access
Control Framework for Secure Collaborations in
Pervasive Computing Environments”, Proc. of the Fifth
International Semantic Web Conference (ISWC), Athens,
GA. LNCS 4273, Springer, 2006.

[4] Covington, M.J., et al.: “Securing Context-Aware
Applications Using Environmental Roles”, Proc. of the
6th ACM Symposium on Access Control Models and
Technologies (SACMAT 2001), Chantilly, Virginia, USA.
ACM, 2001.

[6] Lassila, O., et al., “Contextualizing Applications via
Semantic Middleware”, Proc. of the Second Annual
Conference on Mobile and Ubiquitous Systems
(MobiQuitous ’05). IEEE Computer Society Press, 2005.

[7] Lupu E., et al., “Conflicts in Policy-Based Distributed
Systems Management, IEEE Transactions on Software
Engineering, Vol 25, No. 6. 1999.

[8] Ko H.J., et al., “A Semantic Context-Aware Access
Control in Pervasive Environments”, ICCSA 2006,
Glasgow, LNCS 3981, Springer-Verlag, 2006.

[9] Tonti, G., et al., “Semantic Web languages for policy
representation and reasoning: A comparison of KAoS,
Rei, and Ponder”, Proc. of the Second International
Semantic Web Conference (ISWC2003), LNCS 2870.
Springer-Verlag, Berlin, , Sanibel Island, Florida, USA,
2003.

[10] Uszok, A., et al.: “KAoS policy management for
semantic web services”. IEEE Intelligent Systems, Vol.
19, No. 4, 2004.

[11] Kagal, L., et al.,“A Policy Language for Pervasive
Computing Environment” In: Proc. of IEEE Fourth
International Workshop on Policy (Policy 2003). Lake
Como, Italy, IEEE Computer Society Press, 2003.

[12] Priebe, T., Dobmeier, W., and Kamprath N., “Supporting
Attribute-based Access Control with Ontologies”. In:
Proc. of the IEEE First International Conference on
Availability, Reliability and Security (ARES ’06).
Vienna, Austria, IEEE Computer Society Press, 2006.

