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Abstract—Semi-grant-free non-orthogonal multiple access
(semi-GF NOMA) has emerged as a promising technology for
the fifth-generation new radio (5G-NR) networks supporting the
coexistence of a large number of random connections with various
quality of service requirements. However, implementing a semi-
GF NOMA mechanism in 5G-NR networks with heterogeneous
services has raised several resource management problems re-
lating to unpredictable interference caused by the GF access
strategy. To cope with this challenge, the paper develops a novel
hybrid optimization and multi-agent deep (HOMAD) reinforce-
ment learning-based resource allocation design to maximize the
energy efficiency (EE) of semi-GF NOMA 5G-NR systems. In
this design, a multi-agent deep Q network (MADQN) approach
is employed to conduct the subchannel assignment (SA) among
users. While optimization-based methods are utilized to optimize
the transmission power for every SA setting. In addition, a
full MADQN scheme conducting both SA and power allocation
is also considered for comparison purposes. Simulation results
show that the HOMAD approach outperforms other benchmarks
significantly in terms of the convergence time and average EE.

I. INTRODUCTION

The future wireless networks are expected to be capable
of serving a tremendous number of devices requiring hetero-
geneous services, e.g., enhanced mobile broadband (eMBB),
ultra-reliable low-latency communications (URLLC), and mas-
sive machine type communications (mMTC), together with
different quality-of-service (QoS) demands [1], [2]. In this
context, semi-GF NOMA has been considered as a promising
solution for relieving the heavy accessing-process overhead in
the dense systems [3]. Following this strategy, the subchannels
(SCs) are opened for mMTC users to access freely without
waiting for receiving the admission granted, i.e., grant-free
(GF) access, while the association process of other users hav-
ing stringent QoS requirements (e.g., eMBB/URLLC users)
are scheduled by the system controllers (such as base stations
or access points, etc.), which is also called as grant-based (GB)
access. In addition, the NOMA transmission can be exploited
when there is more than one user accessing the same SC [4].

However, the without-admission-control property of the GF
strategy may result in a serious congestion problem in semi-
GF NOMA systems when a tremendously large number of
devices tries to access a limited number of SCs. Therefore, GF
access needs to be carefully designed to mitigate this problem
as well as guarantee the QoS requirements of both GB and
GF users in semi-GF NOMA systems. Furthermore, in real-
time systems, developing a dynamic resource allocation (RA)

mechanism addressing the congestion problem and fulfilling
the various QoS requirements from different services in semi-
GF NOMA systems becomes more challenging. In recent
years, reinforcement learning (RL) method has been applied to
intelligently resolve the RA problem in communications [3].
Its application to GF NOMA and semi-GF NOMA systems has
been investigated in [5]–[13]. However, these works have not
considered the 5G-NR systems with the coexistence of multi-
ple services. Furthermore, most of them aimed to discretize the
continuous power variable to ease the learning process which
may result in performance loss.

Regarding the drawback of the existing works, this paper
develops two novel learning-based resource allocation designs
maximizing EE while guaranteeing heterogeneous require-
ments relating to various communication services in semi-GF
NOMA 5G-NR systems. Both of these proposed algorithms
exploit the multi-agent deep RL method where the mMTC
users are considered as agents that learn and optimize its SC
and transmission power selection. The first algorithm, namely
full multi-agent deep Q-network (Full-MAD), aims to set both
SC assignment and power allocation (PA) as the action for the
learning process, where the transmission power is quantized
into a number of discrete levels. On a different method, the
second algorithm, namely HOMAD, only considers the SC
selection as the action model. In this learning-based solution,
the transmission power corresponding to each SC setting can
be determined by some efficient optimization-based analysis
results. By doing so, the action space size is significantly
degraded and the hybrid method can take advantage of both
deep Q-network (DQN) and optimization-based approaches to
gain better learning performance. The simulation results are
then demonstrated to evaluate the performance of our proposed
mechanisms in terms of convergence time and the system EE.

II. SYSTEM MODEL

We investigate an uplink semi-GF NOMA 5G-NR network
as shown in Fig. 1. The network consists of one BS located
at the center of the cell with a radius of r (m) and a number
of users randomly distributed in this cell requiring different
services including eMBB/mMTC/URLLC. Let MU, ME and
MM be the sets of URLLC, eMBB, and mMTC devices,
whose cardinalities are MU, ME and MM, respectively. For
convenience, we also denote the set of all users as M =
MU ∪ ME ∪ MM and M = MU + ME + MM. To serve
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Fig. 1. Illustration of an uplink semi-GF NOMA 5G-NR network.

these users, a total bandwidth of W (Hz) is assumed in the
system, which is divided into K SCs. Let K be the set of all
SCs. Furthermore, to guarantee heterogeneous requirements of
different services, a semi-GF NOMA transmission scheme is
considered for the communication process.

A. Uplink Semi-GF NOMA 5G-NR Transmission Strategy

1) 5G-NR Numerology: Following the 5G-NR standard
which introduces various “numerologies”, physical-resource-
block (PRB) or SC types, supporting different communication
requirements, the bandwidth of SC in 5G-NR schemes is
defined as 2ν times SC’s bandwidth in 4G systems (i.e., 180
kHz), where ν ∈ {0; 1; 2; 3; 4} is the numerology index [1],
[14]. Herein, PRBs with high SC spacing are arranged for
URLLC services while traffic flows from the eMBB service
can adopt a numerology with the smaller SC spacing [1].
Therefore, this paper focuses on an SC setting that the whole
bandwidth is divided into two sets of SCs, KU and KE.
Particularly, KU represents the set of SCs serving URLLC
users with numerology νU while KE is the set of eMMB-
service SCs with numerology νE. Herein, KU ∪KE = K. One
assumes that νE < νU and denotes WE = 2νE ×180 (kHz) and
WU = 2νU×180 (kHz) as the bandwidth of SCs corresponding
to eMBB and URLLC services, respectively.

2) Semi-Grant-Free Radio Access Strategy: In this system,
the radio access of eMBB and URLLC users is managed by BS
under the GB access scheme due to their requirements for high
reliability, latency, and achievable rate. Specifically, each of
these users is granted several distinct SCs for its transmission.
In contrast, the mMTC users can access the network based
on GF access method to improve connection density due to
the massive access requirement of mMTC service. Herein, the
mMTC users can access any SCs freely without a scheduling
process to increase the access rate and the number of active
mMTC users. In this context, many mMTC users can access
the same SC; furthermore, they can use the SCs which are
already granted to the eMBB and URLLC users.

Considering the transmission over SC k (k ∈ K), we denote
b
(k)
z (t) (z ∈ M) as a binary SC allocation variable at time-

slot (TS) t, where b
(k)
z (t) = 1 if device z occupies SC k

and b
(k)
z (t) = 0 otherwise. In our scheme, we assume the

orthogonal SC scheduled for URLLC/eMBB services and one-
SC freely access strategy for mMTC users where each mMTC
device can select only one arbitrary SC for its transmission.
This assumption yields the following conditions,

(C1) :
∑

z∈MU∪ME
b
(k)
z (t) ≤ 1, ∀k ∈ K. (1)

(C2) :
∑

k∈K b
(k)
z (t) = 1, ∀z ∈ MM. (2)

In addition, the set of devices occupying SC k in TS t can be
described as Z(k)(t) = {z|b(k)z = 1, z ∈ M}.

3) NOMA Transmission Mechanism: In uplink NOMA, the
decoding order of the multi-user data stream is affected by
various different factors. Specifically, a decoding order can be
formulated based on channel gain conditions [15], received
power levels [5], or QoS constraints of users [16], [17]. In
this paper, the messages of the users over each SC can be
decoded at the BS as follows:

• Due to strict QoS requirements on reliability and latency,
the URLLC user’s signal needs to be decoded first.

• The symbols belonging to eMBB and mMTC users will
be decoded in the order of the corresponding channel
gains. In particular, the user having the higher channel
gain will be decoded earlier at the BS.

• After decoding the message of a user with higher channel
gain, the BS removes this component from its observation
to decode the remaining users’ messages by using the
successive interference cancellation (SIC) technique.

Without loss of generality, one assumes there are Zk users
accessing SC k in TS, then they are arranged in the decoding
order discussed above as Z(k)(t) =

{
z
(k)
1 , ..., z

(k)

Zk

}
. Ac-

cordingly, the received signal-to-interference-plus-noise ratio
(SINR) of user z(k)ℓ is expressed as

γ
(k)

z
(k)
ℓ

(t) = Y(k)

z
(k)
l

(t)/
(∑
j>ℓ

Y(k)

z
(k)
j

(t) + σ2
k

)
, (3)

where Y(k)
z (t) = P

(k)
z (t)g

(k)
z (t) is the power of signal due to

user z’s data over SC k in TS t; P (k)
z (t) is the transmission

power of user z over SC k, in which P
(k)
z (t) = 0 if b(k)z (t) = 0

and P
(k)
z (t) ̸= 0, otherwise; g(k)z (t) denote the corresponding

channel gain and σ2
k represents the noise power over SC k.

B. Achievable Rate of Users

1) URLLC Communication: Regarding the transmission of
URLLC user u over SC k in KU, which happens when
b
(k)
u = 1. Based on the NOMA transmission mechanism given

in Section II-A, one must have u ≡ z
(k)
1 . Moreover, the SINR

of URLLC device u over SC k is expressed as

γ(k)
u (t) = Y(k)

u (t)/
(
I(k)
u (t) + σ2

u

)
, (4)

where I(k)
u (t) =

∑Zk

j=2 Y
(k)

z
(k)
j

(t) represents the interference

caused by mMTC users over SC k. Furthermore, bandwidth
of SC k in KU is WU and σ2

u = FN0WU denotes the noise
power, where F is the noise figure, N0 is the noise power
spectral density (PSD). Accordingly, the achievable rate of
URLLC user u over SC k in finite blocklength regime for a
quasi-static flat fading channel can be approximated as [18]

R(k)
u (t) = WU[log2(1 + γ(k)

u (t))− Φ(k)
u (t)], (5)

where Φ
(k)
u (t) =

√
V

(k)
u (t)
DuWU

Q−1(εu)
ln 2 , V

(k)
u (t) = 1 −(

1 + γ
(k)
u (t)

)−2

≈ 1 [18] is the channel dispersion, εu is



the decoding error probability (DEP) which can be used
to evaluate the transmission reliability, Du is the transmis-
sion latency threshold, and Q−1(x) is the inverse of the
Gaussian Q-function. Here, we define a data-rate demand
for URLLC u to satisfy the URLLC requirements (i.e., εu
and Du) when transmitting one packet over one SC in each
TS as Rtar

u = WU [log2 (1 + γtar
u )− Φtar

u ], where γtar
u =

2
nb

DuWU
+

Q−1(εu)

ln 2
√

DmaxWU − 1 is the target SNR for user u [18],
nu is the packet size, and Φtar

u is defined similarly as in (5).
This demand yields the following constraints,

(C3) : b(k)u (t)R(k)
u (t) ≥ Rtar

u , ∀k ∈ K. (6)

2) eMBB Communication: Assume that eMBB user e ac-
cess SC k in KE which implies b(k)e = 1. Due to its order in the
NOMA-based decoding process, its SINR denoted as γ

(k)
e (t),

can be defined as in (3) with noting that σ2
k = FN0WE. Then,

the achievable rate of eMBB device e is given by

R(k)
e (t) = WE log2

(
1 + γ(k)

e (t)
)
. (7)

Herein, one addresses a predetermined target transmission rate,
Rtar

e , for each eMBB user e in every TS as

(C4) :
∑
k∈K

b(k)e (t)R(k)
e (t) ≥ Rtar

e , ∀e ∈ ME. (8)

3) mMTC Communication: Based on the NOMA trans-
mission strategy mentioned earlier in Section II-A, mMTC
devices can select a free SC or the one occupied by ei-
ther URLLC or eMBB device. When b

(k)
m (t) = 1, mMTC

user m utilize SC k in TS t. In such case, the SINR
of this device, denoted as γ

(k)
m (t), can be calculated as

in (3) with noting that σ2
k = FN0Wk where Wk =

WE if k ∈ KE, and Wk = WU, otherwise. Similar to
URLLC devices, the achievable rate of mMTC device m is
given by R

(k)
m (t) = Wk

[
log2(1 + γ

(k)
m (t))− Φ

(k)
m (t)

]
, where

Φ
(k)
m (t) =

√
V

(k)
m (t)

DmWk

Q−1(εm)
ln 2 , V (k)

m (t) = 1 −
(
1 + γ

(k)
m (t)

)−2

≈ 1
[18]. Furthermore, the target SNR of mMTC device m can

be defined as γtar
m = 2

nm
DmWk

+
Q−1(εm)

ln 2
√

DmWk − 1, where nm, Dm,
and εm denote the packet size, transmission latency, and DEP
of mMTC device m. Then, the SINR of mMTC user should
be greater than a threshold for successful decoding, i.e.,

(C5) : b(k)m (t)γ(k)
m (t) ≥ γtar

m , ∀m ∈ MM. (9)

C. Energy Efficiency Maximization Problem

In this paper, we aim to design an effective SC and
power allocation strategy to maximize the network EE while
guaranteeing the different requirements of all services. To do
so, we first define an EE factor as follows:

ζ(t) = Rtot(t)/(PTx(t) +MPc), (10)

where Rtot(t) =
∑

k∈K
∑

z∈M b
(k)
z (t)R

(k)
z (t), PTx(t) =∑

k∈K
∑

z∈M P
(k)
z (t), and Pc denotes the circuit power con-

sumption. Then, the design problem can be formulated as

max
b,P

Et [ζ(t)] s.t. constraints (C1)− (C5), (11a)

(C6) :
∑
k∈K

P (k)
z (t) ≤ Pmax

z , ∀(z, t), (11b)

where b and P denote the SC assignment and power control
strategies, respectively; and constraint (C6) stands for the
power budget of devices.

III. TWO PROPOSED MULTI-AGENT DEEP RL SOLUTIONS

A. Full multi-agent DQN Approach

A full multi-agent DQN approach, named Full-MAD, is first
studied in this section. Herein, all mMTC users are considered
agents. Employing a multi-agent deep RL mechanism, they
separately learn and define optimal policies for selecting SC
and PA. In addition, the multi-level quantization strategy is
exploited to deal with the continuous characteristic of power
variables in the similar approach introduced in [5], [10].
Herein, the power is quantized into L levels to build the action
sets for the RL process. Particularly, the state, action, and
reward of each agent ( e.g., m ∈ MM) in TS t are defined as
follows. The state of agent m is defined as

sm(t) =
{
g(1)m (t), . . . , g(K)

m (t), cm(t− 1)
}
, (12)

where cm(t − 1) = {b(1)m (t), . . . , b
(K)
m (t), P

(1)
m (t), . . . , P

(K)
m }

is the SC and transmission power level (TPL) selection status
of agent m in TS t − 1. Additionally, one defines the action
of agent m as its SC and TPL selection, expressed as

am(t) = {1, . . . , kl, . . . ,KL}, (13)

where am(t) = kl indicates that agent m select SC k
and the l-th TPL in TS t. Let Am be the set of all ac-
tions of mMTC user m, we have |Am| = KL. For ac-
tion selection strategy, the ϵ-greedy policy can be exploited
where the random action is taken with the probability of
ϵ, and the action with the highest Q-value, i.e., amax

m =
arg maxa∈Am

{Qm (sm(t), a;θm)} is employed for the re-
maining probability. Herein, Qm (sm(t), am(t);θm) is the Q-
value corresponding to action am(t). Regarding the EE factor,
we can define the reward function in TS t as

r(t) =

{
ζ(t), if all constraints are satisfied,
0, otherwise. (14)

Based on the actions and rewards obtained from trials, each
agent builds its own DQN model consisting of two deep neural
networks (DNNs), namely online and target networks corre-
sponding to weight vectors θm and θ′

m, respectively. Herein,
the online network is used to select an action. Meanwhile, the
target network is applied to evaluate the online network-based
action. Thus, the objective is to reduce the loss function as
[10]

L̂(θm) = [ym(t)−Qm (sm(t), am(t);θm)]
2
, (15)

where ym(t) denotes the target Q-value determined by the
target network as ym(t) = r(t)+ max

a∈Am

Qm (sm(t+ 1), a;θ′
m).

Given the MDP principle and DQN model of each agent men-
tioned above, the Full-MAD learning-based solution approach
is summarized in Algorithm 1.



Algorithm 1 MULTI-AGENT DRL-BASED ENERGY EFFICIENCY MAXI-
MIZATION ALGORITHM

1: Initialize the weight vectors of the online and target networks, i.e., θm
and θ′

m, ∀m ∈ MM.
2: for i = 1, . . . , Ep do
3: Initialize the state sm(t), ∀m.
4: for t = 1, . . . , T do
5: All agents take actions as

• For Full-MAD approach: Both SC and power-level selection
(as in (13)) following the ϵ-greedy policy.

• For HOMAD approach: Only SC selection (as in (16))
following the ϵ-greedy policy. Optimizing transmission power
as in Section III-B.

6: All agents observe the reward in (14) and move to the next states.
7: for m = 1, . . . ,MM do
8: Store an experience tuple (sm(t), am(t), r(t), sm(t+ 1)) to

the memory of agent m.
9: Randomly sample a mini-batch of experiences from the memory

to train the online network.
10: Update θm by using gradient descent to minimize the loss

function in (15).
11: Update θ′

m as θ′
m = θm after every B TSs.

12: end for
13: end for
14: end for

B. Hybrid Optimization and Multi-Agent DQN Approach

In this section, we developed the HOMAD approach to
speed up the learning process and eliminate the power-
quantization loss. Specifically, the HOMAD mechanism em-
ploys a MADQN-based method for SC selection according
to which the transmission power is optimized efficiently. In
this approach, the states and rewards are defined similarly to
those presented in the Full-MAD method while the action is
simplified to SC selection as

am(t) = {1, . . . , k, . . . ,K}. (16)

Once the action is taken, the transmission power is optimized
as follows. Firstly, employing the Dinkelbach algorithm [19],
[20], we aim to solve problem (11) by iteratively solving,

max
p(t)

Rtot(t)− ζPTx(t) s.t. (C1)− (C6), (17)

and adjusting ζ until an optimal ζ⋆ ≥ 0 satisfying Rtot(t) =
ζ⋆

(
PTx(t) +MPc

)
is found. To cope with (17), let’s regard

the following remark based on which we propose efficient
approaches to optimize the power for each SC setting.

Remark 1. The formula given in (3) demonstrates that there is
no interference suffering the decoding process due to user z(k)

Zk .

Moreover, once the power of all users in set
{
ℓ+ 1, ..., z

(k)

Zk

}
is defined, the transmission power of user z(k)ℓ , i.e., P (k)

z
(k)
ℓ

, can
be optimized without coupling to other users.

1) Power Allocation for mMTC Service: Once user z(k)ℓ is
an mMTC user, P (k)

ℓ can be optimized for given {P (k)
m }Zk

m=ℓ+1

by solving the following sub-problem.

max
pℓ

R(k)
m (t)− ζpℓ s.t. γtar

z
(k)
ℓ

/A
(k)
ℓ ≤ pℓ ≤ Pmax

z
(k)
ℓ

, (18)

where A
(k)
ℓ =g

(k)

z
(k)
ℓ

(t)/(
∑

j>ℓ g
(k)

z
(k)
j

(t)P
(k)

z
(k)
j

+σ2
k).

Proposition 1. The solution of problem (18) is given as,

P
(k)⋆
ℓ =min(max(Wk/(ζ ln 2)−1/A

(k)
ℓ ,γtar

z
(k)
ℓ

/A
(k)
ℓ ),Pmax

z
(k)
ℓ

).(19)

Proof: The proof is described simply as follows. As can
be seen, problem (18) is convex due to the concave objective
function and the convex feasible set. Then, the optimal solution
can be obtained by setting the derivative of the objective
function to zero and solving it with the feasible set [21].

2) Power Allocation for eMBB Service: Assume that user
e is assigned n SCs named as {ke1, ..., ken} ⊂ KE, and it is
denoted as user z

(ke
j )

ℓj
over SC kej (j = 1, ..., n). Then, problem

(17) can be decomposed for user e as

max
Pe

∑n

j=1
Ce

j − ζpej s.t.
∑n

j=1
Ce

j ≥ Rtar
e ,

∑n

j=1
pej ≤ Pmax

e , (20)

where Ce
j = WE log2

(
1 +Ae

jp
e
j

)
, Pe = [pe1, ..., p

e
n], pej is

the transmission power variable of eMBB user e over SC kej ,
and Ae

j is defined similarly as in (18). Since problem (20)
is convex, its solution can be obtained by using the duality
method. In particular, the Lagrangian of (20) is described
as L(Pe, µ, ν) =

∑n
j=1

[
(1 + µ)Ce

j − (ζ + ν)pej
]
− µRtar

e +
νPmax

e , where µ and ν are the Lagrangian multipliers corre-
sponding to the constrains of (20). Then, the dual function is
defined as g(µ, ν) = max

Pe
L(Pe, µ, ν).

Proposition 2. The solution of dual function is defined as

pej = max
(
(1 + µ)WE/[(ν + ζ) ln 2]− 1/Ae

j , 0
)
. (21)

Proof: The proof of this proposition can be obtained
easily by solving the equation ∂L(Pe, µ, ν)/∂pej = 0.

The dual problem can be rewritten as max
µ,ν

g(µ, ν)

s.t. µ, ν ≥ 0. Since problem (20) is convex and the dual
gap is zero, the optimal solution of the dual problem can
be found by iteratively updating the dual variables µ and

ν as µ[v+1] =
[
µ[v]−δ[v](

∑n
j=1C

e
j−Rtar

e )
]+

and ν[v+1] =[
ν[v]+δ[v](

∑n
j=1p

e
j−Pmax

e )
]+

, where the suffix [v] represents
the iteration index, δ[v] is the step size. This sub-gradient
method guarantees the convergence if δ[v]

v→∞−→ 0 [22].
3) Power Allocation for URLLC Service: Similar to the

previous section, one assumes that there are l SCs assigned to
URLLC user u, namely {ku1 , ..., kul } ⊂ KU. Then, if the power
of all mMTC users on SCs {ku1 , ..., kul } are determined, the
power transmission over all SCs can be determined by solving
the following problem

max
Pu

∑l
j=1

(
Cu

j − Φu
j

)
− ζpuj s.t. puj ≥ γtar

u /Au
j , ∀j, (22a)∑l

j=1p
u
j ≤ Pmax

u , (22b)

where Cu
j =WU log2

(
1 +Au

j p
u
j

)
, Φu

j =
√

V u
j

DuWU

Q−1(εuj )
ln 2 ,

V u
j = 1 −

(
1 +Au

j p
u
j

)−2 ≈ 1 [18], Pu = [pu1 , ..., p
e
l ] and

puj denotes the transmission power variable corresponding to
URLLC user u over SC kuj . Similar to the approach employed
for solving problem (20), the transmission power of URLLC
users can be determined in the following proposition.



Algorithm 2 ENERGY-EFFICIENCY POWER ALLOCATION ALGORITHM

1: Initialize ζ(0) = 0, set q = 0, and choose predetermined tolerate τ .
2: repeat
3: The power allocation can be optimized in a parallel manner over all

SCs for mMTC users, but the process over an SC involved in an eMBB
user process can stop and then continue when the power of that eMBB
user is updated. The process is described as
a. The power of every mMTC user are defined as in (19).
b. The power of every eMBB user is optimized as described

in Section III-B2 when all mMTC ordered before it over the
corresponding SCs having their transmission power optimized.

c. The power of every URLLC user is optimized as in Sec-
tion III-B3 when all mMTC users have their power transmission
determined.

4: Update ζ(q+1) =
Rtot(t)

PTx(t)+MPc
.

5: Set q := q + 1.
6: until |ζ(q) − ζ(q−1)| ≤ τ .

TABLE I
EXPERIMENTAL PARAMETERS

Parameters Value
Cell radius (r) 500 m
Channel model Rician
eMBB, URLLC numerology indices (νE, νU) 1, 4
eMBB Data-rate demand

(
Rtar

e

)
{2; 4; 6; 8} bps/Hz

Latency threshold (Du = Dm = Dmax) {2; 1; 0.5; 0.4} ms
Reliability threshold

(
εu = εm = εth = 10−x

)
x = {2; 4; 5, 6, 7}

Maximum transmission power 23 dBm
Circuit power consumption (Pc) 0.05 W
Noise figure and PSD (F and N0) 6 dB and -174 dBm/Hz
Packet length (nu = nm = nb) 32 bytes
Number of hidden layers, neurons per hidden layers 3, {256, 128, 64}
Learning rate (α) and discount factor (γ) 0.001 and 0.9
Optimizer Adam

Proposition 3. The transmission power of URLLC users u
over SCs {ku1 , ..., kul }, can be defined as

puj = max
(
WU/

[
(θ + ζ) ln 2

]
− 1/Au

j , γ̄u/A
u
j

)
,∀j, (23)

where θ is iteratively updated as θ[v+1] =[
θ[v] + δ[v](

∑l
j=1 p

u
j − Pmax

u )
]+

.

Proof: The proof can be obtained by employing the
similar duality method presented in Section III-B2.

In summary, the proposed energy-efficiency power alloca-
tion algorithm is described in Algorithm 2.

4) Proposed HOMAD Algorithm: As mentioned above,
the HOMAD approach allows agents to select SCs by using
a MADQN scheme similar to Full-MAD approach whereas
the transmission power for each SC setting is optimized by
applying Algorithm 2. The summary of this algorithm is also
provided in Algorithm 1 with “HOMAD” remark in Step 5.

IV. SIMULATION RESULTS

This section provides the simulation results to evaluate
our proposed algorithms’ performance. The simulations were
performed on a PC equipped an Intel Xeon W-11855M CPU
with 3.2 GHz frequency, 64-GB RAM, and 64-bit Windows
10 operating system. The DQN model consists of three fully-
connected hidden layers including 256, 128, and 64 neurons.
The experimental parameters are provided in Table I.

Fig. 2 depicts the convergence trend during the learning
process of full multi-agent Q-learning (Full-MAQL), Full-

Episodes

R
e

w
a

rd

HOMAD

Full-MAD: L = 3

Full-MAD: L = 6

Full-MAD: L = 9

Full-MAQL: L = 9

Fig. 2. Convergence comparison of different learning methods, where MU =
ME = 1, MM = 4, K = 2, νE = 1, νU = 4, Dmax = 2 (ms), εth = 10−5,
and Rtar

e = 4 (bps/Hz).

MAD, and HOMAD approach by illustrating the variation
of the reward achieved by all agents versus the various
number of episodes. In the Full-MAQL scheme, each agent
needs to build its own Q-table including all possible sate-
action combinations. Fig. 2 shows that Full-MAQL returns the
lowest reward (i.e., worst performance) in comparison to other
schemes. This demonstrates the limitation of the Q-learning
approach in a very large-space environment. Considering our
proposed schemes, the HOMAD algorithm can achieve the
highest rewards in this simulation with the significant gaps
between its corresponding curve and the others thanks to the
power-optimization process. Due to the discrete power level
of the quantization process, which is widely used in literature
[5], [10], the Full-MAD scheme obtains a lower reward than
that due to the HOMAD. Interestingly, the Full-MAD scheme
can improve its performance by increasing the number of
TPLs (L) as shown in Fig. 2 which however leads to a larger
action space together with a higher complexity level of the
learning process. The convergence is further clarified in Table
II where the number of episodes required for convergence, the
average implementing time per episode, and the convergence
time corresponding to three schemes are provided. As given in
this table, HOMAD scheme converges with the lowest number
of episodes but also requires the highest implementing time per
episode because of its smallest action space size and also the
power-optimization process. Inversely, Full-MAQL needs the
largest number of episodes for convergence while its average
time for each episode is the shortest. In summary, the HOMAD
scheme again shows its superiority to the others when requires
the shortest time for convergence.

Next Figs. 3 and 4 illustrate the variation of the average EE
versus the different value sets of (Dmax, εu, R

tar
e ) and number

of mMTC users, respectively. In Fig. 3, we aim to consider a
scenario, where mMTC users can use the same SCs assigned
to URLLC and eMBB users to improve spectral efficiency
and connectivity density, as long as URLLC and eMBB
requirements, i.e., (Dmax, εu, R

tar
e ), are still guaranteed. As

expected, the higher stringent requirements of URLLC and
eMBB users (i.e., lower Dmax and εu, and higher Rtar

e ) result
in the lower EE achieved by all schemes. In Fig. 4, one can
observe that increasing MM will degrade the system EE. This



TABLE II
CONVERGENCE TIME COMPARISON

Methods Avg. time per episode No. of episodes Conv. time
Full-MAQL 0.36 sec. 85 31.05 sec.
Full-MAD 1.58 sec. 85 134.46 sec.
HOMAD 2.49 sec. 6 14.93 sec.
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Fig. 3. Effect of URLLC and eMBB requirements
{
Dmax, εu, Rtar

e

}
,

where MU = ME = 1, MM = 4, K = 2, νE = 1, and νU = 4.
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Fig. 4. Effect of MM, where MU = ME = 1, K = 2, νE = 1, νU = 4,
Dmax = 2 (ms), εth = 10−5, and Rtar

e = 4 (bps/Hz).

is because the number of mMTC users using the same SC gets
higher as MM increases which results in the higher interference
suffering the URLLC and eMBB users. In addition, these
figures again confirm the superiority of the proposed HOMAD
algorithm in all simulation scenarios, while the Full-MAD
algorithm outperforms the Full-MAQL scheme.

V. CONCLUSION

We have proposed two multi-agent Deep RL-based resource
allocation mechanisms, HOMAD and Full-MAD algorithms,
for maximizing the system EE of eMBB/mMTC/URLLC-
coexistence 5G-NR networks using semi-GF NOMA transmis-
sion strategy. In particular, the Full-MAD approach addresses
the EE maximization problem by employing the MADQN
method to conduct both SC and PA selection. Furthermore,
the HOMAD approach aims to use the MADQN method to
only select SC solution while the power corresponding to
a given SC setting can be optimized effectively. Simulation
results have shown that the Full-MAD method outperforms
the conventional Full-MAQL mechanism, while the HOMAD
algorithm can return a higher EE and converge faster than
other benchmark schemes.
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