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Abstract—Energy provisioning trend in Wireless Sensor Net-
works (WSNs) is shifted towards alternate sources by utilizing
available ambient energy, of which solar irradiance harvesting is
considered a viable alternative to fixed batteries. However, the en-
ergy storage buffer for harvested solar energy should be adaptive
to the sporadic nature of the diurnal solar radiation availability.
We believe that the typical fixed battery models no longer apply in
harvesting enabled sensors. Therefore, we propose a random walk
based stochastic model namely; Trinomial Random Walk (TRW)
model for the storage capacity of harvesting enabled sensors.
We then apply the proposed model on a comprehensive solar
radiation data set of four different locations around the globe.
Our performance evaluation demonstrates that the proposed
model better analyze the sporadic nature of the diurnal solar
radiation availability for estimating the required storage capacity.
We further investigate an optimal power consumption value for
a given energy store size, such that the utilization of harvested
energy is maximized and the probability of energy depletion is
minimized. For a given energy harvesting scenario, our model
better approximates the optimal load with probability of up to
a maximum of 98%, compared to a maximum of 37% for the
binomial random walk model.

I. INTRODUCTION

Wireless Sensor Networks development started with an idea
of coupling energy required by a sensor node since sensorial
information exists by enlarge in areas where it is infeasible
to provide wired connectivity. Commercially available sensor
nodes today are usually powered by typical AA/AAA batteries
[1]. However, the limitations of fixed battery design of sensor
nodes were soon realized and the research focus quickly shifted
towards efficient energy consumption [2, 3]. Energy-efficient
design of a sensor hardware, software, algorithms and proto-
cols have served well, but they eventually surrender when the
attached batteries are drained. For instance, an energy-efficient
protocol may rely on duty cycling of spatio-temporal sensing
activities, resulting into application performance degradation
for the sake of longer network lifetime. Therefore, it is better
to renew energy rather than relying on fixed energy already
coupled with the node at the time of network deployment.

Several approaches have been proposed recently including
battery replacement [4], energy harvesting from ambient envi-
ronment [5, 6, 7] and energy transference from nodes having

surplus energy to energy scarce nodes [8, 9].

Battery replacement in sensor networks have proven to be
difficult and impossible at times, whereas energy-transference
from one node to another is a very recent phenomenon. Har-
vesting energy from ambient environment is being studied for
quiet some time and is becoming more wide spread. Ambient
energy is available in different forms like solar radiation, wind,
ambulatory movement and industrial vibrations [10]. Among
all these sources, solar energy is the most powerful resource
– estimated to provide 1.4kW/m2 [11].

Energy harvesting from ambient environment has opened
new dimensions which are unable to realize in fixed battery
design. At the same time, it has generated some new questions
which do not exist in fixed battery design. One such question is
to devise a suitable energy store size. Finding suitable energy
store size is important for two reasons; achieving perpetuality
and reducing the store size, since increasing storage will
increase the cost and size of the node. The answer lies
in the analysis of application’s energy requirements, energy
availability patterns and the ability to harvest energy. Fixed
battery design does not make use of available ambient energy,
therefore, such models are unfeasible for energy harvesting
sensors.

In this paper, we consider this question while considering
solar radiation as the ambient energy source. We analyzed his-
torical global solar radiation data from four different locations
[12] of the World to provide a storage capacity model to help
design an energy efficient algorithm for harvesting enabled
sensors. The major contributions of the paper are summarized
as follows:

• An energy storage model is presented to characterize
the sporadic energy source for harvesting enabled
sensors.

• To cater for temporal and spatial changes in energy
availability, we have analyzed the proposed model for
four different geographically dispersed locations using
a comprehensive solar radiation data set.

• To validate the proposed model, comparative analysis
of our model with the baseline model is presented.



• We also consider harvesting enabled sensors with an
objective of maximum utilization of the harvested
energy without compromising perpertuality. For this
purpose, a notion of optimal load is defined, which
is the load of a device at which maximum harvesting
efficiency is achieved.

Our findings reveal interesting insights in utilizing solar
energy in WSNs along with the limitations on the solar energy
availability. Trinomial Random Walk model provides better
estimates compared to the baseline model in estimating the
storage capacity for a harvesting enabled sensor node. It also
provides a positive intuition for the feasibility of developing
energy harvesting aware algorithms and systems in WSNs due
to the small size and low powered sensor nodes.

The rest of this paper is organized as follows. Recent
developments in energy harvesting based storage technologies
is provided in Section II, Section III explains the TRW model
to address the storage requirements. The description of the
solar radiation data set is explained in Section IV. Performance
evaluation and comparison results are presented in Section
V. Finally, Section VI concludes our work along with some
insight into the future work.

II. RELATED WORK

Ambient energy harvesting is becoming a popular option
to overcome the constraints associated with fixed battery
design in WSNs. An important metric in harvesting ambient
energy for sensor networks is the power harvested per unit
area of harvesting circuitry. Solar cells with 44% efficiency
have already been developed, which result into a theoretical
maximum of 0.56kW/m2 [13]. However, actual efficiency of
harvesting devices varies greatly based on available ambient
energy – commercial solar panels are optimized for outdoor
or indoor usage. Therefore, a harvesting device having high
maximum efficiency may perform poorly, if ambient energy
is different from required. To solve this problem, Maximum
Power Point Tracking (MPPT) techniques is applied [14].

Gorlatova et al. [15] conducted measurements to collect
traces for the solar energy availability in indoor environments
and proposed algorithms based on deterministic and stochastic
energy models. The collected traces are limited in both time
duration and area i.e. locations within a campus (indoor) with
a maximum time span of upto one year, insufficient for an
exhaustive analysis of the solar energy availability.

In [16], the authors proposed a Markov model for multiple
source energy harvesting board for body sensors. Based on the
remaining energy of the battery, The model predicts the prob-
ability that the sensor will detect an event. It poses limitations
regarding its dependency on event occurrences as well as the
amount of active harvesting boards. Similarly, [17] also pro-
vides a model to find the net consumed energy distribution in
energy harvesting sensor nodes. However, the energy discharge
is dependent on the batteries hardware specifications as well as
its limitations to body sensors limits the scope of the model. In
Prometheus [6], the intermediate storage for the harvested solar
energy is based on super capacitors. Storage hardware such
as super-capacitors or batteries limits the analytical models
with their varying characteristics regarding the leakage current,
charging/discharging efficiencies and degradation over time,

Due to these properties, vital characteristics of the ambient
energy source is either overestimated or underestimated. There-
fore, motivating the need for a generic analysis of the energy
harvesting source behavior.

The Binomial random walk model for solar energy [18]
suffers from the lack of dimensions to properly cater the
diurnal behavior of the harvested energy. It considers only
two possible transitions, an increase in the storage level and
a decrease in the storage level by a fixed amount. Beside the
increase and decrease in the storage level, we also need to cater
for situations when there is no change in the storage level over
the course of the day. One such scenario could be when all
the daily harvested energy is constantly being utilized by the
application and there is no surplus energy to store. In such a
case, there is neither energy drawn from the batteries nor does
the node gain surplus energy to store in the buffer.

Moreover, it is only able to estimate the size for a large
solar array, ignoring key parameters such as small size senors
and low power requirements in WSNs. There is a need
to study the node’s limited energy harvesting ability under
different environmental conditions as well as typical energy
requirements of a small-sized sensor node. In the next section,
we present TRW to address these issues and incorporate
an additional degree of freedom required for a harvesting
enabled sensor. Unlike previous works, we validated our model
against an extensive set of real global solar irradiance traces
specifically focusing on harsh environments where frequent
batteries replacement is not practical.

III. TRW: TRINOMIAL RANDOM WALK MODEL

The storage energy levels can be modeled as a Binomial
random walk [18] where transition can occur only between
contiguous states, essentially modeling one step movement
in a random walk. TRW is an improvement to the Binomial
random walk model, in which we incorporate simple albeit
vital conditions required to model a storage capacity. These
conditions include an increase in the storage capacity, decrease
in the storage capacity and the storage capacity retaining its
current position. We define three possible transitions with the
state transition probabilities p , q and r as shown in Figure
1. We assume p as the probability of one step increase in
the storage state by an amount �, q as the probability of
decrease in the storage state by the same amount � and r as
the probability of neither decrease nor increase in the storage
state, where � is the step size. The relationship p+ q+ r = 1
can now be obtained, Now assuming C = N ·�, as the total
storage capacity for a node, where the total storage capacity is
divided into N Markov states, each of capacity �. By the end

Figure 1: Trinomial Random Walk Model

of a unit time T (divided into small slots �t), the storage level
will be in a state depending on the amount of energy harvested
during the previous slots. The steady state probability ⇡

j

of



occupying the jth storage state can be expressed as, ⇡
j

=
p⇡

j�1+q⇡
j+1+r⇡

j

. From the transition probabilities between
contiguous states ⇡

j!j+1 = p, ⇡
j!j�1 = q, ⇡

j!j

= r, and
the condition ⇡1 + ⇡2 + ⇡3 + ...... + ⇡

N�1 + ⇡
N

= 1, we
generate the transition probability matrix with the following
steady state relations:

⇡1 = (q + r)⇡1 + q⇡2,
⇡2 = p⇡1 + r⇡2 + q⇡3,
...
⇡
N�1 = p⇡

N�2 + r⇡
N�1 + q⇡

N

,
⇡
N

= p⇡
N�1 + (p+ r)⇡

N

,

The storage level will be in state ⇡1 if next unit time period
starts with an empty storage, while it will be in state ⇡

N

in
the case of fully charged storage. The corresponding steady
state probabilities ⇡1 and ⇡

N

can be finally obtained from the
linear equations above:

⇡1 =
(1� �)

(1� �N )
, (1)

⇡
N

= �N�1(⇡1), (2)

where � = p/q. For a known capacity C, ⇡1 and ⇡
N

are the
probabilities of being in the lowest storage state and being in
the state with maximum energy respectively. Now, the proba-
bility of a node to become totally energy deficient is given by
the relation ⇡

E

= (q + r) · ⇡1, Similarly, the probability of a
node to have surplus energy is given as ⇡

S

= (p+ r) · ⇡
N

.

For a prescribed system reliability ⇡
E

, we can find the
number of required storage states N by inserting ⇡1 from
Equation 1, in the relation ⇡

E

= (q + r) · ⇡1.

N =
ln
h
1� (q+r)(1��)

⇡E

i

ln [�]
,

The required number of states N from the above relation
with an appropriate step size � provides us the required total
storage capacity C = N ·�, for a sensor node under a given
energy deficiency reliability.

Load and probability optimality:

We are not only interested in keeping the network alive
but also desire for the maximum utilization of the harvested
energy. Therefore, we extend the model to investigate the opti-
mal load. We define optimal load as the node’s optimal power
consumption value, at which it utilizes maximum harvested en-
ergy. We also define optimal probability ⇡

opt

= 1� (⇡1+⇡
N

)
as the probability of neither being in the energy depletion
state nor in the energy surplus state. We are interested in both
extreme probabilities to avoid two situations:

• Wastage of excess daily solar energy: This situation
arise when the storage level is at maximum capacity
and is unable to accommodate excess harvested energy
during the course of the day. This results in wastage
of the extra harvested solar energy due to underesti-
mation of the storage energy levels.

• Energy depletion due to low daily solar irradiance:
This is a more common situation, when there is not

Table I: Data set specifications

Name Coordinates Mean
Annual
Temp

Data
(days)

Mean
Burst
Size

Max
Burst
Size

Mean Daily
Radiation
(KW/m2)

Tamanrasset,
Algeria

22.78N,5.52E 21.1�C 4744 1.32 06 2.28

Valentia,
Ireland

51.93N,10.25E 11.4�C 5752 3.85 24 0.99

Bondville, IL,
USA

40.06N,88.37W 11�C 4080 1.39 05 1.47

Sonnblick,
Austria

47.05N,12.95W -04�C 6936 2.35 18 1.45
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Figure 2: Autocorrelation of solar irradiance unavailability

sufficient solar energy harvested during the course of
a day to keep the node operational, thus resulting in
energy deficiency at the node, affecting the overall
network lifetime.

The worst case scenario (power loss probability) is modeled
by the state ⇡1, the probability of a node to be in the lowest
energy state. On the other hand, quantifying the state ⇡

N

,
provides us the probability of a node to be in the state
N (maximum storage capacity), identifying the necessary
condition for a node to receive surplus energy and cater for
the excess solar energy harvested during a particular day. Any
harvesting aware energy management algorithm can adapt to
efficiently operate in an Energy Neutral state by avoiding
these extreme states, thus, maximizing network lifetime.

IV. DATA-SET DESCRIPTION

To analyze battery size requirements in different parts of
the World for a solar energy harvesting device, we obtained
daily solar radiation data set from four different locations,
Tamanrasset (Algeria), Valentia (Ireland), Bondville (Illinois,
USA) and Sonnblick (Austria). This data is publicly available
at World Radiation Data Center (WRDC) [12]. This data
set contains solar radiation measurements for many sites in
the World. We only considered those sites which provide
data for maximum possible number of consecutive days. The
minimum number of days in our analysis is 4080 (Bondville)
and the maximum is 6936 for Sonnblick. The sites used in this
analysis also vary greatly in solar radiation characteristics. For
instance, Sonnblick (Austria) has harsh weather conditions for
harvesting solar energy, since it has low average temperature,
whereas Tamanrasset (Algeria) possesses better opportunity for
harvesting as evident from relatively higher average annual
temperature of about 21.1�C.



Burst of solar radiation unavailability and autocorrelation:

As the main interest lies in finding the suitable size for a
battery storage under solar radiation harvesting, the first crude
measure is the expected number of consecutive days when
harvested solar energy is less then a certain threshold. We have
computed the burst size for each site as the consecutive number
of days, in which the daily global solar energy received is
less than 0.2KWh/m2. We chose this threshold assuming that
around 0.5mW power is required for minimum node operation
[1]. Table I shows the maximum and mean burst size for each
location. The mean burst size between 1 and 4 days indicates
that a variation exists between different sites, hence optimal
energy store sizes may not be the same. The variation of the
maximum burst size also indicates the same observation.

We further analyzed this data by computing the autocorre-
lation. Autocorrelation information provides us the analysis of
the solar radiation availability dependence between consecutive
days. Let the solar radiation received at a discrete time instance
i be a binary random process represented as X[i] 2 {0, 1},
where 0, refers to the time slot when the daily received
solar radiation is below the minimum threshold value. The
autocorrelation measure can be defined as:

⇢[k] =
E{X[0]X[k]}� E{X[0]}E{X[k]}p

var{X[0]}
p
var{X[k]}

,

where E{.} and var{.} represent the expected value and
variance of the random process. From the available data set
for an ensemble of days, we compute sample expectations
and sample variances of the burst size, which are then used
to compute the sample autocorrelation for each data set.
Autocorrelation results of up to 20 lags are shown in Figure 2.
From these results, we found that the first few lags are strongly
correlated, with first one being the most strongly correlated.
These results are in line with the burst size analysis, where we
found that the mean burst size is between 1 and 4 days.

V. PERFORMANCE EVALUATION AND RESULTS

We evaluated TRW model using real World solar radiation
data set described in the previous section. Our evaluation
focuses on the analysis of the global availability of ambi-
ent energy rather than being limited to a specific storage
medium. Storage medium, either super-capacitors or batteries
posses variable properties regarding the leakage current, charg-
ing/discharging efficiency and degradation over time. This
leads to mis-estimation of the sporadic availability of the
ambient source.

Initially we analyzed the availability of solar irradiance
during the course of a single instance (i.e. 24hrs) and then
widened our analysis to cater for continuous diurnal behavior
of a maximum ensemble of up to 19 consecutive years (e.g.
for Sonnblick : 6936 days). For a single day, let A = P

pk

.�
be the diurnal solar radiation output of a solar panel attached
to a node, where P

pk

is the peak harvesting efficiency and �
is the daily harvested solar energy. Assume µ

A

and �
A

be the
mean and variance of the radiation data. Assuming an average
load L at each node including the application consumption
as well as the non-ideal storage characteristics. The difference
between the source and the load, D = A�L, gives us its mean
and variance µ

D

and �
D

respectively. We derive the step size

Table II: TRW parameters for active TELOS load (C = 10.08Wh,L =
1.41Wh)

Variable Tamanrasset Sonnblick Valentia Bondville
µ
A

6.175 3.931 2.663 3.980
µ
D

6.027 3.783 2.516 3.832
�
D

2.035 4.454 4.050 5.094
p 0.099 0.130 0.133 0.134
q 0.100 0.126 0.129 0.127
r 0.800 0.745 0.738 0.740
� 1.07 1.846 1.720 1.997
N 9.30 5.42 5.82 5.00
� 0.990 1.028 1.03 1.05
⇡1 0.100 0.174 0.160 0.170
⇡
N

0.100 0.196 0.184 0.220
⇡
opt

0.800 0.631 0.656 0.590

� and the transition probabilities p, q and r for our model
using the above parameters, providing us the respective steady
state probabilities.

According to our knowledge, the existing models are
unable to clearly identify the behavior of the diurnal harvested
energy independent of the limitations posed by the storage
medium, failing to estimate the source energy availability.
Therefore, TRW is validated by comparing with the Binomial
random walk model in order to validate our assumptions re-
garding storage state behavior for the daily harvested irradiance
solely focusing on the energy source availability independent
of the storage medium. In the following sections, we describe
the results of applying both models on the real solar radiation
data. We assumed that the maximum efficiency of the solar
panel is under 44% as indicated by the latest research in
solar energy [13]. The size of the solar panel is considered as
5x5cm2 for a TelosB mote under consideration. For the first
set of results, we consider the active load of a TelosB mote
[1], since TelosB hardware design provides an optimal power
consumption [19]. We also assumed the maximum available
storage capacity of up to four typical AA batteries 10.08Wh.
The parameters derived for TRW using the four data set are
shown in Table II. We evaluated our model using various load
values but here we only show the parameters assuming TelosB
active load for brevity, although similar trend is observed by
varying load for different commercial motes.

A. Storage state comparison

The performance benchmark of TRW can be better ana-
lyzed by finding how better it follows the real solar radiation
trace. Therefore, we generated traces using the storage states
information from the real data. We deduce the transition
probabilities p, q and r for TRW using first half of the data
set. Similarly, we also computed the corresponding transition
probabilities p and q for the Binomial random walk model
since we need to provide a comparative analysis for both
schemes. By starting with an initial storage level B0, we
validated the generated traces using the first half of the data
set for both models keeping the second half of the real data
set as baseline.

Figure 3 compares energy storage levels up to one year
using the real data for each site mentioned before in Table
I as baseline. The horizontal axis shows the number of days
against its respective storage state on the vertical axis. We show
the trend only for one year on the horizontal axis, however,
similar pattern is followed for the entire data set due to the
diurnal repetition of solar radiation each year. The Binomial
random walk model assumes a necessary transition between
two consecutive days and does cater for the situation where
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Figure 3: Annual storage state comparison: (Left to Right) Tamanrasset, Bondville, Sonnblick and Valentia
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Figure 4: Annual Mean Square Error (MSE) comparison: (Left to Right) Tamanrasset, Bondville, Sonnblick and Valentia
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(b) Impact of change in energy store size on optimal
probability using Binomial random walk while load
remains optimal
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Figure 5: Optimal Load and Optimal Probabilities comparison

Table III: MSE and Mutual Information

Location TRW Binomial Real Data
Tamanrasset,
Algeria

MSE 0.0182 0.0587 0.0097
MI 0.1485 0.1021 0.2943

Bondville, IL,
USA

MSE 0.0269 0.0541 0.0116
MI 0.1526 0.1161 0.2354

Sonnblick,
Austria

MSE 0.0077 0.0162 0.0051
MI 0.1192 0.0822 0.3027

Valentia, Ireland MSE 0.0088 0.0116 0.0020
MI 0.1202 0.0486 0.2384

the storage state retain its current position, thus, it results in
large number of fluctuation between states. These results also
verify that despite the irregularities due to the randomness of
the diurnal solar irradiance, TRW better follow the real trace
for each site due to the state recurring property.

B. MSE and mutual information

We further validated our model by finding the mean square
error (MSE) and the mutual information of each model against
the real trace. MSE and mutual information reflects the extent
to which both, TRW and the Binomial random walk deviates in
modeling the original solar radiation pattern. Table III shows

the respective MSE and the mutual information against the real
trace for both models. The MSE between TRW and the real
trace is significantly less compared to the Binomial random
walk model. This can also be verified from the third column
which shows the MSE and mutual information of the first
half of the real data set with the second half. Similar results
can be observed in Figure 4 which depicts the mean square
error comparison of both schemes with the real data for each
site. The horizontal axis shows the number of days, for which
the MSE is computed and the vertical axis shows the MSE.
From these MSE plots for all sites, we see that the MSE of
TRW with the real data is lesser compared to the Binomial
random walk. The mutual information comparison in Table III
also validates our claims for the storage capacity of harvesting
enabled sensors.

C. Load and probability optimality comparison

Sensor applications usually aims to utilize the maximum
available energy, therefore, it is important to find the impact
of varying the storage energy level on the optimal load and
the optimal probability. Therefore, we evaluated the impact of
varying the storage energy levels and the step size � on the



probability of depletion, probability of being in energy surplus
state and the corresponding optimal probability for each site.
Figure 5a plots the optimal probability ⇡

opt

by increasing
load using Binomial random walk model for energy storage
capacity of 10.08Wh (4 x AA batteries) for all sites. The
peaks indicates the optimal point where the utilization of the
harvested energy is maximized. For a storage capacity of upto
4 AA batteries, it limits the maximum supportable load per day
to (6Wh) for Tamanrasset, estimating the optimal probability
upto only 37% as shown in the Figure 5a.

Similarly, Figure 5b shows the optimal probabilities esti-
mated using the Binomial random walk model for different
set of AA batteries. The horizontal axis shows the set of
batteries, while the vertical axis shows the optimal probability.
It is shown that low storage capacities results in lower optimal
probabilities. On the other hand, Figure 5c shows the optimal
probability estimation for a storage capacity for the same
storage capacity (4 AA batteries) using TRW. The horizontal
axis shows the increase in the capacity, while the vertical axis
shows the optimal probability. It clearly highlights that, even
for lower values of � and capacity C, the TRW model takes
useful information into consideration where maximum optimal
load can be supported. It also provides better estimation of
the optimal probabilities i.e. from the real data, an optimal
probability of upto 0.8 can be achieved with � even as lower as
0.1. It also estimates the optimal probability upto a maximum
of 98% for the same �. This can also be cross-validated by the
last row of Table II, which shows the optimal probability for
each location for a given capacity. This shows that an optimal
load for a given energy harvesting situation can be maintained
by considering the additional dimension for the storage state.

The comparative analysis of both model concludes that the
TRW provide a better estimation of the storage capacity for
harvesting enabled sensor deployed in any part of the World.
The optimal probability analysis also validates our claim
regarding the estimation of the optimal power consumption
for a given energy harvesting scenario.

VI. CONCLUSIONS AND FUTURE WORK

Harvesting ambient energy for sensors is studied for some
time and is becoming more popular. Therefore, we provided a
generic model for the energy storage capacity for harvesting
enabled sensors. We analyzed our model by applying it on
an extensive real World solar radiation data set. We used the
data set to analyze the diurnal behavior of the solar irradiance
pattern for different global regions for a maximum ensemble
of days. This analysis provides an insight into the design
of harvesting aware systems and algorithm under different
geographical conditions. Additionally, we defined an optimal
point where utilization of the harvested energy is maximum
for a given energy harvesting scenario. Based on the real data
analysis, the proposed model presents a closer fit compared to
the Binomial random walk.

Currently, we are extending the model to further improve
the storage state accuracy. We are planning to use TRW model
to adjust the node’s power consumption in accordance with the
storage state conditions. Specifically, the sensor node should
simultaneously adapt to the availability of ambient energy as
well as the residual stored energy.
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