
Global Adaptation for Energy Efficiency in
Multicore Architectures
Alina Lenz∗, Tobias Pieper∗, Roman Obermaisser∗

∗University of Siegen, Germany
Email: {alina.lenz|tobias.pieper|roman.obermaisser}@uni-siegen.de

Abstract—Today mixed-criticality systems are used in most
industrial domains, because of their integration advantages. They
are smaller, weigh less and reduce the idle time of the previously
dedicated hardware.

However, these systems can still be improved. Since their
hardware is now used more efficiently it automatically suffers
more under the aging effects of the heat created by all the
simultaneous computations. The heat fastens the aging process
of the hardware and increases failure rates. To prevent this the
systems need to be cooled down by additional cooling devices
like fans. In turn, these devices introduces new failure sources
due to their movable parts.

In this paper we propose a chip-wide approach to dynamically
manage the system computation and communication to optimize
the energy-efficiency. By reducing the energy usage of the system
we can reduce the additional hardware as well as the weight
of the whole system and prolong the system’s lifetime as the
available power resource lasts longer. We expand the current
usage of tile-based energy management to a system wide scheme
by implementing a meta-scheduler. This verifiably monitors the
system state and changes the schedule if an optimization can be
performed.

I. INTRODUCTION

Mixed criticality systems bear many integration advantages
for industrial use by sharing the same system on chip (SoC) for
applications of mixed criticality which formerly were run on
dedicated hardware [1]. The integration takes up less space and
reduces the overall energy consumption because the idle time
of one critical application can be used efficiently for another
application.

In order to ensure their restrictions, many safety-critical
applications employ a precomputed temporal behavior defined
in a schedule. This schedule defines when which task is
allowed to be executed and when messages may be sent.
Such a predictable behavior is desirable as the system can
be designed to guarantee timeliness.

With the rapid growth of the industrially used MPSoCs
the energy consumptions grows in importance. Each energy
consumer produces heat which in turn negatively impacts the
hardware. The authors of [2] have shown that each 10◦C
the system’s failure rate increases by 50%. For this reason
fans and other dynamic elements need to be integrated to
cool down the system. These dynamic elements are prone to
failure and weigh a lot. Reducing these elements is a major
concern in today’s industry. Energy and reliability optimization
are considered to be among of the most critical issues of
multiprocessor systems-on-chip (MPSoCs) [3].

One approach to reduce these additional devices is to
manage the system’s energy consumption more efficiently.
Reducing the overall energy consumption will not only reduce
the need of cooling devices and hence the negative effects on
the hardware aging process. It will also increase the system’s
lifetime as the power source will be depleted more slowly.

Much research has been done in how to effectively reduce
the energy consumption by applying dynamic energy saving
mechanisms like dynamic voltage frequency scaling (DVFS).
However, most of the approaches do not target a system-wide
optimization for mixed-criticality systems.

DVFS can be applied when unpredictable idle times occur
in the system. These times called dynamic slack occur quite
often since the real runtime of tasks is not exactly known at
design-time. Therefore, the schedules are computed based on
an assumed Worst Case Execution Time (WCET) which is
the maximum time that a resource will be allocated for the
corresponding task. To ensure, that high criticality tasks finish
on-time with a high probability, their WCETs are assumed
more pessimistic than the ones of low criticality tasks. These
assumed times lead to an unbalanced usage of the system.
In average conditions, the tasks will be executed faster than
expected leading to dynamic slack. The slack can be used to
run other tasks at lower frequency because the lower frequency
leads to longer task execution times.

We propose a system wide energy management that exploits
opportunities to save energy. We demonstrate our approach
using dynamic slack, although the solution can also be applied
to other use scenarios such as fault recovery. The proposed
adaptation reacts to context events such as dynamic slack by
rescheduling the computations and the communication. These
changes are done based on a verifiable schedule wherefore our
approach is suitable for safety critical domains like avionics
or rails.

The paper is structured into six sections. Section II discusses
related work and places our approach within the canon of
already existing energy management methodologies. Section
III presents our target architecture and in section IV we
explain our meta scheduler. In section V the simulation of our
approach is described and section VI provides a conclusion
with an outlook on our future work.

II. RELATED WORK

Energy efficiency based on scheduling is a highly researched
topic ranging from energy management techniques to very

specific energy management applications on MPSoC [4] [5].
Dynamic voltage frequency scaling (DVFS) has been widely

researched in embedded systems. This technique exploits the
fact that the consumed energy is calculated as: E = c∗V 2 ∗f
with c being the system capacitance, V the voltage and f the
frequency. Both factors can be reduced to lower the energy
consumption. Most approaches aim for a localized tile-based
optimization where the slack is distributed to other locally
executed tasks or the core frequency is dynamically lowered
during a task execution. In these approaches the aim is to
optimize the time-slot given by the schedule.

[6] proposed an inter-tile slack propagation, to optimize
the effect the slack has on the system. Slack can be used by
DVFS to perform executions at a lower frequency.

Their approach to use the slack globally is very similar to
our approach, but we we extend it into a temporally predictable
and certifiable technique for mixed-criticality systems.

A. Local energy aware scheduling for real-time systems

Other approaches to save energy focus on improving the
schedule the system is running upon. They define the timeslots
of the tasks based on heuristics to implement less pessimistic
timeframes and hence reducing the idle time.

They use these heuristics in on-line scheduling to dynam-
ically adjust to the system state and thus approximate an
optimal off-line scheduler [7] which would have known the
real execution times beforehand.

Our schedule on the other hand approximates the dynamic
behavior with precompiled schedules.

B. Super scheduler

A super scheduler injects new high criticality messages into
the system to deal with critical events while maintaining the
deadlines. The critical events get downgraded and interrupted
by the new events [8] [9].

In contrast to this prior work, our meta-scheduler will not
disturb the current high critical applications as the changes will
be planned at design time. We will not dynamically reconfigure
the system but change into a new schedule which supports the
system’s deadlines.

Our approach will combine offline pre-computed schedules
with the dynamic adaptation to the system state.

III. SYSTEM MODEL

The system model consists of a tile based architecture which
is connected via a network on chip. We perform applications
of mixed criticality on the tiles with real-time requirements.
Therefore our architecture is chosen to enable strict temporal
and spatial separation to ensure that no low criticality appli-
cation can impact or delay a higher critical one or access
its dedicated resources. The system must also ensure that all
tasks can be performed within their associated deadlines. Real-
time systems work with time sensitive data that needs to be
evaluated and acted upon directly, e.g. sensor data. Especially
in safety-critical systems missing these deadlines can cost
human lives, e.g. if the altitude measurement in flight control
systems fails.

Figure 1 shows how each tile is managed by a hypervisor
running bare-metal on the tile’s hardware and allowing for
multiple partitions. The applications on these partitions can be
of varying criticality though to keep the spatial separation only
the same criticality can be executed within a single partition.

Fig. 1. Architecture

The hypervisor assigns hardware resources of its tile to its
managed partitions, ensuring the timing and spatial restrictions
for the mixed criticality system. It also manages the partitions
by scheduling their execution by the corresponding deadlines
to provide the real-time functionality. Since the partitions do
not access the hardware on their own, the messages they send
are also relayed by the hypervisor. This prevents message
flooding to the network on chip (NoC) and the applications of
other tiles are protected from faulty behavior.

Each tile is connected via a network interface (NI) to a
time-triggered NoC. The time triggered behavior is executed
based on an a priori computed communication schedule which
commands the message injection times [10]. The schedule
is enforced by the NIs which enqueue the messages from
the core and inject them into the network based on the
precompiled communication schedule. This schedule ensures
that no packets collide during the transmission and guarantees
timing bounds for the message traversal. For this, the schedule
does not only control the message injection but also the
path the message is routed on. In addition, the NI contains
a scheduler in the packetization and flitization units which
compares the current time to the schedule and initiates the
message injection at the preplanned points in time.

A. Schedule

The schedule is a function which temporally and spatially
allocates a set of executable actions to a physical model and a
period w.r.t. their deadlines and dependencies. The executable
actions are all actions that need to be performed with a defined
period of time by a defined set of hardware. In our case we
look at two kinds of schedules: the computational schedule
executed by the hypervisor and the communication schedule
for the message injection. These schedules depend on each

other as the messages to be sent are computed by the tasks
managed by the hypervisor. The computational schedule is
defined by the tasks, their start and their end time. As one can
see the start and end times are defined by scheduling the tasks
based on the assumed WCET. The communicational schedule
contains all messages that will be sent on the NoC and their
injection times.

The physical model is defined by the available hardware of
the system, including resources like cores, memory, routers
and I/O devices.

The schedule assumes the worst case execution time
(WCET) when planning the order of task executions, to assure
enough time for all applications to finish the task in the
assigned time frame. In mixed criticality systems, WCET
assumptions can vary based on the criticality level. Low
criticality tasks can be assigned an optimistic time slot, as
faults are acceptable here. High criticality tasks will always
be assigned pessimistic time frames, as the tasks have to be
performed at all costs. Reassigning allocations too early will
cause fatal system failures. Figure 2 shows that to ensure
meeting the deadline the WCET assumption is always an
overestimation. In case the task actually finishes at the WCET
the overestimation saves the system from deadline misses.
However, the figure also shows that the usual execution time
is often within the first third.

Fig. 2. WCET distribution [11]

The difference between the estimated execution time and the
real execution time is called slack and can only be determined
at runtime. This makes an optimization impossible in static,
prescheduled systems.

The communication schedule depends on the computation
schedule: the communication schedule awaits and plans a
message at the expected end-time of a computation, which
must be approximated a priori with the WCET. In turn, this
means that even if a computation is finished before the WCET,
the resulting message will be transmitted after the WCET but
not instantly. This dependency can be interpreted as a time
contract where the communication commits to send messages
in provided time slots. Any changes on the system behavior
must comply to these predefined ”contractual” times. State
of the art power management schemes use the inevitable
slack resulting from the difference between the WCET and
the real execution time to perform DVFS within the tile.
These schemes ensure that the prolonged execution due to
DVFS ends by the assumed WCET to comply with the
communication schedule. Such software based approaches are

usually performed by the hypervisor or the partition software
(RTOS).

IV. THE META-SCHEDULER

A. Motivation

The currently applied energy management is software based.
Therefore, it is always focused on the local tile due to the
inherent scope of the software performing the management.
E.g. the hypervisor only has knowledge about his own tile. We
want to expand this local energy management to a hardware
based global energy management scheme. By using the local
slack in a global optimization, the network can be optimized
to a global rather than just the local optimum. This leads to a
maximized system lifetime, especially in systems with cross
tile task interdependencies. In those, the output of one tile is
needed by other tiles to start their computation. For example,
a five tile architecture has dependencies where the first tile
computes inputs for the other four tiles which themselves
compute inputs for the first tile, as shown in figure 3.

Fig. 3. Example for task dependencies in a multicore architecture

If the first task finishes its execution earlier than the assumed
WCET, this slack time can be used for energy optimization.
A currently often used technique is to gradually check the
execution time. When the monitoring software then recognizes
a faster execution than expected, it dynamically reduces the
voltage and frequency of the execution. This way, the WCET
timeframe is used more efficiently. In our example, local
optimization would gradually adapt the frequency on core
one. This would extend the core’s execution time under lower
frequency to reduce the energy consumption which in turn
leads to a longer computation time, as shown in figure 4. We
cannot just use the slack by sending the message directly to
the other tiles because the message injection is bound to the
communication schedule. Therefore, in such a local adaptation
the goal is to optimize the time slot given by the schedule. This
would save energy, but the other cores do not profit from this
approach.

In systems with interdependent applications, the later tasks
can also profit from slack. Our approach is to use the slack
where the energy savings are best: in this case, the slack
would be passed to the other four tiles, as figure 5 shows.
These 4 tasks could be started right after the first one finishes,
therefore giving them more time to execute. The local tasks
then can optimize their newly assigned timeslots using the
local DVFS. This way we can multiply the saved energy by
four. Not only the energy savings are great for the energy

Fig. 4. Local energy management

usage aware system. Considering that especially in mixed
criticality systems highly critical tasks are planned with a very
pessimistic WCET assumption, these slack times unnecessarily
block resources for other applications. Reconfiguring these
access times on-line is another advantage of our approach.

Fig. 5. Global energy management

B. Global adaptation

The changes described above can only be realized when the
communication schedule is adaptable. The message of tile 1
needs to be transmitted at the end of the execution to enable the
other cores executing their tasks. To do so, the NI’s schedule
must be changed. Considering that all NIs control the message
injection locally, it is crucial that all NIs change their schedule
at the same time. Otherwise it is possible that two NIs stay
in incompatible schedules which may cause unnecessary re-
transmissions due to missed messages and collisions, when a
tile is gated while another core wants to send some messages.
These inconsistent behavior raises the systems energy usage
and can cause deadline misses, leading to system failure.

To avoid such conditions our approach is to define a meta-
schedule according to which all changes in the NIs can be
done. This meta-schedule is a state machine where each node
is a verified schedule that by itself would already define all ex-
ecutions of the system. Additionally to this baseline schedule
we compute variations of the schedule that optimizes the task
execution and message injection according to a context. For
example if we are in the base schedule state and a slack event
is monitored this will be interpreted as a system context and
the state machine will change into a schedule that is adapted
to this slack.

Looking at figure 3 and figure 4 the first schedule can be
assumed to be the baseline schedule. As soon as the event of
the detected slack happened the meta scheduler changes the
system schedule to the second schedule. This approach realizes
a local adaptation which is based on a global knowledge. For

the design of the adaptation we assume that such a global
knowledge is available. By using a local adaptation we avoid
implementing a dedicated global energy manager which would
cause energy overhead for the system.

The context is a set of environmental and task specific
information that can be exploited to improve the system energy
consumption or indicate that a safe state with minimum energy
consumption must be entered. Examples for this information
are the slack of tasks, the temperature and the energy levels.
If for example the energy is low a low-energy state can
give a photovoltaik adapter the chance to re-charge to a
minimum threshold energy level before re-entering the normal
execution schedule. The context information can be designed
system specific and therefore reduce or expand the scheduling
problem.

C. Modeling of global adaptation

To perform the changes the meta schedule need access to
the NI’s schedule and must be able to change it directly. Figure
6 shows the new network interface. The meta scheduler needs
to store the meta schedule with the triggering global context
information. It needs to save all schedules that its local NI
can assume to be able to place them in the NI. To reduce
the memory space needed for this NI block we reduce each
NIs schedule knowledge to the subset of scheduling decisions
it is involved in. This way each NI only stores a fraction
of the whole schedule. Only the global context information
must be stored in whole to ensure that each local decision is
unanimous. The decision will be made based on the global
information, to assure the global optimum and to avoid being
trapped in a local peak. The schedule memory space will
further be optimized by saving a baseline schedule which is
stored as a whole. All other schedules will be stored as a
∆ to the previous schedule. This way not only the memory
space for the schedules will be reduced but also the schedule
change operation can be streamlined by binary adding the
new schedule on top of the current one. These ∆ schedules
are dependent on their parent schedule, therefore they will be
saved in a treelike structure that will be traversed in parallel
to the traversal of the meta schedule.

Additionally the meta schedule has a core interface via
which it can send commands to the hypervisor informing him
about the new deadlines. This adaptation can be understood as
an update of the time contract defined by the time interfaces
between the computational and communication schedule. As
these schedules are interdependent any change on the commu-
nication side will have direct effects on the computation either
prolonging the available execution time or shortening it.

D. Meta schedule requirements

The potential schedule space of such an approach is infinite.
If one were to mimic a dynamic energy management each
fine grained context change would lead to a dedicated new
schedule. Such a system would collide with our initial plan to
save energy, as the management would consume more energy

Fig. 6. New adaptive Communication Interface

than the actual computation. Therefore we design two kinds
of state boundaries:
• discrete context intervals
• forced convergence of the schedules

E. Discrete context intervals

The first boundary is a minimization of the context that the
system can react to. If certain executions times are passed
the slack is too small to adapt him globally, these intervals
are ignored by our system and the local adaptation can use it.
Within the viable slacks we define discrete intervals, e.g. if the
monitored slack is within 50%-30% we will jump into a new
optimized schedule. Figure 7 shows how a baseline schedule
can lead into 3 possible slack optimization states.

The boundary for the context can be set according to the
designed system. If many other context variables are already
observed, the slack options can be reduced. If the context will
be defined solely by slack, more specific slack options and
reactions can be modeled. We keep our system intentionally
as generic as possible to be applicable to as many applications
as possible.

F. Schedule convergence

The second way to reduce the potential schedules is to force
a convergence of the schedules by bounding the amount of
tasks that can profit from. To do that we must look at the
different ways the meta-scheduler can evolve:

1) the context implies that the whole system mode has to
change to assume a low energy mode, e.g. battery status

2) the context implies that the a advantage can be exploited
by changing the way the following tasks are executed,
e.g. DVFS, gating specific areas for some time

The additional states generated by the first context type is
just one, because when a low battery status will be reached
the whole system will go into a low power mode defined with
a low power schedule. There will be no further changes in
the state to save as much energy as possible and prolong the
systems lifetime until maintenance can recharge the battery.
If a rechargeable battery is used the low power mode can be
left and a normal schedule can be applied when a satisfying
threshold of battery capacity is restored. In the low power state
itself the adaptive services will be deactivated to save as much
energy as possible.

The second context type is generated by suddenly appearing
windows that can be used to apply low power techniques.
Theoretically such additional time can be used by all following

tasks, leading to exponential growth of the meta-schedule
states. Bounding the states by restricting the amount of tasks to
a value k that can benefit from such a context change, we can
force the schedules to converge after k hops. This way may
also bound the impact the changes can have. Additionally, it
may use e.g. slack times as soon as possible, rather than where
they could be used best. But, with the volatile system context
we cannot assume that the best task to benefit from slack times
at t0 will also be the best choice at t2.

As an example we look at a schedule which can be changed
based on three slack options. If each job can pass three
possibilities of slack s to the next ones, then one can see
that the resulting tree grows exponentially according to the
number of states and jobs (sj). The problem is not scalable
in this way, therefore the passing on is bounded to the next two
jobs (c = 2). Then, the tree grows in the same way as before
until job three has been reached. At job four, the convergence
occurs. Regarding each subtree of the nodes of level J1, the
following paths are equal for each of the three nodes. If J1
passes possibility S”1 to J2 and J2 passes S”2 to J3, the path
in the tree is

S0 → S0S”1 → S”1S”2 (1)

which is the left path in the subtree. The paths for the other
subtrees are similar:

S0”→ S”0S”1 → S”1S”2 ∧ S′0 → S′0S”1 → S”1S”2 (2)

all ending in the same state S1S”2. Regarding the figure,
this is also true for the other states in layer J3 printed in red.
Each of those states has a related state in the subtree of S0.

We can formulate the state expansion with a formula:

N =

i=0∑
c−1

si + sc(j − c) (3)

Until level c − 1 is reached with c being the convergence
constant, the total number of states can be calculated as the
sum over si. The variable s represents the number of supported
context changes. As soon as level c has been reached, the
number of possible states on each level is equal to sc. Then, the
number of jobs can be reduced by the convergence constant as
they are already regarded in the exponential part. The resulting
number of residual jobs can be multiplied with the number of
states per level.

At runtime the current schedule is known to the network
interface where according to the scheduled message injection
times the serialization units injects the time-triggered messages
onto the NoC. Our NI receives the context information, decides
on changes and manipulates this particular schedule into the
new one.

V. EXPERIMENTAL SETUP

This section focuses on the simulation we used to test our
assumptions and its results.

Start

S
′′
0

S
′′
0 S

′′
1

S
′′
1 S

′′
2 S

′′
1 S

′
2 S

′′
1 S2

S
′′
0 S

′
1

S
′
1S

′′
2 S

′
1S

′
2 S

′
1S2

S
′′
0 S1

S1S
′′
2 S1S

′
2

S1S2

S0

S0S
′′
1

S
′′
1 S

′′
2 S

′′
1 S

′
2 S

′′
1 S2

S0S
′
1

S
′
1S

′′
2 S

′
1S

′
2 S

′
1S2

S0S1

S1S
′′
2 S1S

′
2

S1S2

S
′
0

S
′
0S

′′
1

S
′′
1 S

′′
2 S

′′
1 S

′
2 S

′′
1 S2

S
′
0S

′
1

S
′
1S

′′
2 S

′
1S

′
2 S

′
1S2

S
′
0S1

S1S
′′
2 S1S

′
2

S1S2

J0

J1

J2

J3

Fig. 7. Bounded expansion of possible states

A. Gem5 Simulation

We used Gem5 [13] to verify our assumption. We set up a
simulation based on the use case that we described in figure
8. We used a 2x2 Mesh Noc with 4 tiles connected to it. The
nodes A and B are located in the northwest and southeast of
the the NoC and we used x-y routing to determine the message
paths. Figure 8 shows that we have two applications, the tasks
t0, t1, t2 and t3 are high critical tasks while t4 and t5 are low
critical. We also modeled inner-tile and inter-tile dependencies
to proof our slack propagation assumption: t2 depends on t0
and t3 depends on t2 and t3. In the figure, the numbers in the
tiles and those associated to the messages are their assumed
WCET time for computation and message transmission.

Because Gem5 does not support DVFS, a simpler model
must be applied to measure the energy consumption in the
NoC. We modeled our power model based on the known
behavior of CMOS-circuits. We used them to approximate
the consumed power in the NoC. As shown there, the con-
sumption depends on the frequency among others. However,
the frequency the messages are sent with shall be set by the
adaptive communication at defined instants. It is assumed, that
the input and the output frequencies in equation 4 are similar
such that the dynamic power consumption can be calculated
by equation 5

PD = PT +PL = Cpd ·V 2
CC ·fI ·NSW +CL ·V 2

CC ·fO ·NSW

(4)

PD =
(
Cpd · V 2

CC ·NSW + CL · V 2
CC ·NSW

)
· f (5)

In the simulation, the factor in braces is not exactly deter-
mined but approximated by a constant. The value is set to 1
to simplify the model. At each tick, the constant is scaled by
the current frequency in the NoC and added up.

We modeled a power model including idle and running
states of the tiles for the normal and the low power frequency.
To compute the overall energy consumption, the associated
energy value is added to a global energy counter each tick.
At the end of the simulation, the energy counter is shown.
The traces that were used on the tile are created by randomly
scaling the WCET to simulate the unpredictable tile behavior.
For the results, we have created traces with low slack and high

slack. We compare our results to a baseline configuration. In
this configuration, we let the tile run in idle mode until the
WCET is finished.

Our adaptation block has a text file representing the
schedule-changes which it traverses based on its current state.
For the adaptation, the adaptive communication adds the ∆
value in the row of the current schedule-change in the Gem5
config-file.

NodeA

T0

200

T1

500

T4

200

NodeB

T2

300

T3

100

T5

500

M0

300

M1

100

M2

500

Fig. 8. Use case

B. Simulation results

The simulations of the adaptive communication in this
section show the correct behavior and the possibility of
saving energy. For this, the system is configured according
to the use case shown in figure 8 as shown in the previous
section. There are four different simulations presented with
an approximation of the resulting energy consumption. The
tile’s message injection is defined such that in the first case
there is much dynamic slack generated and few slack in the
second one. Switching off the adaptive communication in the
other cases enables a comparison with the baseline NI.

Each table printed in the following shows the message statis-
tics for the cases. The first two columns show the message ID
and the total communication delay from dequeuing from the
source Core and enqueuing in the destination Core. Columns
three and eight show the de- and enqueuing instants of the
Cores. Time-triggered messages are enqueued in the priority
queues unit (PQU) by the NI according the schedule. While
this instant is printed in column five, the next column shows
when the message is dequeued. As the guarding window is
enabled, the message can directly be enqueued into the NoC.

This instant is presented in the sixth column. On the other
hand, the seventh column contains the instants when the last
flit of the message leaves the NoC. In each case, at first all
messages are sent in the first application mode with all tasks
enabled. This mode is represented by the first lines with the
IDs 0, 200 and 100. Afterwards, the application mode changes
at the end of the period and the low-battery mode is executed.
Then, only messages 0 and 100 are sent.

Msg Total Deq En Deq En Deq En
ID Delay Core PQU PQU NoC NoC Core
0 211 8 200 201 201 210 219
0 68 151 200 201 201 210 219

200 29 390 400 401 401 410 419
100 29 890 900 901 901 910 919

0 101 1618 1700 1701 1701 1710 1719
100 101 2118 2200 2201 2201 2210 2219

TABLE I
MESSAGE STATISTICS FOR BOTH CASES WITH ADAPTATION DISABLED

Table I contains the message statistics when the adaptive
communication is disabled. Because the cases of much and
few slack only differ in the total communication delay and
the instant of dequeuing the Core, both simulations are shown
in the same table. According the schedule, in the first mode
the messages are sent at instants 200, 400 and 900. The
total communication delays for message zero show, that due
to dynamic slack the delays are much greater than those of
messages 200 and 100 which nearly require their WCET. This
time can be used to apply power saving techniques. Changing
the application mode at the end of the period occurs at instant
1500. Therefore, the phases of the safety critical messages 0
and 100 are 200 and 700.

Msg Total Deq En Deq En Deq En
ID Delay Core PQU PQU NoC NoC Core
0 22 8 11 12 12 21 30

200 32 390 403 404 404 413 422
100 29 890 900 901 901 910 919

0 101 1618 1700 1701 1701 1710 1719
100 101 2118 2200 2201 2201 2210 2219

TABLE II
MESSAGE STATISTICS FOR MUCH SLACK WITH ADAPTATION ENABLED

In the following, the adaptive communication is enabled.
At first, table II presents the case with much dynamic slack.
Message 0 is available at the Core at tick 8 resulting in slack of
192 ticks. The matching interval end is tick 10 which enables
the sending at tick 11 instead of tick 200. Since the gem5
version used for the implementation does not support DVFS,
the communication delay is not elongated and the message
arrives at the destination at tick 30. However, DVFS would
result in a longer communication delays such that message
200 had to be sent 3 ticks later at tick 403. At message 100,
the convergence leads to a transmission at the specified instant.
In the low-battery mode, all messages are sent with the lowest
supported frequency and no further changes due to dynamic
slack are specified.

E [W]
0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0 1100.0 1200.0 1300.0 1400.0 1500.0

Whole system mode

Low battery mode

Adaptation enabled, much Slack

Adaptation enabled, few Slack

Adaptation disabled

1500

851.7

765.9

1500

675.1

675.1

Fig. 9. Energy consumption in simulation

Table III on the other hand shows the case with few dynamic
slack. Message 0 is dequeued from the Core at tick 151.
Then, the matching schedule change in this case triggers the
transmission at tick 166 and delays the next message by 33
ticks.

Msg Total Deq En Deq En Deq En
ID Delay Core PQU PQU NoC NoC Core
0 34 151 166 167 167 176 185

200 62 390 433 434 434 443 452
100 29 890 900 901 901 910 919

0 101 1618 1700 1701 1701 1710 1719
100 101 2118 2200 2201 2201 2210 2219

TABLE III
MESSAGE STATISTICS FOR FEW SLACK WITH ADAPTATION ENABLED

Figure 9 shows the resulting power consumption. The x-
axis shows the consumed energy in watt while on the y-axis,
the different application modes are presented. In each mode,
the case with the adaptive communication disabled is printed
in dark gray. On the other hand, the case with few slack is
colored in light gray and the one with much slack in white.

Since all activities are executed with a frequency of 100%
when the adaptive communication is disabled, the consumed
energy amounts to 1500W . In the whole system mode, the
frequency the messages are sent with is adapted when the
message transmissions start. As shown in the chart, the adap-
tation enables power savings of 648.3W for few respectively
734.1W for much slack which equals 43.22% respectively
48.94% of the consumed power when the adaptation is
disabled. On the other hand, in the low battery mode the
frequency is set to 45% at phase zero and not changed for
the complete period. This results in an energy consumption
of 675.1W independent from the available dynamic slack
which corresponds to 45% of the consumed energy without
adaptation.

The results show, that adapting the communication at run-
time to apply low-power techniques has the potential to save
energy of more than 50% if there is sufficient slack available.
However, the simulation does not consider the reduction of the
supply voltage. Because there is a linear relationship between
frequency and supply voltage and a cubic relation between
frequency and power, adjusting the voltage can lead to higher
energy saving in future optimizations.

VI. CONCLUSION

We presented our approach to realize a dynamic system
adaptation for pre-planned systems. With our approach we can
guarantee timing boundaries for real-time systems and support
mixed-criticality-applications while still apply dynamic energy
oriented reconfiguration to prolong the system lifetime. For a
first step we have implemented the context as a slack monitor,
but we plan to expand the context to further energy saving
possibilities. These adaptation techniques can also be used to
change the system behavior in cause of faults and dynamically
reconfigure the on-chip communication to cope with node or
link faults without needing dynamic routing algorithms. In
future work, we will define a protocol to consolidate the global
knowledge about the context which we assumed to be available
in this paper.

VII. ACKNOWLEDGEMENT

This work was supported within the scope of the european
project SAFEPOWER which has received funding from the
European Unions Horizon 2020 research and innovation pro-
gramm under grant agreement No 687902.

REFERENCES

[1] A. Burns and R. Davids. Mixed Criticality Systems A Review, 2016.
[2] Hong, Inki, et al. ”Power optimization of variable-voltage core-based

systems.” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 18.12 (1999): 1702-1714.

[3] Das, Anup, et al. ”Combined DVFS and mapping exploration for lifetime
and soft-error susceptibility improvement in MPSoCs.” 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2014. IEEE, 2011.

[4] J.J. Chen and C. Kuo, ”Energy-efficient scheduling for real-time systems
on dynamic voltage scaling (DVS) platforms”. in Proc. International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA), 2007, pp. 28-38.

[5] C. Li and P. Ampadu, Energy-efficient NoC with variable channel width
in 2015 IEEE 58th International Midwest Symposium on Circuits and
Systems (MWSCAS), 2015, pp. 14.

[6] P. Zaykov, G. Kuzmanov, A. Molnos, K. Goossens, ”Run-time Slack
distribution for real-time data-flow applications on embedded MPSoC”.
in Proc. of DSD, 2009, pp. 409-418.

[7] Paterna, Francesco, Andrea Acquaviva, and Luca Benini. ”Aging-aware
energy-efficient workload allocation for mobile multimedia platforms.”
IEEE Transactions on Parallel and Distributed Systems 24.8 (2013): 1489-
1499.

[8] S. Ogrenci Memik, E. Bozorgzadeh, R. Kastner and M. Sarrafzadeh, A
super-scheduler for embedded reconfigurable systems in IEEE/ACM
International Conference on Computer Aided Design 2001. ICCAD 2001,
pp. 391-394.

[9] Persya, A. Christy, and TR Gopalakrishnan Nair. ”Model based design of
super schedulers managing catastrophic scenario in hard real time sys-
tems.” Information Communication and Embedded Systems (ICICES),
2013 International Conference on. IEEE, 2013.

[10] H. Ahmadian and R. Obermaisser, Time-Triggered Extension Layer for
On-Chip Network Interfaces in Mixed-Criticality Systems in Euromicro
Conference on Digital System Design (DSD), 2015, pp. 693-699.

[11] Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund, Nan
Guan, Bengt Jonsson, Peter Marwedel, Jan Reineke, Christine Rochange,
et al., ”Building timing predictable embedded systems”. in ACM
Transactions on Embedded Computing Systems (TECS), 13(4):82, 2014.

[12] A. Molnos and K. Goossens, ”Conservative dynamic energy manage-
ment for real-time dataflow applications mapped on multiple processors”.
in Proc. of DSD, 2009, pp. 409-418.

[13] Binkert, Nathan, et al. ”The gem5 simulator.” ACM SIGARCH
Computer Architecture News 39.2 (2011): 1-7.

