Adaptive Management of Shared Resource Pools with Decentralized
Optimization and Epidemics

Emerson Loureiro, Paddy Nixon, and Simon Dobson
Systems Research Group
School of Computer Science and Informatics
University College Dublin, Dublin, Ireland
Email: {emerson.loureiro,paddy.nixon,simon.dobson} @ucd.ie

Abstract

Shared resource pools are facilities featuring a cer-
tain amount of resources which can be used by different
applications. For managing resources in such pools,
the demand of each application can be used. Such a
demand, however, is driven by the workload, which
varies over time. For that reason, adaptive approaches
have been proposed for the management of shared
resources pools. Whereas a number of solutions exist
in this context, they are either not truly decentralized
or do not apply to the problem we are dealing with.
In this paper, we then present Darma, an approach for
managing shared resource pools in a truly decentral-
ized, adaptive, and optimal way.

1. Introduction

In shared resource pools, a collection of resources,
e.g., servers, is available to be shared by different
applications [1]. In many cases, these applications have
QoS parameters that have to be met. Therefore, the
amount of resources available to each of them should
be such that their QoS parameters are met.

To distribute the resources in the pool, the demand
of each application is used. The problem is that such
a demand is driven by the workload, which varies
over time [2][3]. Allocating resources using worst or
average-case scenarios can lead to waste of resources
and shares that do not keep up with the applications’
QoS parameters [4]. It is more suitable to adapt the
share of each application, over time, considering their
QoS parameters and current workload. Usually, such
an adaptation is performed not just to meet such
parameters, but to do so in the best possible way. For
that, the resource management task is typically viewed

This work is supported by UCD Ad Astra Scholarships

as an optimization problem, whose solution yields the
best possible outcome.

Many solutions for such a management in shared
resource pools have been proposed. Some of them,
however, employ central servers for distributing the
resources. These solutions can perform well, but they
suffer from scalability and fault-tolerance. Distributed
solutions have also been proposed, but they have
been modelled hierarchically, and thus, coordination is
centralized. Whereas decentralized solutions in other
contexts can be found, they are not applicable to the
problem being studied here.

Based on that, in this paper we present Darma,
Decentralized and Adaptive Resource Management, an
approach for managing shared resource pools in a truly
decentralized, adaptive, and optimal way. To the best
of our knowledge, this is the first work in this context
contemplating those features. The rest of this paper is
then organized as follows: in Section 2 fundamental
concepts are presented; Darma is presented in Sec-
tion 3; in Section 4 we present an evaluation, using
a data center scenario; related works in the area are
presented in Section 5; finally, in Section 6, we present
our conclusions and future directions of this work.

2. Basic Concepts

Since we aim at a decentralized solution, we view
the system as a network of agents, where one agent
can be reached by any other, directly or indirectly via a
series of hops. We denote by V(¢) and n(t) the set and
number of agents in the system at time ¢. We denote
by a' an agent in the system, for i € [1,...,n(t)] and
i € N, and by N(t) the set of neighbours of a’ at
time ¢. Finally, each agent represents an application
that consumes resources from the pool.

For optimization purposes, as proposed in [6], we
assume each agent has a utility function u?(z), spec-

ifying how useful a particular resource share x from
the pool is. From that, an aggregate utility U(X) is
derived, as follows:

UX)= > u'(Xy), $))
ateV(t)
where X = {Xi,...,X,,4)} is an allocation vector
and X is the share allocated to agent a’. Finally, based
on [7], the resource management task is modelled as
the following optimization problem:
max U(X)
X€R'rL(t)
|X| 2)
subject to: ZXi < K(t).
i=1
In the above, K (t) is the amount of resources in the
pool (e.g., 200 servers). The constraint then limits the
sum of all shares received to such an amount.

3. Darma

Darma is actually composed by a set of mathemat-
ical models, formalizing the entire resource manage-
ment process. These models are then presented next.

3.1. Optimization Model

The Optimization Model defines how to solve the
optimization problem defined in a decentralized way.
For that, each agent a’ is assigned the following utility
function u‘(z):

u(z) =1—e 0 3)

where z is the amount of resources being allocated
to a' and «'(t) is a parameter that indicates a'’s
demand at time t. The smaller it is, the greater is
the agent’s demand. This parameter can change over
time, but it should remain the same over the resource
management process itself. The reasons for choosing
such a utility function is that it will allow us to break
down the optimization problem into separate models
that calculate each agent’s optimal share. Like ours,
other works have also used specific utility functions

for different purposes [7][8].
From u‘(x), the optimization problem is broken

down. To this end, it is reformulated as follows:

max L(X,\). 4

XeRn(®) XeR
In this formulation, L(X,) is the lagrangian of the
original optimization problem in 2, being defined as:

IX|
LX) =UX) =AY X;=K@t)|.

We break down the problem above by solving
VL(X,\) =0 and isolating X;, which yields in:

Inai(t) —In A

A0

(6)
Equation 6 then allows each agent a® to find its share
in a way that it solves the optimization problem in 2.
To calculate X;, besides their own a'(t), agents also
need the value of In A\, which is the global information
Darma relies on. Such a value is also found when the
problem in 4 is broken down, resulting in:

X| Inat
S e - k()

x|
Tt T @

With that, the original problem has been reduced to
finding the value of In A in a decentralized way. It is
because In A depends on the « of all agents that we use
epidemic algorithms in Darma. With such algorithms,
wen can have every a(t) to be disseminated in such
a way that it reaches every other agent in the system.
Once that happens, they are then ready to calculate
In A and from that their optimal share.

ln)\:(

)

3.2. Epidemic Model

In this model we define the methods for dissem-
inating the « values so that In A can be calculated.
In principle, In A can be calculated using solutions
for computing aggregates. In our case, however, these
approaches would not be very feasible in practice.
That would be due to the specificity of In A and
our requirements in terms of precision. We restrict
ourselves from a further analysis about this for now,
but provide, in Section 5, a more in-depth discussion.

For disseminating the « values we use an Anti-
entropy epidemic approach [9]. It consists, basically,
on synchronizing replicas held by two nodes, by means
of pushing and/or pulling updates that are missing in
each of them. By having all nodes to perform such
a synchronization with a randomly chosen neighbour,
over time, the replicas can converge to the same. As we
will show, such an approach fits perfectly our needs,
and that has been the reason for choosing it in Darma.

For that, we define firstly the format of the messages
used in the dissemination, as < p?, a’(t) >, where p' is
the identifier of agent a’, and p’ € IN*. Because two
values can be the same, the identifier of the agents will
allow them to determine whether they already received
a particular o or not. Based on that, let 0°() be the set
containing the identifiers of the agents from which a’
has received an « value. Also, let m?(t) be a multiset
that holds all « values an agent a' received until time

t. We then define o'(t) as the replica that each agent
will synchronize with the others. Consequently, m®(t)
will be synchronized too.

A traditional implementation of an epidemic algo-
rithm, however, might not perform well when replicas
are large, which would be our case eventually. If an
agent chooses a neighbour such that their replicas are
the same, they will waste time comparing two large and
similar replicas. As proposed in [9], a checksum can
be used for that. In this case, agents would first analyze
the checksum, only comparing the replicas if their
checksums are different. Using the agents’ identifiers,
we define the checksum of the replica of agent a’ to
be represented by a function k%(t), defined as:

K=Y 27, ®)

pEOi(t)

The k*(t) function guarantees a unique signature in
terms of the agents from which another agent a’ has
received « values. That alone would already enable
us to check whether two replicas are similar or not,
just by checking if their checksum £*(t) match. Such
a function, however, enable us to go further. Note that,
if the checksum of two replicas A and B do not match,
an agent still do not know if: 1) A has values that B
does not; 2) B has values that A does not; or 3) A
and B have values that the other does not. Further
verification will be necessary just for that. The k(t)
function enables us to not just check if two replicas
match; it can also tell us if a replica A is a subset of
another replica B, which can be done with:

Z 20 & Z 2t 9)
acA beB
where & is a bitwise AND operation. If the result
is > ,c42% then A C B. Similarly, the + and
— operators can be used to obtain the union and
difference of two replicas.

We combine such properties of the k*(¢) function
for defining how an agent a’ picks neighbours for
disseminating « values. When doing that, a’ will
choose a random neighbour among those who have not
received at least one of the « it has. More precisely, to
choose such a neighbour, an agent a’ uses the G (t)
function below, for each neighbour al:

Gi(t) = (K +2") - (2 & k() -
(kj(t) & (ki(t)+2”i)),

which represents all the p and o values that a’ can
disseminate to a’. If no such a pair exists, then G (t)
is 0. Therefore, every neighbour for which G%(t) is
not 0 is eligible to be chosen for the dissemination.

(10)

The point of using this approach, and not a purely
random one, is that the time to deliver all « is
improved, since agents only choose neighbours such
that at least one pair of p and « could be disseminated.
We provide evidence of that in Section 4.

When a neighbour is chosen, a push and a pull
are performed. For the push, all the p and « that
a’ received, including p’ and a’(t), such that the
neighbour has not, are pushed to it. For the pull,
a’ pulls from the neighbour all the p and « that it
received, including the neighbour’s p and « value, but
a’ has not. That is done by checking if

20" & GU(t) = 2°" (11)
for the push, for all p* € o'(t) U {p'}, and
20" & GIi(t) = 27" (12)

for the pull, for all p* € o7(t) U {p’}. Every pair
< p*, ak(t) > such that p* satisfies one of the above
conditions is then pushed or pulled, as appropriate.
Because the agents always choose a neighbour who
has not received some of the « it has, if any, it is
guaranteed that all « are delivered to all agents. Results
showing such a completeness of the Epidemic Model
are provided in the evaluation section.

3.3. Consensus Model

Besides disseminating the « values, agents still need
to know when they have received all of them. This is
necessary because it will tell them when they should
stop trying to disseminate information and waiting for
incoming messages, thus using the « they received to
compute In A and then their own share. The Consensus
Model then defines how agents will interact in order
to achieve a consensus as to when the dissemination is
finished, in a decentralized and fault-tolerant fashion.

To this end, we designed a mechanism where agents
exchange signaling information, relying solely on their
neighbourhood. For that, we define a time-varying
value z°(t), held by each agent, defined as:

(K@) +2°') + Zrenin 2 ()
[Nt(t)] + 1 ’

z'(t) = (13)
where 27(0) = 2°". The value of z°(t) gives agents an
idea of how much information has been disseminated
to their neighbourhood. As it increases, so does the
amount of a disseminated. Notice that it only depends
on each agent’s neighbours’ z%(t), thus being totally
decentralized.

The rationale behind z%(¢) is that we expect it to
converge once all a are disseminated. We call such

a state equilibrium. More precisely, it can be shown
that all 2°(¢) converge to 2° + > peoi (1) 2° at the end
of the dissemination, and that it only happens at that
point. That then guarantees that equilibrium will only
be reached when every o reaches every other agent.

Agents, however, cannot rely solely on the conver-
gence of ¢ (t) for determining whether all « have been
disseminated or not. Because of network delays, the
x%(t) of an agent could get stuck at a particular value
for some time. In turn, that would lead the agent to
believe that the dissemination is finished, when in fact
it is not. For that reason, from x%(t), we define the
following difference function d‘(t):

dt)y="> |2'(t)—a'(t) (14)

al eN(t)

The importance of the difference function comes from
the fact that all z°(t) converge to the same value at the
end of the dissemination. That consequently causes all
d'(t) to go to 0, which is the value that agents have to
look after for determining when the dissemination is
finished. That is guaranteed to happen only at the end
of the dissemination. Even if d’(¢) gets stuck at any
value other than zero, due to delays, agents will know
that the dissemination is not over yet.

Apart from decentralization, z(t) and d’(t) still
provide support for system changes. The distributed
systems we are dealing with will most likely change
over time, in terms of agents joining and leaving.
Agents might join because a new customer application
has been added to the system. Similarly, an agent might
leave because its application has been dropped, or even
because the agent, or the node where it is running,
crashed or was disconnected from the network. We
analyze how Darma supports such changes from two
scenarios; when they happen 1) in between two re-
source management processes and 2) during a resource
management process.

In the first scenario, the convergence of the system
is not affected. This is because our Consensus Model
does not rely on any global information about the
number of agents in the system. Instead, it relies solely
on the neighbourhood of each agent. Any changes in
the set of agents are then automatically picked up by
the Consensus Model once the resource management
process starts. This would ensure that planned changes
in the system structure could be made in between two
resource management processes, without the need to
restart any part of the system.

In the second scenario, a few issues might come
up. In terms of agents joining, convergence cannot
be guaranteed. If an agent joins before any of the
d’(t) converges, the system would continue executing,

eventually reaching equilibrium. If an agent joins after
at least one d*(t) converges, the system will not reach
equilibrium. As for agents leaving the system, con-
vergence is still guaranteed, as long as the remaining
topology consists of single graph. This scenario of
agents joining and leaving during a resource manage-
ment process is more typical of unplanned changes.
Examples include, as we mentioned, the crash of an
agent. We believe, then, that unplanned additions of ap-
plications, and consequently agents, are not to happen
in practice. Therefore, without any loss of flexibility,
we assume that applications can only join the system
in between two resource management processes.
Finally, we should also expect topology changes.
Due to the fact that our Consensus Model relies only
on the neighbourhood of the agents, it is able to
guarantee that the system will reach equilibrium in face
of topology changes, even if they happen during the
resource management process. Again, any changes in
the topology should result in a single graph. As we
will show in the evaluation presented in Section 4, all
properties of the Consensus Model hold in practice,
even in the face of the system changes supported.

3.4. Demand Model

As defined in the Optimization Model, o (t) indi-
cates an agent’s demand for resources at time ¢. Such a
demand is determined by the workload, which varies
over time. We then need a way of mapping a given
workload to (t). For that reason, we defined the De-
mand Model. The problem, though, is that such a map-
ping is very application specific. Consequently, there
is no way the Demand Model could employ a general
model of calculating o’(t). Therefore, the Demand
Model is actually a hot spot of Darma, which should be
extended for each application scenario. For that, then,
we define the following functions: 1) w'(t): expected
workload at time t of the application associated with
agent a’; 2) e'(w): returns the a'(t) representing the
demand of agent a’ given the workload w. As we will
show in the evaluation, with such a model, we can map
workload and demand features from different scenarios
into Darma, straightforwardly.

4. Evaluation

In this section we evaluate Darma using a data
center scenario where a number of Application Envi-
ronments (AEs) are deployed, as in [7], each process-
ing one type of transaction. Our evaluation scenario
consists of allocating servers from the data center to
the AEs, where each AE is represented by an agent. For

the purposes of this evaluation, we assume the resource
management processes happen at pre-defined points
over time. In a real-world setting this could represent,
for example, different hours of the day, on which some
re-allocation of the servers would take place.

Each AE has different workload values at different
points in time (i.e., w’(t) function of the Demand
Model), in terms of requests per second. For our
experiments, the values for the w'(t) function of each
AE have been obtained from the analytical data of
different web sites. The QoS parameter of each AE
is defined in terms of a Target Response Time (TRT)
that must be satisfied for the transactions they process.

From that, and based on the model proposed in [7],
we define (s, w), the Expected Average Response
Time (EART) of an AE, representing the response time
obtained given a workload w and a number of servers s
allocated to it. We define (s, w) as ri(s,w) = 2,
where ¢! is the CPU time of the type of transaction
processed by AE i (in seconds). From ri(s,w), we
define ¢’ (w), the number of servers needed by an AE
so that its TRT can be met, as follows: ¢‘(w) = “}fz,
where w and ¢’ are as in (s, w) and T" is the AE’s
TRT. With that, we then define the mapping function
e!(w) of the Demand Model as e‘(w) = _mq(gi;H)’
where H represents the value of the agents’ utifity
when the EART of its AE meets its TRT, ie., a
value very close to 1. As defined in the Demand
model, e*(w) then returns the demand o’ () of an AE.
Using this data center model, we performed several
experiments, whose results are presented next.

4.1. Allocation

Firstly, we analyzed Darma in terms of alloca-
tions. For that, our data center scenario employed 145
servers. Because the focus here is on the allocations
found and their outcome, we assumed that six AEs are
deployed in the data center. Simulations with larger-
scale systems are presented in the following sub-
sections. Each simulation, for these allocation experi-
ments, ran over 20 iterations. The values for the CPU
times (¢’ in ¢*(w)) for these experiments were based
on [7]. Due to space constraints, however, we omitted
such values from this paper.

The workload of each AE is as illustrated in Fig-
ure 1. From that, agents use the mapping function
e!(w) to find their demand (), which are illustrated
in Figure 2. Note that o'(t) varies oppositely to the
way the workload does. That matches the definition of
the agent’s utility, i.e., the higher the workload is, the
higher is the demand, and thus the smaller is o’ (t).

AE2

5 10 15 20 5 10 15 20
iteration iteration

= N
o o
>
m
[XIFN
S o

workload
>
workload
N
S

o o
o

AE3 AE4
300
100
K K] ZOOM
S S
< <
g %0 g 100
0 0
5 10 15 20 5 10 15 20
iteration iteration
AE5 AEB

workload
orkload

200 200
150
100
100 g
50
5 10 15 20

5 10 15 20
iteration iteration

Figure 1: w'(t) function of each AE

AE1 AE2

ﬁfﬁ
|

5 10 15 20 5 10 15 20
iteration iteration
AE3

alpha
oM & o
alpha
o o o
» » ©
|
]EZ m
IS

5 10 15 20 5 10 15 20
iteration iteration
AE5

alpha
o =
alpha
o =
o~ o
|
m
&

5 10 15 20 5 10 15 20
iteration iteration

Figure 2: a(t) of each AE

As a result of the a'(t), the shares for each AE
ended up as in Figure 3. It is easy to see that the
shares vary similarly to the way the workload does.
That shows the ability of Darma to capture the re-
source demands properly and act towards the optimal
distribution. Consequently, the response times for the
transactions of each AE are always below their TRT.
This is illustrated in Figure 4, where the dashed line
in each graph represents the TRT of the AE.

4.2. Dissemination

We have also performed experiments to evaluate
how quick the « are disseminated throughout the sys-
tem. Firstly, we have compared our checksum dissem-
ination approach against a purely random one, where
agents choose random neighbours to disseminate to in

AE1 AE2
10 10
° °
5 5
% 5 % 5

5 10 15 20 5 10 15 20
iteration iteration

AE3 AE4
100
40
o 30 2
s g 50
G 20 G
10
0 0
5 10 15 20 5 10 15 20
iteration iteration
AE5 AEB

60
e e
85 5 40
s %

5 10 15 20 5 10 15 20
iteration iteration

Figure 3: Shares of each AE

AE2

o

AE1

goo g
o °
g o g 005 M
8 0.1 g
0 0
5 10 15 20 5 10 15 20
iteration iteration
AE3 AE4
02 03
g g
= 015 £, ZM
é 0.1 %
€ 0.05 g o
0 0
5 10 15 20 5 10 15 20
iteration iteration
AES5 AE6
04 03
g g
508 3 OIZM
g 02 ”é'
%o g o
0 0
5 10 15 20 5 10 15 20
iteration iteration

Figure 4: EARTs of each AE

a “blind” way, i.e., without considering if they have
unsynchronized replicas. This comparison has been
performed in terms of the number of cycles that it takes
to deliver all a.. A cycle, in this case, is considered as
one step from each agent sequentially, where a step
means an agent choosing a neighbour to disseminate
to. Even though the system is not synchronous, this
provides a common ground for analyzing not only the
dissemination but also the convergence in Darma.

A purely random approach leads to situations where
the neighbour chosen by an agent is such that no pair p’
and a'(t) can be exchanged, but there are neighbours
satisfying such a property. Consequently, more cycles
would be required to disseminate all «. Looking at
Figure 5a, one can see that such a claim holds. Each
group of bars displays the number of cycles for dis-

seminating all o, using our checksum approach and a
purely random one. Clearly, our approach needs always
fewer cycles, thus making it more effective.

To demonstrate further effectiveness of our Epi-
demic Model, we have analyzed how the number of
cycles to deliver all « vary as system scale. As one can
see on Figure 5b, the number of cycles grows logarith-
mically, even when system scale by the hundreds. That
then shows how well Darma can perform in large-scale
systems. Time values for each cycle, however, could
not be measured appropriately, since the simulation ran
on a single machine, thus with no true parallelism.

Il checksum
Elirandom

15|
2 8
° © 10]
3 3
10
5]

100 150 200 250 300 350 400 450 0 100
number of agents

200 300 400 500
number of agents

(a) Checksum Vs. purely random (b) Cycles to deliver all

Figure 5: Results of the dissemination

4.3. Convergence

Our last experiments analyze the convergence prop-
erties of the Consensus Model. In these experiments,
we simulated systems of smaller scale so as to ease
the understanding of the plots. As we presented, it is
expected that all x%(t) converge to a specific value
when the dissemination is finished. We demonstrate
in Figure 6a that such a property holds, where each
x(t) of a system with 100 agents is plotted. Note
that, as the dissemination approaches the end, at the
10th cycle, z(t) starts to converge exponentially. At
some point, that gives way to a slower rate, giving
x%(t) a “s-shaped” form, characteristic of epidemic-
based approaches. Consequently, d’(¢) also converges
as expected, i.e. to 0, which is illustrated in Figure 6b.

Finally, we demonstrate the convergence of x’(t)
and d'(t) in face of node crashes and topology changes.
For the former, we simulated a system with 150 agents,
where one third of them crash at the 10th cycle. As one
can see in Figure 7, the convergence of x*(t) and d‘(t)
is not compromised. Then, we have simulated a system
with 100 agents where the topology changes at cycles
3, 10, 15, and 20. In each case, the topology changes
in such a way that it is completely different from the
cycle before. The results are presented in Figure §,
and again, the convergence of z‘(t) and d‘(t) is not

10 20 30 40
cycle

(a)

Figure 6: Convergence of x%(t) and di(t) for 100
agents

20

compromised. In particular, notice that z*(¢) converges
as in Figure 6a, where no topology change happened,
thus clearly demonstrating the ability of Darma to
handle situations where topology changes.

Figure 7: Convergence of x'(t) and d'(t) for 150
agents. One third of the agents crash at cycle 10

00 10 30 40 40

20
cycle

(a)

Figure 8: Convergence of x%(t) and di(t) for 100
agents, under changing topologies

5. Related Work

Many solutions for performing resource manage-
ment have been proposed. Many of them, however,
employ central servers [2][7][4]. They can perform
well, but suffer from scalability and fault-tolerance.
Distributed solutions have also been proposed. An

example are market-based approaches. However, they
either do not focus on optimization [10][11] or employ
central entities called brokers [8]. The decomposition
methods presented in [12] are another distributed so-
lution. They employ a messaging scheme relying on a
central entity, and therefore are not suitable in our case.
A truly decentralized solution is presented in [13]. This
solution is modelled differently though, in that resource
providers, and not consumers, solve the optimization
problem. Also, it is focused on server allocation,
whereas we aimed at a more general approach.

Other works in related areas include [14], where
gossiping is used to allow a set of P2P-connected
traffic limiters to control the bandwidth they use. It
does not focus on optimal allocations though. In [15],
subgradient methods are used to optimize the aggregate
of a set of agents’ cost function. The solution does not
incorporate resource constraints and network delays,
limiting its applicability in practical scenarios. In [16],
a decentralized utility maximization model is proposed,
but it focus on controlling multicasts in P2P systems.

The problem of computing In A can, indeed, be seen
as a Node Aggregation problem. From the perspective
of Darma, some solutions in this context are limited to
aggregates that do not fully fulfill our needs, e.g., AV-
ERAGE [17]. Others compute the aggregates in a very
general way [18], thus not being directly applicable
to our In A, requiring different runs of the aggregate
algorithm, in our particular case, thus affecting scal-
ability. In [19] the scalability problem seems solved;
however, the mechanisms employed for deciding when
an aggregate computation is finished do not guarantee
that the exact value will be reached. A more general-
purpose solution is presented in [20]. It is focused
on providing less precision so as to lessen messaging.
That does not suit us, since imprecise aggregates will
generate sub-optimal allocations.

6. Conclusions

In this paper we presented Darma, an approach
for managing shared resource pools in a truly decen-
tralized, adaptive, and optimal way. As we showed,
Darma is based on a set of mathematical models,
which together formalize the resource management
task. Lagrange multipliers have been used for provid-
ing decentralized optimization, whereas epidemic and
consensus models were employed for disseminating
information used when calculating the optimal shares.
All that makes Darma truly decentralized, delay and
fault tolerant, also supporting topology changes. The
addition of applications is supported, in between two

resource management processes, which, as we dis-
cussed, is sufficient for real-world scenarios.

An evaluation has been presented, demonstrating
how to use Darma to build an adaptive data center.
As we showed, only a few functions had to be pro-
vided. Extending Darma for a specific scenario is thus
straightforward. In terms of allocations, we showed
that Darma was able to deliver shares that always met
the policies of all AEs. Also, we demonstrated that the
properties for workloads, demand, and the o (t) of the
agents hold in practice. Aspects of dissemination have
also been analyzed. With that, we were able to show
not only that our checksum approach does improve the
number of cycles to deliver all «, but also that such
a number grows slowly as system size increases. The
convergence of the agents has been analyzed, demon-
strating that they do reach equilibrium, even when
facing topology changes and agents leaving the system.
Finally, as future work, we will be looking at applying
Darma to other shared resource pool scenarios, to have
an insight of how general it really is.

References

[1] J. Rolia, L. Cherkasova, M. Arlitt, and V. Machiraju,
“Supporting application quality of service in shared re-
source pools,” Commununications of the ACM, vol. 49,
no. 3, pp. 55-60, March 2006.

[2] X. Wang, Z. Du, Y. Chen, and S. Li, “Virtualization-
based autonomic resource management for multi-tier
web applications in shared data center,” Journal of Syst.
and Softw., vol. 81, no. 9, pp. 1591-1608, 2008.

[3] J. Guitart, D. Carrera, V. Beltran, J. Torres, and
E. Ayguadé, “Dynamic CPU provisioning for self-
managed secure web applications in SMP hosting plat-
forms,” Comp. Net., vol. 52, no. 7, pp. 1390-1409,
2008.

[4] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, A. Merchant, and K. Salem, “Adaptive
control of virtualized resources in utility computing
environments,” in Proc. of the 2nd European Conf. on
Computer Systems 2007. ACM, 2007, pp. 289-302.

[5] J. O. Kephart and D. M. Chess, “The vision of auto-
nomic computing,” Computer, vol. 36, no. 1, pp. 41-50,
January 2003.

[6] G. Tesauro and J. O. Kephart, “Utility functions in
autonomic systems,” in ICAC ’04: Proceedings of the
First International Conference on Autonomic Comput-
ing. Washington, DC, USA: IEEE Computer Society,
2004, pp. 70-77.

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. N. Bennani and D. A. Menascé, “Resource alloca-
tion for autonomic data centers using analytic perfor-
mance models,” in Proc. of the Second International
Conf. on Autonomic Computing. ~ Washington, DC,
USA: IEEE Computer Society, 2005, pp. 229-240.

X. Bai, D. C. Marinescu, L. Boloni, H. J. Siegel, R. A.
Daley, and I. J. Wang, “A macroeconomic model for
resource allocation in large-scale distributed systems,”
J. Par. Distr. Comp., vol. 68, no. 2, pp. 182-199, 2008.

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry,
“Epidemic algorithms for replicated database mainte-
nance,” in Proc. of the 6th annual ACM Symp. on
Principles of Distributed Computing. New York, NY,
USA: ACM Press, 1987, pp. 1-12.

P. R. Lewis, P. Marrow, and X. Yao, “Evolutionary
market agents for resource allocation in decentralised
systems,” in Proceedings of the 10th Int. Conf. on Par-
allel Problem Solving from Nature. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 1071-1080.

R. Maheswaran and T. Bagar, “Nash equilibrium and
decentralized negotiation in auctioning divisible re-
sources,” Group Decision and Negotiation, vol. 12,
no. 5, pp. 361-395, 2003.

D. Palomar and M. Chiang, “A tutorial on decomposi-
tion methods for network utility maximization,” IEEE
J. Sel. Are. Comm., vol. 24, no. 8, pp. 1439-1451, 2006.

B. Johansson, C. Adam, M. Johansson, and R. Stadler,
“Distributed resource allocation strategies for achieving
quality of service in server clusters,” in Proceedings
of the 45th Conf. on Decision and Control. 1EEE
Computer Society, December 2006, pp. 1990-1995.

B. Raghavan, K. Vishwanath, S. Ramabhadran,
K. Yocum, and A. C. Snoeren, “Cloud control with dis-
tributed rate limiting,” SIGCOMM Comput. Commun.
Rev., vol. 37, no. 4, pp. 337-348, 2007.

A. Nedic and A. Ozdaglar, “Distributed subgradient
methods for multi-agent optimization,” IEEE Trans. on
Automatic Control, vol. 54, no. 1, pp. 48-61, 2009.

M. Chen, M. Ponec, S. Sengupta, J. Li, and P. A.
Chou, “Utility maximization in peer-to-peer systems,’
in Proc. of the 2008 ACM SIGMETRICS Int. Conf.
on Measurement and Modeling of Computer Systems.
New York, NY, USA: ACM, 2008, pp. 169-180.

M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and
R. M. Murray, “Asynchronous distributed averaging
on communication networks,” IEEE/ACM Trans. Netw.,
vol. 15, no. 3, pp. 512-520, 2007.

D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based
computation of aggregate information,” in Proc. of the
44th Annual IEEE Symp. on Found. of Comp. Science.
Washington, DC, USA: IEEE Computer Society, 2003.

[19] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-
based aggregation in large dynamic networks,” ACM
Trans. Comp. Syst., vol. 23, no. 3, pp. 219-252, August
2005.

[20] M. Haridasan and R. van Renesse, “Gossip-based dis-
tribution estimation in peer-to-peer networks,” in Proc.
of The 7th Int. Work. on Peer-to-Peer Syst., 2008.

