
HAL Id: inria-00323226
https://inria.hal.science/inria-00323226v1

Submitted on 4 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Adaptation Applied to Sabotage Tolerance
Serge Guelton, Thierry Gautier, Jean-Louis Pazat, Sébastien Varette

To cite this version:
Serge Guelton, Thierry Gautier, Jean-Louis Pazat, Sébastien Varette. Dynamic Adaptation Applied
to Sabotage Tolerance. [Research Report] RR-6659, INRIA. 2008. �inria-00323226�

https://inria.hal.science/inria-00323226v1
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

1
2

3
4

5
--

F
R

+
E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Dynamic Adaptation Applied to Sabotage Tolerance

Serge Guelton — Thierry Gautier — Jean-Louis Pazat — Sébastien Varette

N° 12345

2008 September

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Dynamic Adaptation Applied to Sabotage

Tolerance

Serge Guelton∗ , Thierry Gautier† , Jean-Louis Pazat∗ , Sébastien

Varette‡

Thème NUM — Systèmes numériques
Équipes-Projets Paris and Moais

Rapport de recherche n➦ 12345 — 2008 September — 14 pages

Abstract: Distributed computing platforms contribute for a large part to
some of the most powerful computers. Such architectures raise new challenges,
typically in terms of scheduling, adaptability and security. This paper addresses
the issue of result-checking in distributed environments, where tasks or their
results could have been corrupted due to benign or malicious acts. Using a
macro-data flow representation of the program execution, this article presents
a novel approach based on work-stealing scheduling to dynamically adapt the
execution to sabotage while keeping a reasonable slowdown rate. Unlike static
adaptation or adaptation at the source code level, a dynamic adaptation at the
middleware level is proposed, enforcing separation of concepts and programming
transparency. This article contains both conceptual and experimental results
that show the interest, feasibility and limits of the concept.

Key-words: Dynamic adaptation, work-stealing, sabotage tolerance

∗ Paris research team, Rennes University, France Email: Firstname.Lastname@irisa.fr
† Moais research team, LIG Laboratory, France Email: Thierry.Gautier@imag.fr
‡ CSC research unit, University of Luxembourg, Luxembourg Email: Se-

bastien.Varrette@uni.lu

Adaptation Dynamique appliquée à la tolérance

aux fautes

Résumé : Les plateformes de calcul distribué contribuent dans une large pro-
portion à la plupart des machines de calcul les plus puissantes. De telles architec-
tures font apparâıtre de nouveaux défis, typiquement en termes d’ordonnancement,
d’adaptabilité et de sécurité. Ce document répond au problème de vérification
des résultats en environnent distribué, où les tâches ou leurs résultats peuvent
être corrompus suite à des attaques ou des erreurs. Grâce à une représentation
de l’exécution du programme sous forme de graphe de flot de données, l’article
présente une approche novatrice basée sur un ordonnancement par vol de tâche
pour adapter dynamiquement l’exécution à la falsification de résultats tout en
conservant une perte de performance raisonnable. Contrairement aux méthodes
d’adaptation statique ou au niveau du code source, une adaptation dynamique
au niveau de l’intergiciel est proposé, offrant ainsi une bonne séparation des
concepts et une plus grande clarté de programmation. L’article contient à la
fois des aspects théorique et des résultats expérimentaux qui montrent l’intérêt,
la faisabilité et les limites du concept proposé.

Mots-clés : Adaptation Dynamique, vol de tâches, tolérance aux fautes

Dynamic Adaptation Applied to Sabotage Tolerance 3

1 Introduction

Large scale computing systems such as grids and peer-to-peer computing plat-
forms gather thousands of resources for executing parallel applications. Even if
a middleware is used to secure the communications and to manage the resources,
the computational nodes operate in an unbounded environment and are subject
to a wide range of attacks able to alter the computed results [?, ?]. Such attacks
are especially of concern due to Distributed Denial of Service (DDoS), virus or
trojan attacks, and more generally orchestrated attacks against widespread vul-
nerabilities of a specific operating system. Corruption of computed results,
called sabotage or cheats in the literature, remains a fundamental issue for par-
allel executions as a potentially large part of the computation can be lost just
because it operates on inputs that have been altered. It should be reminded
that this is not purely fiction: whether the attacks conducted to alter results are
the consequences of a malicious act or not, they still have been experimented in
SETI@Home [?, ?] or more recently in BOINC [?].

The presence of saboteurs in grid computing systems is well-known and leads
to result-checking algorithms. Many countermeasures have been proposed in
literature [?, ?, ?, ?, ?]. Yet, to find wrong results created by lazy participants
or malicious cheaters, the only generic approach relies on tasks duplication,
either total or partial. This scheme generally assumes the execution domain
to be partitioned in two area R (resp. U), each having trusted/reliable (resp.
untrusted/unreliable) resources (see fig 1). The first kind of resources is used to
conduct safe re-executions (i.e. duplications) on verifiers in order to certify i.e.
build a trust level on the results computed over the second kind of resources.

INTERNET

user

Checkpoint Server

Reliable Resources

R

Verifiers

Distributed Computing platform

WorkersU

Unreliable Resources

Figure 1: Configuration of a computing platform able to handle both the execution
of a parallel program and its certification [?].

In [?], a set of certification algorithms based on partial task duplication
and macro data flow analysis have been proposed to tackle the issue of massive
attacks in which the number of corrupted results exceed a given threshold.

Currently, the proposed approach suffers two problems:

❼ it requires a deep integration with user code, thus not offering good pro-
gramming transparency;

❼ the user must find a good balance between the number of certification
nodes, the slowdown rate and the quality of the certification.

RR n➦ 12345

4 Serge Guelton , Thierry Gautier , Jean-Louis Pazat , Sébastien Varette

The work presented in this paper extends such approaches and describe an
integrated sabotage-tolerance mechanism which does not suffer the first issue,
and delegates the resolution of the second to a decision tool. More precisely,
our proposal makes use of the work-stealing scheduling based on macro-data
flow analysis implemented in the kaapi middleware [?] to adapt the task flow
through the dynaco framework [?].

The article is organized as follows. Section 2 briefly recall related works
while sections 3 and 4 describe the two underlying tools used in our approach,
namely kaapi and dynaco . In particular, we will see in section 5 why kaapi

suits well to dynamic adaptation through the use of particular adaptation point
[?]. This will lead to the definition of a novel certification approach called
Thief Induced Certification. Afterwards an implementation of an adaptation
framework for task based parallelism is described in section 6, followed by some
experimentations in section 7. Section 8 will finally conclude and propose some
opening for future works.

2 Related works

This paper is at the crossroad of three fields: dynamic adaptation, sabotage-
tolerance and work-stealing based distributed computing.

2.1 Dynamic adaptation

Adaptation of existing software is a well known concern. The goal is to give a
program the ability to react to change of its environment. Dynamically adapting
distributed programs goes a step further, for you may need to guarantee a kind
of synchronization between adaptations.

❼ Buisson & al. in [?] focuses on the analysis of the adaptation scheme.
They validated their approach on both sequential and parallel programs,
but gave no clue concerning how to manage coordination between adapted
nodes.

❼ Camara & al. in [?] tackles the interest of Aspect Oriented Programming
(AOP) to manage dynamic adaptation.

❼ Truyen & al. in [?] view dynamic adaptation as a set of dynamic aspect
weaving. Enforcing the need for coordination support, they provide a
protocol for coordinated reconfiguration.

Nevertheless, these solutions all rely on dynamic aspect weaving to insert
interceptors inside user code. Aspect weaving support has reach industrial level
for a long time for the Java language, but is still incomplete for C++. As-
pectC++ [?] does not support template code, and its dynamic weaving func-
tionality is not implemented yet. DAC++ [?] is another aspect weaver for C++
that supports dynamic weaving, as well as network aspects. Yet its weaving
capabilities are also limited to a subset of object oriented features of the C++
language. As a consequence, AOP does not seem to be the right way to go to.

INRIA

Dynamic Adaptation Applied to Sabotage Tolerance 5

2.2 Sabotage tolerance

As mentioned in the introduction, distributed computations are subjected to
various attacks, some of them corrupting intermediate results. Two comple-
mentary strategies could then be used:

1. preventing a priori the forgeries by making them more difficult to per-
petrate. This can be achieved by reinforcing the global security of the
architecture using for instance quotas on CPU/memory, firewalls, sand-
boxing techniques, monitoring, etc. It is also possible to check formally
the correctness of the program before the execution [?], typically through
Proof-Carrying Codes [?] or an assembly language like TAL [?]. Yet, this
approach is still expensive and does not increase the reliability of the com-
puted results in distributed environment where the computing resources
cannot be fully trusted;

2. controlling a posteriori the output of the tasks by evaluating their cor-
rectness. This article focus on this strategy and a brief state-of-the-art
relative to this approach is now provided.

At first, one can check the program behavior for some well-known input/output
pairs [?] as in classical challenge/response procedures. One issue is then to
maintain the diversity on the challenge tasks such that this mechanism cannot
be fouled by a clever attacker able to recognize them.

Another field of research is dedicated to property checking [?] derived from
the notion of simple checkers introduced in [?]. The idea is that for some prob-
lems, the time required to carry out the computation is asymptotically greater
than the time required to determine whether or not a given result is correct.
This is possible thanks to a post-condition the output have to conform. If this
approach remains very simple and elegant, it is often impossible to automatically
extract such post-condition on a program.

Generic approaches are based on duplication. At this level, previous works [?,
?] consider successive batchs composed of n independent tasks. Under those hy-
pothesis, two mechanisms are proposed in the literature:

❼ Germain & al. in [?] try to certify as soon as possible the quality of the
batch in the framework of statistical testing. More precisely, a probabilis-
tic test based on sequential analysis is proposed to certifies the batch in
an adaptive way, without unduly eliminating results which are actually
correct and with a relatively low cost (defined as the number of calls to
oracles, the entity used to re-execute tasks).

❼ Sarmenta in [?] enforces the batch quality by making the falsification prob-
ability lower than the tolerance threshold δ of the application. Concepts
like voting, spot-checking, blacklisting or credibility-based fault-tolerance
are then applied to decrease iteratively the error rate of the batch.

Both approaches are limited to the restricted context of independent tasks with
a modeling of attacker behavior. Probabilistic techniques for direct certification
have been extended to any parallel computation with potentially dependent
tasks in [?, ?, ?, ?]. In addition, no particular assumption on the attack nor
on the distribution of errors have been made by the authors which make the

RR n➦ 12345

6 Serge Guelton , Thierry Gautier , Jean-Louis Pazat , Sébastien Varette

certification algorithms particularly attractive. Proposed algorithms relies on a
portable representation for the distributed execution of a parallel program over
fixed inputs: a bipartite Direct Acyclic Graph G = (V, E) known as a macro-data
flow graph. More precisely, the MCT algorithm (Monte Carlo Test) that makes
use of the graph to certify efficiently applications composed of independent tasks.
Dependencies issues are tackle by the EMCT algorithm (Extended Monte Carlo
Test) and its variant. A precise cost analysis of the certification algorithms
assuming an on-line scheduling by work-stealing has been done in [?], proving
the low overhead induced by the result-checking for specific classes of graphs
(and therefore of programs), namely trees and Fork-Join graphs. We will have
the opportunity to reuse those results in this paper.

2.3 Dynamic scheduling by work-stealing

To support efficiently the execution of fully-strict series-parallel programs [?],
we assume the execution engine to implement an on-line scheduling by work
stealing following the work-first principle. The principle is simple. Each proces-
sor serially executes the tasks it has locally created according to a depth-first
order. When a processor becomes idle, it steals the oldest ready task (breadth
first order) on a non-idle processor which is randomly chosen in general. This
approach is implemented by the parallel programming interfaces Cilk [?, ?] and
kaapi [?]. In particular, kaapi supports processors with changing speeds
and volatility [?]. As we use this last middleware for our implementation, more
details about kaapi will be given in section 4.

Following [?, ?], we assume a bounded ratio between the fastest and the
slowest participating processors of the computing grid. Let Π and Πtot be
respectively the average speed (number of unit operations per second) per pro-
cessor and the total average speed (e.g., assuming np processors, Πtot = npΠ).
Let W1 be the total work (number of unit operations) of the parallel program
to execute and W∞ its depth (maximal number of unit operations on a critical
path) on an unbounded number of processors. Then, from Theorem 6 in [?],
the program is scheduled with high probability in time

T ≤
W1

Πtot
+ O

(

W∞

Π

)

This paper combine the three domains presented in this section to propose
a concrete framework that integrate transparently certification algorithms. To
our knowledge the combination of these three fields has not been studied yet.

3 Dynaco

Adaptation is a fuzzy concept : it is more or less admitted that an adaptation is
the possibility to react to an event, self generated or not. For example, adding
or removing nodes during a parallel run in order to increase the computation
efficiency or to stop suspicious nodes is an adaptation. In the following, we
will consider such adaptations. The change needed to give adaptable aspect
to a program are not easy to formalize. J. Buisson proposes in [?] a model
for adaptation of distributed components. This model is bundled with a Java

INRIA

Dynamic Adaptation Applied to Sabotage Tolerance 7

Figure 2: model of the adaption process

Decider

Event Strategy

Planner

Plan

Executor

Policy Guide

≪consume ≫ ≪consume≫ ≪consume≫

≪create ≫ ≪create≫

User

Framework

User

framework based on the Fractal component model and its Julia implementa-
tion [?]. It helps to add adaptation capabilities to a program while keeping the
adaptation code segregated from the user code. He introduces the concept of
adaptation points, particular places in the program where an adaptation can be
performed. The binding between user code and adaptation code is held in these
particular points, often through the use of aspect weaving techniques. Figure 2
summarize the steps involved during adaptation:

1. an Event is generated by a probe, for example “node A failed to answer
our challenge”;

2. a Decider receives event and make decision;

3. a Strategy is issued by the Decider , for example “banish node A”;

4. a Planner planify the action for a Strategy;

5. a Plan is issued by the Planner, for example “stop the whole computation,
then blacklist the IP of A and restart”;

6. an Executor executes the actions from the plan back to the adapted com-
ponent.

The Decider and Planner are dependent from the adaptation and provided
by the user as Policy and Guides, while the adaptation engine is provided by
the dynaco framework. Link between the framework and the user code is done
during the component assembling.

4 Kaapi

kaapi stands for Kernel for Adaptive, Asynchronous Parallel and Interactive
programming. It is a middleware implemented as a C++ library that let user run
programs described as Direct Acyclic Graph (DAG)s – a set of tasks and data
dependencies. kaapi uses this description to schedule the user tasks with respect
to data dependencies using a work-stealing algorithm [?]. More accurately, each
computing node owns a set of thread, each of which has a local dequeue of
tasks. Data dependencies are given as different access rights that a task can
take to variables put in the shared memory. Load balancing is done via the
steal algorithm: when the dequeue of a thread is empty, it performs a local steal

RR n➦ 12345

8 Serge Guelton , Thierry Gautier , Jean-Louis Pazat , Sébastien Varette

Figure 3: remote steal sequence

#include <athapascan−1>

void sum(shared r int res1 ,
shared r int res2 ,
shared w int r e s)

{ r e s = re s1+re s2 ; }

void f i b o n a c c i (int n , shared w int r e s)
{
i f (n < 2) r e s = n ;
else {

shared int r e s1 ;
shared int r e s2 ;
fork f i b o n a c c i (n−1, r e s1) ;
fork f i b o n a c c i (n−2, r e s2) ;
fork sum(res1 , res2 , r e s) ;

}
}

request on local threads, followed by a remote steal request on other node in
case of failure. For recursive algorithms with good data locality, this scheduling
proves to be efficient[?]. One advantage of this algorithm is that nodes only
communicate data through the steal operation. When a task is stolen, the
input data are transfered , and when the stolen task ends, the output data are
written back. This property will be further used in section 5.

Figure 3 shows a sample code written in the Athapascan language. fork s
are used to spawn new tasks and shared s are used to put data in the shared
memory where they can be accessed with various right.

5 Thief Induced Certification

In this section, we will show how dynaco and kaapi can be used to add cer-
tification via replication to a parallel program. In section 4 we showed that
the steal method is the only kind of communication between nodes. In section
3 we pointed out the need for adaptation points. Indeed the steal methods is
the right place to insert replication: as long as the execution is performed on
a trusted node, there is no need for replication, but as soon as a steal request
comes from a potentially malicious node, replication should occur.

Using the low level Application Programming Interface (API) of kaapi , we
directly transform the DAG to add both replication and certification. The steal
scenario is modified as described in figure 4.

Using the introspection API of kaapi , we only duplicate tasks that write
into shared memory, other are needless to check. Note that we make sure that
the duplicated task and the certification task are not stealable: they will only
be executed on a trusted node.

INRIA

Dynamic Adaptation Applied to Sabotage Tolerance 9

remote steal sequence remote steal with certification sequence

s t e a l r eque s t
f i nd ready task in v ic t im
atomica l l y s e t task to

s t o l e n
copy task to t h i e f

. . .

s t e a l r eque s t
f i nd ready task in v ic t im
atomica l l y s e t task to

s t o l e n
copy task to t h i e f
dup l i c a t e task in v ic t im
add c e r t i f i c a t i o n task in

v ic t im

Figure 4: modifying remote steal sequence

Figure 5: data flow graph transformation

Task Task

Cloned

task

Certification

Task

The transformation is summarized in figure 5. This transformation is done
using the reification [?] of the steal method: the changes of the middleware are
deported to the user level. This would still require some code snippet inside user
code, so we added a module loader to load the reification module at runtime.
Thanks to these mechanisms, the adaptation point can be inserted without
modifying a single line of code neither in the user program nor in the middleware,
achieving our first objective.

The remaining problem is that if we make the duplication each time a task
is stolen, the execution time will be greater than the sequential time, each task
being executed once on the trusted node. Consequently, as proposed in [?], we
use and compare several certification techniques: this will be the core of our
adaptation for the sabotage-tolerance aspect.

6 Sketch of the adaptation

Considering a parallel run, we again assume two execution area : the trusted one
R where the computation can be reliably and safely done, and the untrusted area
U where some computation can be corrupted. In the sequel, we still assume that
nodes never falsify their identity. The program execution over kaapi is located
in both area, while the dynaco - based certification engine is located in the

RR n➦ 12345

10 Serge Guelton , Thierry Gautier , Jean-Louis Pazat , Sébastien Varette

trusted area. All communication between the trusted and untrusted area are
done through the steal method, and require the acknowledgment of the certifier.

Each time a steal begins, the certifier is called, and depending on its current
state, it requires the certification of the stolen task. The steal proceeds and
the certification is done in parallel (depending on available resources). If the
certification succeeds a success event is sent and proceeded by the certifier. If
the certification fails, the whole computation is stopped. The study of the more
complex recovery mechanisms involving checkpointing is beyond the scope of
this article.

We have implemented the routines to automatically add certification tasks
into the data flow graph, the certifier and the steal reification. Therefore the
result-checking process is kept transparent to the user. Several certification
scenarii have been considered. They are now described.

6.1 k-check-never

In this model, The descision framework is asked for the need of certification, but
it will always reply unfavorably. It is used as a witness experiment for further
models.

6.2 l-greylisting

In this model, untrusted nodes computations are considered reliable only after
a fixed number of success, namely l.

6.3 Monte-Carlo Test

Finally, it is possible to apply the certification algorithms Monte-Carlo Test
(MCT) mentioned in section 2.2. The main idea is to randomly check tasks
among those of the DAG. As given in [?], the number of checks only depends
on the error probability the user is ready to accept together with the minimal
number of sabotage assumed (in fact, the ration between this number and the
total number of tasks)

In all cases, using the ability to easily modify the deployment descriptor
of dynaco , we experimented these simple certification strategies. Results are
presented in next section.

7 Experiments

The following graph shows the performance impact of the certification using
various strategies. The experimentation domain is grid5000 with up to 100
nodes connected to perform the computation. The test program, shown in
figure 6 is a simple, one level fork-join loop with various certification strategies.
All communication between the user program (in c++) and the certifier (in
Java) are done through a CORBA bus.

As we can see in figure 7, such an application do not suffer from the central-
ization of steal request. It is mainly due to the fact that only calls to certification
nodes are caught. We also see that using a single certification nodes make the
critical path on this node much longer, thus decreasing performances.

INRIA

Dynamic Adaptation Applied to Sabotage Tolerance 11

#include <athapascan−1>

void compute (int i , shared w int r e s)
{ r e s = some func (i) ; }

void pr in t (int i , shared r int r e s)
{ std : : cout << ” i : ” << r e s << std : : endl ; }

/✯ . . . ✯/
for (int i =0; i< n ; i++)
{

shared int r e s ;
fork compute (i , r e s) ;
fork pr in t (i , r e s) ;

}

Figure 6: simple fork join program

Figure 7: comparison of various certification strategies

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60

co
m

p
u
ta

ti
o
n
 t

im
e

number of cpu

no adaptation
never check

always check
greylist (2)
greylist (3)

RR n➦ 12345

12 Serge Guelton , Thierry Gautier , Jean-Louis Pazat , Sébastien Varette

Figure 8: influence of the certification rate in MCT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 5 10 15 20 25 30 35

co
m

p
u

ta
ti

o
n

 t
im

e(
s)

number of cpu

q=0.5
q=0.25
q=0.1

q=0.05

A more interesting decider uses a MCT guide, with pre-defined certification
rate. In our configuration, if we neglect communication time and if Ttask denotes
the execution time of a single task, Nworker the number of worker (including the
certifier), Ntask the number of independent tasks and q the certification rate,
we get equation 1 for the certification time Tcertif and equation 2 for execution
time Texec.

Tcertif = Ttask ∗ Ntask ∗ q (1)

Texec = Tcertif + max(0, Ntask ∗
1 − q ∗ (Nworker − 1)

Nworker

) (2)

This guide has been inserted in the Dynaco framework to achieve results
given in figure 8 that confirms the equation 2.

The MCT guide itself could be adapted in such a way that the certification
rate would vary during execution.

8 Conclusions

In this article we presented a methodology to add adaptable sabotage-tolerance
aspect to a distributed program. Through the use of adapted tools, we achieved
the separation of concerns, segregating the user code, the adaptation and the
adaptation point in three different entities. As a result, though a large panel of
technologies is used, a reusable set of tools and libraries make further develop-
ment easier.

Despite its adaptability, we still found limitations in the kaapi middle ware,
for it offers no support for secure authentication: a node is identified by its
global id, a single number, and this is easily falsified.

INRIA

Dynamic Adaptation Applied to Sabotage Tolerance 13

Future development could be the modification of the certification technique
to provide election: instead of making only one local clone of the stolen task,
you prepare n clones that are not flagged as local. The certification tasks are
then replaced by election tasks, taking n values as input and outputting the
elected value. These tasks would still to be executed on a trusted node.

RR n➦ 12345

14 Serge Guelton , Thierry Gautier , Jean-Louis Pazat , Sébastien Varette

Contents

1 Introduction 3

2 Related works 4

2.1 Dynamic adaptation . 4
2.2 Sabotage tolerance . 5
2.3 Dynamic scheduling by work-stealing 6

3 Dynaco 6

4 Kaapi 7

5 Thief Induced Certification 8

6 Sketch of the adaptation 9

6.1 k-check-never . 10
6.2 l-greylisting . 10
6.3 Monte-Carlo Test . 10

7 Experiments 10

8 Conclusions 12

INRIA

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

❤tt♣✿✴✴✇✇✇✳✐♥r✐❛✳❢r

ISSN 0249-6399

	1 Introduction
	2 Related works
	2.1 Dynamic adaptation
	2.2 Sabotage tolerance
	2.3 Dynamic scheduling by work-stealing

	3 Dynaco
	4 Kaapi
	5 Thief Induced Certification
	6 Sketch of the adaptation
	6.1 k-check-never
	6.2 l-greylisting
	6.3 Monte-Carlo Test

	7 Experiments
	8 Conclusions

