
Memory Hierarchy Design for a Multiprocessor Look-up Engine

Jean-Loup Baer, Douglas Low, Patrick Crowley, Neal Sidhwaney
Department of Computer Science and Engineering

University of Washington�
baer,douglas,pcrowley � @cs.washington.edu

Abstract

We investigate the implementation of IP look-up for core
routers using multiple microengines and a tailored memory
hierarchy. The main architectural concerns are limiting the
number of and contention for memory accesses.

Using a level compressed trie as an index, we show the
impact of the main parameter, the root branching factor,
on the memory capacity and number of memory accesses.
Despite the lack of locality, we show how a cache can re-
duce the required memory capacity and limit the amount of
expensive multibanking. Results of simulation experiments
using contemporary routing tables show that the architec-
ture scales well, at least up to 16 processors, and that the
presence of a small on-chip cache increases throughput sig-
nificantly, up to 65% over an architecture with the same
number of processors but without a cache, all while reduc-
ing the amount of required off-chip memory.

1 Introduction

To reduce cost and improve flexibility, modern network-
ing equipment is built around network processors (NPs) –
a new class of commodity, software-based microprocessor.
The design requirements for NPs are demanding: they must
support diverse functionality in a wide range of network en-
vironments. In this paper, we focus on the problem of sup-
porting the longest prefix match (LPM) algorithm at high
speeds with a network processor. One important application
of this task – and the one used to motivate this paper – can
be found in core Internet routers, where LPM is used in IP
packet look-up to match destination addresses with a large
number of forwarding rules. IP look-ups have often been
studied, but a number of novel considerations arise when
they are implemented on NPs, namely their multiprocessor
nature and the design of their memory hierarchy.

Conceptually, IP packet look-up is the process of search-
ing a forwarding table for a rule (an entry in the table) for
which there is a match between a packet’s destination ad-

dress and a destination address entered in the table. If it
were not for the large sizes of the tables (tens of thousand
entries), this matching problem would be simple. For exam-
ple, one could use hashing if all possible Internet addresses
(32-bit strings for IPv4, 128-bit strings for IPv6) were en-
tered in the table. In practice this is not possible since such
tables would have billions of entries, the great majority of
which would not be relevant. Furthermore, IP networks are
addressed hierarchically, so one bit-string prefix, and hence
one routing rule, can often be used for all hosts within an
organization or subnet. Thus, what is stored in forwarding
tables is a set of prefixes and associated output ports. The
look-up process requires a longest prefix match (LPM).

Forwarding imposes stringent requirements on core
routers, where packet arrival rates are high. Assume, as
an example, that we would like to process 1 Million pack-
ets per second, i.e., one packet must be forwarded in 1 mi-
crosecond. Any software-based solution on a general pur-
pose processor can barely meet this speed constraint if the
forwarding table is large since a single access to the mem-
ory where the table is stored will take over 50 ns and sev-
eral memory accesses, to the table and/or some large in-
dexing structure, will be necessary. Conventional cache-
based solutions are of limited use because of the total lack
of spatial locality and short-lived temporal locality of in-
coming packet addresses. Therefore, network processors
used for forwarding must include engines and a memory
system tailored to the search process while retaining some
programmability for performing other functions.

One of the saving factors is that packets can be forwarded
independently of each other [3]; in fact, network processors
such as Intel IXP and IBM Power NP, are organized as on-
chip multiprocessors of microengines to exploit this situa-
tion. Therefore several microengines can be dedicated to
forwarding tasks in order to increase forwarding through-
put. However, the drawback is that the index, in our case
a variant of a compressed trie called a level-compressed
trie (LC-trie), will be accessed by several processes con-
currently and the resulting contention must be reduced as
much as possible.

We can summarize both the novelty and the challenges of
implementing IP look-ups on a commercial NP: to provide
a memory system that allows multiple processors, or micro-
engines, to concurrently access a globally shared trie-based
index structure. In this paper, the reduction in the number
of contention for memory accesses will be achieved in two
ways: caching since the levels of the trie closest to the root
are accessed most frequently and thus exhibit some limited
form of locality and multibanking to allow concurrent ac-
cesses to the memory holding the LC-trie.

The rest of this paper is organized as follows. In Section
2 we give a short introduction to IP look-ups in the context
of large routing tables and review how the longest prefix
matching problem can be solved using an LC-trie [10]. In
particular we show the impact of a key parameter of the data
structure, namely the root branching factor, bf. As bf grows,
so does the size of the LC-trie. On the other hand, the av-
erage number of memory accesses decreases with a larger
bf. We show how a cache, even with a low hit-rate, can re-
duce the need for a large capacity LC-trie without adversely
affecting the number of memory accesses.

In Section 3 we describe a multiprocessor architecture
and memory hierarchy for the mapping of the LC-trie, the
forwarding table, and ancillary data structures. We provide
an initial analysis of the impact of multibanking the memory
holding the LC-trie.

In Section 4 we present experimental results obtained via
trace-driven simulation. We vary the factors that can in-
fluence throughput, namely those related to the data struc-
ture (branching factor), to the parallelism in the architec-
ture (number of microengines), and to the memory hierar-
chy (latency, caching, and multibanking). In the absence of
a cache, the largest branching factor yields the best through-
put. This throughput is limited by the number of memory
banks when the memory latency is large but this effect is not
as visible for low memory latencies. In general, through-
put increases almost linearly with the number of processors
until contention to memory becomes important. When a
cache is present, the branching factor does not need to be
as large since hits in the cache produce two complementary
effects: faster access to the part of the index that is cur-
rently cached and and reduced contention for the part that
is not. With large memory latencies, the throughput is prac-
tically independent of the branching factor and superior to
the best throughput obtained without a cache. When mem-
ory and compute times are balanced, the cache impact is
less dramatic but still yields improvements in throughput.
Moreover, with caching both the size of the LC-trie and the
number of memory banks can be reduced without affecting
adversely the throughput.

In Section 5 we review previous work in this area and in
Section 6 we summarize the results and suggests areas of
further study.

2 IP Look-up using LC-trie indexing

The longest prefix match problem within the context of
general-purpose processors acting as routers has been thor-
oughly researched. The problem is characterized by:

� The forwarding tables mapping destination addresses
and output ports are large, say from 10,000 t0 100,000
entries, but they are small compared to the number of
possible entries (

�����
for IPv4 and

������	
for IPv6).

� There is no spatial locality in the accesses to these ta-
bles and temporal locality (access to same addresses)
is short-lived.

� The distribution of the length of “longest prefixes” is
heavily skewed with most of the prefixes being be-
tween 14 and 24 bits [9] with peaks at 16 and 24 bits
for historical reasons, namely the IP scheme of classi-
fication into A, B, and C subnets [12].

� Search for a match occurs at least two orders of mag-
nitude more frequently than insertions/deletions.

� IP look-up must be done at wire speed thus any so-
lution employing a programmable device must have a
limited number of off-chip memory accesses.

� IP look-up is the bottleneck in the pipelined process of
forwarding a packet to its next destination.

The size of the tables and the performance constraints pre-
clude direct searches in the forwarding tables. Instead,
search in an indexing structure such as a trie is commonly
used. The trie is searched for a given string and upon a
successful match yields a pointer to an entry in the forward-
ing table. All the techniques (see [15] for an excellent sur-
vey) share some common features such as prefix expansion
and level compression that are reviewed next. They dif-
fer, among other criteria, in the internal representation of
the data structures and the choice of the selection of lev-
els in the compressed tries. We choose to concentrate on
one particular data structure, namely LC-tries (LC stands
for Level Compressed) [10], because it is rather simple to
construct and can be easily modified from IPv4 to IPv6 ad-
dresses. (In this paper, our experiments will only be con-
ducted with IPv4 addresses.) The conclusions that we reach
for the efficient utilization of LC-tries should also be cor-
rect for other compressed tree implementations because the
latter are based on the same basic structures.

2.1 Level Compressed Tries (LC-tries)

As mentioned above, a basic data structure to represent
strings for efficient storage and retrieval is the trie. In the
case of binary strings, like Internet addresses, the trie be-
comes a binary tree. Strings are stored at the leaves and the
value of the string is the value of the path used to reach it,
with 0 (1) being the value of a traversal of the left (right)

pointer of a node. While binary tries are attractive for their
simplicity, they yield search times involving a number of
comparisons, and hence of memory accesses, equal in the
worst case to the length of the string (32 for IPv4). This
is unacceptable performance-wise and the two techniques
presented below have as their goal to reduce the number
of these comparisons. We will illustrate them with the for-
warding table shown in Figure 1 (a) along with its binary
trie. Notice that we have removed the entry correspond-
ing to P5 which is a prefix of P6. This is to facilitate the
LPM process and avoid backtracking in the trie. The justifi-
cation is that updates to the forwarding tables are relatively
infrequent, and therefore the tables can be preprocessed and
strings that are prefixes of other addresses can be removed
and stored in a prefix table. In our example, the forwarding
table entry for P6 will have a link to the prefix table entry
containing P5. Measurements on existing tables [8] show
that prefix tables contain fewer than 10% of all entries.

The first technique to reduce the number of LC-trie com-
parisons is path compression, a technique derived from Pa-
tricia tries [6]. We remove from the trie any internal node,
say A, that has a single child. The skip value [10], i.e., the
number of internal links that have disappeared, is stored in
either the first node with 2 children or the leaf (whichever
comes first) on the path below node A. The path compressed
trie of the trie of Figure 1 (b) is shown in Figure 1(c)

The second technique is level compression. Instead of a
node having 2 children, we let it have

���
children, where�

is called the branching factor. For example, with
��� �

the 4 children of the root will be those reached by strings
“00*”, “01*”, “10*” and “11*” respectively as shown in
Figure 1 (d). In most cases though, some of these children
might not exist in the original trie. However we can have
several nodes in the trie pointing to the same entry in the
forwarding table if they correspond to strings with the same
longest prefix. We can therefore perform a prefix expansion
replacing internal nodes with one child by internal nodes
with 2 children and so on depending on the branching factor.
We expand each node to cover a different number

���
of

children, ensuring the expansion will yield less than � �����
	������ empty leaves, where is called the fill factor.

2.2 LC-tries for forwarding tables

The indexing structure that we will consider, a variant of
LC-tries, will use:

� Prefix expansion at the root. This expansion is justified
by the fact that very few prefixes are of length less than
14. How to choose the branching factor of the root is
part of the tuning process.

� Path compression and level compression. We will use
a fill factor of 0.5 as suggested in [10] (we experi-
mented with values of between 0.25 and 0.75 and

found little difference in the metrics discussed below).

In addition to the LC-trie, the data structures involved in the
forwarding process are:

� The forwarding table. Each entry in the table consists
of a prefix, its length (to check the correctness of the
match), an output port number, and a pointer (possibly
null) to the prefix table. For IPv4, a possible imple-
mentation could be: 4 bytes for the prefix, 1 byte for
the prefix length, 1 byte for the port number (allow-
ing 256 output ports), and 2 bytes for the pointer to
the prefix table, i.e., 8 bytes per entry. Even for large
forwarding tables, this represents less than 1 MByte.

� The prefix table is a set of linked-lists, each linked-list
corresponding to prefixes of one particular forwarding
table entry. For each element of a linked-list, an entry
consists of: the length of the string (1 byte), the output
port number (1 byte), and a pointer, possibly null, to
the next entry in the list (2 bytes). Thus each entry is 4
bytes. If we assume that at most 10% of the forward-
ing table has to be stored in the prefix table, the latter
should be less than 50 KBytes.

The LC-trie itself will be built starting from the forwarding
table that will need to be sorted beforehand. The LC-trie
is represented as an array corresponding to a breadth-first
traversal of the trie. Each element of the array has the fol-
lowing fields that fit within 4 bytes:

� The branching factor ��� of the node; ��� ���
indicates

a leaf (5 bits)
� The skip value (5 bits which is sufficient for IPv4)
� A pointer. If ��������

, the pointer is the index in the
array of the leftmost child of the node. This pointer is
restricted to 22 bits thus limiting the branching factor
to be 21. If ��� ���

, the pointer points to an entry in
the forwarding table and 21 bits allows for 2 million
entries, an order of magnitude more than needed.

The number of nodes in the LC-trie depends principally on
the branching factor at the root and to a much lesser degree
on the fill factor and the number of skip values.

A root branching factor of
�

compares the first
�

bits of
the IP address with the prefixes of length

�
in a single access

to the trie. Thus the number of comparisons to find the LPM
will decrease with a larger

�
. However, this comes with a

significant increase in the number of nodes at the first level
of the trie. For example, with the the above implementation
constraints of a 4 byte LC-trie node, if we were to choose
the largest branching factor of 21, the first level would have
about 2 million nodes, two orders of magnitude more than
the number of entries in the forwarding table. Clearly, a
large proportion of these nodes will never be accessed.

0 1

0 1

P2

0 1

P1

1 1

0

0 1

P4P3

1

1

P6

(b) Trie corresponding to the Forwarding Table

0 1

0 1 0 1

0 1P2P1

P3 P4

P6

skip = 1 skip = 2 skip = 2

(c) Path compressed trie

P1 001
P2

P4
P3

P5
P6

01
10100
10101
11
1111

Rule name Prefix

(a) Forwarding Table

P2P1 0 1

P3 P4

P6

skip = 2skip = 1 skip = 2

1000 01 11

root branching factor = 2

(d) Level Compressed trie

Figure 1. Forwarding table and corresponding binary trie

In Table 1, we show how the
� �

nodes of the first level
are divided into the 4 categories: exact matches (i.e., num-
ber of rules of length

�
), prefixes (i.e., there are rules of

length greater than
�

having prefixes of size
�

), nodes that
are prefix expansions, and nodes that do not correspond to
any rule at all. The data is for a Mae-West table from Jan-
uary 1st, 2002 [8] with 26664 entries (1862 entries that are
prefixes of one or more of these entries have been removed
as explained earlier) with the root branching factor

�
vary-

ing from 8 to 16. We also show the total number of nodes
in the LC-trie. As can be seen, there is no rule of prefix less
than 8 (no expansion at

� � �
) and the number of unused

nodes grows exponentially (in fact more than doubles with
every increment of

�
), reaching 88% of the first level and

more than 50% of the total trie size at
� � 	��

. In order
to keep a reasonable size for the LC-trie, we will limit our
experiments with

�
between 8 and 16.

In Figures 2 and 3 we show the influence of the branch-
ing factor on the average number of memory accesses per
packet. We use the same table and two synthetic traces of
1 Million packets, RandIP (Figure 2) and RandNet (Fig-
ure 3), that will be described in Section 4. As expected the
number of memory accesses decreases with the branching
factor, with savings in the average number of memory ac-
cesses ����� of one memory access when the root branching

factor grows from 8 to 16.

Although there is no locality of IP addresses in the syn-
thetic traces, the trie levels closest to the root are accessed
more frequently. It is therefore interesting to see what
would be the result of introducing a cache for the index.
Figures 2 and 3 show the miss rate 	 and the average num-
ber of memory accesses � ����
 	 for the same table and
traces when we introduce a 16 KByte, 2-way set associative
cache of line size 4 bytes, i.e., a cache that can store 4 K trie
nodes. The best miss rate is 0.2 for RandIP and

� � �
and

the worst is 0.7 for RandNet and
� � 	��

. We also experi-
mented with an 8 KByte and a 32 KByte cache. In the case
of the smaller cache, the miss rates were noticeably worse,
sometimes by more than 50%. With the larger cache, the
miss rates were all the same except for RandIP and ��� � 	��
where it was 3% lower. In the remainder of the paper, we
will always use a 16 KByte cache.

The main metric of interest in IP look-up is throughput
(number of packets processed per cycle). Throughput is in-
versely proportional to the time it takes to forward a packet.
In turn, the time to forward a packet depends on the number
of accesses to the LC-trie. As shown in Figures 2 and 3 this
number depends on the branching factor ��� .

Root bf Matches Prefixes Expansions Unused Total at 1st level Total # nodes
8 4 95 0 157 256 55537
9 0 171 8 333 512 55289

10 1 308 16 699 1024 55761
11 1 565 34 1448 2048 56189
12 8 1016 70 3002 4096 57807
13 15 1766 156 6255 8191 60559
14 38 2444 342 13160 16384 66871
15 78 4239 760 27691 32768 80461
16 1816 4216 1676 57828 65536 109705

Table 1. Influence of root branching factor on LC-trie first level and total sizes

0

0.5

1

1.5

2

2.5

3

3.5

4

8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

A
ve

. #
 m

em
or

y
ac

ce
ss

es
 p

er
 p

ac
ke

t

M
is

s
ra

te

Root branching factor

Memory accesses
Miss rate

Miss rate * Memory accesses

Figure 2. RandIP average number of
memory accesses per packet versus root
branching factor.

0

0.5

1

1.5

2

2.5

3

3.5

4

8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

A
ve

. #
 m

em
or

y
ac

ce
ss

es
 p

er
 p

ac
ke

t

M
is

s
ra

te

Root branching factor

Memory accesses
Miss rate

Miss rate * Memory accesses

Figure 3. RandNet average number of
memory accesses per packet versus root
branching factor.

Consider first an architecture with a single processor and
no cache. The time to process a packet can be expressed as:

�
���
�
�����

������� � � �
 �
where � ��� is average number of memory accesses as defined
above,

�
is the memory latency,

�
the time to compute the

next node index in the LC-trie (for this data structure
�

is the
same for all levels of the trie), and the term �
 � represents
access to the base vector and possibly the prefix table (� is
in general slightly above 1).

With a cache for the LC-trie memory of miss rate 	 and
access time � the time to process a packet

�	�
��� becomes:�
�

� �
�
�����

�����
�
�
	

� � � �
 � .
In a memory bound environment, the significant factor

is the average number of accesses to the LC-trie memory,
i.e., � ��� for the no-cache case and � ���
 	 if a cache is
present. Despite the miss rates shown in Figures 2 and 3
that would be considered dismal for general-purpose pro-
cessors, on the average between 1 and 2 “expensive” mem-
ory accesses are saved and the average number of accesses
to the non-cached memory is almost the same for all branch-
ing factors between 8 and 16.

When the memory access time and the compute time are
balanced, i.e.,

�
and

�
are of the same order of magnitude,

and � is always small with respect to
�

, the savings intro-
duced by a cache will not be as important since in addition
to the average number of memory accesses � ���
 	 (almost
constant over the range of ���) we must now also take into
account the compute cycles � � �

�
(smaller for large ���).

The analysis in the previous paragraphs holds only for
a single processor. Our main interest though is in a multi-
processor environment. The miss rate 	 will remain essen-
tially the same with extremely minor differences that might
arise due to the sequencing of accesses to memory. How-
ever, contention for access to the LC-trie memory will be
reduced in the presence of a cache. We will return to this
aspect of the overall performance in the next section.

We also have to be aware that the gains in throughput in
the presence of a cache will be tempered by the fact that
for each packet we have to spend �
 � cycles accessing
the memory that holds the base vector and the prefix table.
There is no point in caching elements of these data struc-
tures since they are accessed randomly. This is reflected in
the architecture presented in the next section.

Control
Processor

N microengines

Memory
Controller

Memory
Controller

M memory devices/
banks

M memory devices/
banks

Cache

LC-Trie Routing Table

Control
Processor

N microengines

Memory
Controller

Memory
Controller

M memory devices/
banks

M memory devices/
banks

LC-Trie Routing Table

Figure 4. Multi-engine architecture

3 A multiprocessor architecture for IP look-
up

3.1 Architecture

The basic architecture of our multiprocessor for IP for-
warding is shown in Figure 4. Its features include:

� A control processor - for building the look-up struc-
tures

� Microengines - for performing the look-ups
� Two memory channels - one holds the LC-trie index,

and might have a cache, and the other holds the other
structures, including the route and prefix tables.

When there is a cache, only nodes from the LC-trie will
be cached. While there is some locality in accessing the
index as shown in Figures 2 and 3, there is none at all in the
access to the base vector. Sharing the cache between these
two structures would certainly be detrimental.

We vary a number of architectural parameters in our ex-
periments. Specifically, we consider:

� Whether a cache for the LC-trie index is present or not.
If it is, it will be a 16 KByte, 2-way set-associative, 4
byte line size, LRU replacement, 1 cycle access time
cache

� The number of processors (1, 2, 4, 8, 16)
� The latency of memory (12, 42, 100 cycles)
� The number of memory banks (1, 2, 4, 8)

We set the latency of buses to be 2 cycles from the pro-
cessors to the memory system, allowing 1 cycle to model
bus arbitration and 1 cycle to transfer data. The latency
of buses from the memory or cache is set to 1 cycle since

we assume bus arbitration is not required in this case. The
cache is shared amongst all processors and hence needs to
be lock-up free. Our experiments show that contention at
the cache level does not affect performance.

This architecture has a number of features in common
with commercial network processors, such as the Intel
IXP2800. Most notably, this architecture employs multi-
ple simple processors, called microengines here, to exploit
packet-level parallelism [3]. The experiments in this pa-
per investigate how to use, and modify, such an architecture
for fast IP look-ups. These conclusions are of interest to
IXP2800 programmers as well, since the programmer must
decide how many microengines and memory channels to
devote to a given task.

3.2 Impact of Multibanking

In a single processor environment, the goal is to reduce
the number of accesses to the memory holding the LC-trie.
In the case of multiple engines we want also to reduce the
contention in the concurrent memory accesses. This can
be partially achieved by using memory banking where the
various banks can retrieve data in parallel.

A simplistic analysis in the case where compute time be-
tween memory accesses is small gives nonetheless an idea
of the impact that banking can have. Consider the following
analogy. Let a memory access be represented as choosing a
ball from an urn. The urn contains balls of � colors where
there are as many colors as there are banks. There is a very
large number of balls compared to � and to � , the number
of processors that are going to pick up balls, and balls are
equally distributed among the � colors. That is, the proba-
bility of choosing a ball of a given color is

	�� � . At each step
of the computation, each of the � processors chooses a ball;

only one ball of each color can be chosen at each step. So,
if 2 processors choose a ball of the same color, one of them
has to be returned in the urn.

When there are � processors and � banks, the expected
number of balls picked up will be: � ��� ���� ���
	� � � � �
where � � � � � is the probability that � balls of different colors
will be picked by the � processors. That is, the expected
number of balls not returned is � . Couched in terms of �
processors and � memory banks, � is the speed-up in execu-
tion time or increase in throughput over a single processor.

For example, with 2 banks and 2 processors, � � � 	 � ���
�
and � � � � � � ��
 �

yielding � � 	
�
. Working up the

combinatorics show that � � 	
 ���
for 4 processors and 2

banks and � � �
 � �
for 4 processors and 4 banks.

In reality, the contention is not as bad as indicated in
the previous paragraphs since after � memory accesses, on
average, the processor will have to access the forwarding
table, thus freeing an LC-trie memory time slot for the
other processors. For example, in the case of RandIP and
a branching factor of 16, the processors split almost evenly
the accesses to the LC-trie and those to the base vector.
Thus for � processors, there is a diminishing return in hav-
ing more than �

���
banks. This is even more true for the

LC-trie memory if we introduce a cache since now the con-
tention is almost halved (miss factor is about 0.5). Note
however, that as the number of processors increase, so does
the contention for base vector access and for that data struc-
ture access is completely random and no caching can help.

In the next section, we present simulation results that
give a more accurate view of the impact on throughput due
to the data structure parameter bf, the number of processors,
and the memory hierarchy parameters.

4 Experimental results

4.1 Methodology

We use trace-driven simulation to assess the performance
of variations of the multiprocessor architecture of the pre-
vious section. A trace represents a sequence of LC-tries
searches. A search consists of a sequence of tuples (com-
pute time, memory access) where the compute time corre-
sponds to the determination of (1) whether the longest prefix
match has been obtained, and (2) in case it is not of the in-
dex of the LC-trie node to be searched subsequently. When
a match is obtained (a leaf has been reached), the forward-
ing table is accessed and the prefix table is also searched if
so required. The compute time of the access to the first level
is 13 cycles (the root node is kept in a register) and subse-
quent compute times, all the same, are 15 cycles (this was
determined by instrumenting the look-up function in [10]).

In order to determine the memory accesses, we use two
synthetic traces, RandIP and RandNet [9]. Both traces, 1

million packets each, only contain IP addresses for which
there exists a matching rule in the routing table. This is
consistent with real traces where very few addresses will
not match any rules and the default route has to be used.

These synthetic traces represent two different ap-
proaches to generating random traffic for a given route ta-
ble. RandIP generates a random IP address and checks to
see if it matches a rule in the routing table. If the address
does match a rule, it is added to the trace. The process is
repeated until the trace contains the required number of ad-
dresses. RandNet randomly chooses a rule in the routing
table, then extends this prefix to 32 bits (for IPv4). RandIP
tends to produce traces in which short prefix rules predom-
inate because a randomly generated number is more likely
to match eight bits rather than 24. As shown in [9], Rand-
Net has similar characteristics to a core router packet trace,
whereas RandIP is more like an edge router packet trace.
Note, however, that neither trace includes the small amount
of temporal locality found in real traces, thus biasing even
more against the use of caches. The synthetic traces are pes-
simistic with respect to real traces, adopting a more even
distribution of packets amongst all rule lengths.

4.2 Simulation Experiments and Results

4.2.1 Impact of the branching factor

In Section 2 we presented data on the influence of the
branching factor ��� on the average number of memory ac-
cesses � ��� . We presented an initial analysis of the impact of
the presence of a cache on the time to process a packet, and
thus on throughput. Figures 5 and 6, showing the results of
simulating the traces in both a cache and a no-cache single
engine environment, confirm the analysis.

The following conclusions can be reached:

� In the absence of a cache, ��� is the most important fac-
tor. Throughputs for ��� � 	��

are significantly better
than those for ��� � 	 �

or ��� � �
for all 3 memory

latencies considered. For RandIP at all latencies, the
improvement in throughput is 17% when ��� increases
from 8 to 12 and 46% from 12 to 16. For RandNet, the
improvement is 6% and 21% respectively.

� In the presence of a cache, the value of ��� has much
less importance. At long latencies, all ��� ’s yield the
same throughput and at low latencies, a larger ��� is
still better but relatively less so.

� In all cases, a cache improves throughput. For example
when the root branching factor is 12 and the memory
latency is 100 cycles, a cache improves throughput by
47% for RandIP and 33% for RandNet.

We observe that root branching factors of 8 and 12 give
approximately the same throughput with a slight advantage

0

2

4

6

8

10

12

14

10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

pa
ck

et
s/

10
00

 c
yc

le
s)

Memory latency (cycles)

Root bf / cache
8 / no cache

12 / no cache
16 / no cache

8 / cache
12 / cache
16 / cache

Figure 5. RandIP 1 processor throughput
versus memory latency.

0

2

4

6

8

10

12

14

10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

pa
ck

et
s/

10
00

 c
yc

le
s)

Memory latency (cycles)

Root bf / cache
8 / no cache

12 / no cache
16 / no cache

8 / cache
12 / cache
16 / cache

Figure 6. RandNet 1 processor through-
put versus memory latency.

to root branching factor 12 (this observation remains true
for all the experiments that we run). Since from Table 1
we can see that these two root branching factors require the
same amount of LC-trie memory, we will from now on con-
sider only ��� � 	 �

and ��� � 	��
.

It is important to see if the conclusions we reached re-
garding the branching factor for a single processor hold in
the case of multiple engines. To that effect we simulated
several “balanced” systems where the number of engines
and of memory banks were the same. As a representative of
these experiments we show in Figures 7 and 8 the through-
put for a system including 4 engines and 4 memory banks.
As can be seen, the three points set previously hold also in
a multiprocessor environment.

Looking at the performance for 1 and 4 processors in
Figures 5 and 7 for RandIP and Figures 6 and 8 for Rand-
Net, we see an approximate 4-fold increase in throughput
when scaling from 1 to 4 processors. In the next subsec-
tion, we investigate more thoroughly the impact of scaling
the architecture.

4.2.2 Impact of scaling the architecture: processors
and memory banks

The current trend in network processors is to increase the
number of microengines. For example, in the Intel IXP
we see an increase from 6 to 16 engines from one gener-
ation to the next. It is therefore of interest to see if for-
warding throughput can scale with the number of micro-
engines devoted to it. To this effect, we simulated the same
workload, increasing the number of processors up to 16 but
keeping the number of memory banks set to 4. The results
for RandIP are shown in Figures 9 and 10 (similar curves
are obtained for RandNet). In these figures, the through-
put is normalized to the case of 1 processor, no cache and
��� � 	 �

.

As can be seen, there is an almost linear increase in
throughput until we reach 8 processors. After that, the con-
tention for memory access starts to take its toll, mostly in
the case of an architecture without a cache. This is con-
sistent with the analysis of Section 3.1. With 8 proces-
sors and no cache there is limited contention with 4 banks
and much more when 16 processors vie for memory ac-
cess. When there is a cache, the contention is halved and
the combination of 16 processors and 4 banks is still suf-
ficiently balanced. The important point, though, is that
adding processors to the forwarding task will improve per-
formance. Moreover, at long latencies, if we have a cache
we can reduce the number of processors and achieve ap-
proximately the same throughput. For example, a configu-
ration with 8 processors and a cache has sometimes slightly
better (��� � 	 �

) and sometimes slightly worse (��� � 	��
)

throughput than a configuration with 16 processors and no
cache.

Since too small a number of memory banks might limit
performance, we performed experiments where we fixed the
number of processors and varied the number of banks.

In Figures 11 and 12 we show the throughput for 4 pro-
cessors for RandIP with a varying number of banks (exper-
iments with RandNet yield the same overall picture). The
throughput is normalized to the case of 4 processors and
a single bank with ��� � 	 �

. For large memory latencies
and no cache, passing from 1 bank to 2 yields a 46% im-
provement and from 2 to 4 another 17% (the percentages are
62% and 29% for RandNet). With a cache the improvement
is 30% and 11% respectively (49% and 18% for RandNet).
As can be expected, the improvements are relatively smaller
for low latencies.

Scaling the architecture brings forth three important
points:

� All other parameters being equal, caching improves

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

pa
ck

et
s/

10
00

 c
yc

le
s)

Memory latency (cycles)

Root bf / cache
12 / no cache
16 / no cache

12 / cache
16 / cache

Figure 7. RandIP 4 processors and 4
memory banks throughput versus mem-
ory latency.

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

pa
ck

et
s/

10
00

 c
yc

le
s)

Memory latency (cycles)

Root bf / cache
12 / no cache
16 / no cache

12 / cache
16 / cache

Figure 8. RandNet 4 processors and 4
memory banks throughput versus mem-
ory latency.

1

3

5

7

9

11

13

15

17

1 3 5 7 9 11 13 15

T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

Processors

Root bf / cache
12 / no cache
16 / no cache

12 / cache
16 / cache

Figure 9. RandIP 12 cycle memory la-
tency, 4 memory banks throughput ver-
sus processors. Throughput normalized
to 1 processor, ��� � 	 �

, no cache.

1

3

5

7

9

11

1 3 5 7 9 11 13 15

T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

Processors

Root bf / cache
12 / no cache
16 / no cache

12 / cache
16 / cache

Figure 10. RandIP 100 cycle memory la-
tency, 4 memory banks throughput ver-
sus processors. Throughput normalized
to 1 processor, ��� � 	 �

, no cache.

throughput in all cases. For example, sometimes by
over 60% as for ��� � 	 �

for 8 and 16 processors.
� The architecture scales well: the number of micro-

engines devoted to forwarding can be increased with
an almost linear increase in throughput.

� Although of secondary importance compared to
caching, the impact of multibanking is not negligi-
ble. An interesting observation is that the performance
achieved with an architecture with caching and � ���
banks is better than that with an architecture with no
cache and � banks.

4.3 Discussion

From a performance viewpoint, the results of our experi-
ments indicate that IP look-up throughput will be best when

using an LC-trie index if (1) the branching factor is large
and (2) we have a multiengine architecture with as many
engines as is practical, a cache, a memory with low latency,
and a number of banks being about one fourth the number
of processors.

However, some of these desired features interfere with
each other. For example, having a low memory latency is
synonymous with having on-chip memory. Unfortunately,
scaling the architecture (more micro engines) leaves less on-
chip real estate for the memory and using a large branching
factor requires more memory (recall Table 1). Note also
that we have not addressed the problem of updates which,
in general, will be performed in batches and might involve
two copies of each data structure: one for active use and
one for updating. Accommodating updates in this way will
double the required amount of memory.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

Memory banks

Root bf / cache
12 / no cache
16 / no cache

12 / cache
16 / cache

Figure 11. RandIP 12 cycle memory la-
tency, 4 processors throughput versus
banks. Throughput normalized to ��� �
	 �

, no cache.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

Memory banks

Root bf / cache
12 / no cache
16 / no cache

12 / cache
16 / cache

Figure 12. RandIP 100 cycle memory la-
tency, 4 processors throughput versus
banks. Throughput normalized to ��� �
	 �

, no cache.

If we assume that there is a limited amount of memory
that we can put on-chip, as is the case for the current gener-
ation of NPs, then it is best to organize it as a cache. In the
results that we report, we have considered a single-ported,
shared cache. We have experimented with various cache
structures – multiported, multibanked, private, and shared
– and found no significant differences in throughput so the
cheapest implementation is adequate. Furthermore, the hit
rate in the cache is independent of the number of engines
and therefore the cache capacity does not have to scale with
the number of engines. Since in current systems the index
memory is off-chip (long latency) we don’t have to choose
a large branching factor because, as we saw, its value does
not matter much, performance-wise. A branching value of,
say 12, will save some off-chip memory needs.

Therefore, a possible configuration would be: 16 micro-
engines, a 16K on-chip cache, and an off-chip memory with
4 banks holding an LC-trie of branching factor 12 (less than
1 MByte for tables of up to 100,000 entries), in addition
of course to the off-chip memory holding the base vector.
We can give a rough estimate of the absolute throughput
of this IP look-up engine as follows. We assume an im-
plementation consistent with current NPs, i.e., 1 GHz mi-
croengines and an off-chip memory latency of 100 cycles.
According to Figures 5 and 6 a single microengine with-
out a cache could sustain a throughput of about 2 Million
packets/sec or 1 Gbit/sec (less than what is required by OC-
48). A 16 processor configuration without a cache would
improve throughput by a factor of 7 (Figure 10). Adding a
cache would almost improve by another factor of 1.65 (Fig-
ure 10), resulting in a 12x improvement overall. At 24 Mil-
lion packets/second (12 Gbit/sec), we would fulfill OC-192
requirements for the IP look-up, the most time consuming
portion of forwarding.

5 Previous work

Previous work in the area of IP look-up can be divided
into hardware-oriented solutions and software approaches.
Since our architecture is programmable, we emphasize the
latter.

An attractive hardware solution is to use ternary CAMs
(ternary because of the importance of don’t cares in the
LPM setting). However, CAMs are expensive, require high-
power, and updating them is difficult[4]. With base vectors
of tens of thousands of entries, this approach is not feasible
[14]. Many current routers use ASICs. Two examples with
widely different designs are Cisco’s Toaster and the Iflow
processor. Toaster 2 [7] uses 16 microcoded processors ar-
ranged in a matrix of 4 rows by 4 columns and working in a
pipeline fashion. Routing tables are off-chip. The Iflow pro-
cessor [11] uses large embedded DRAMs as well as three
rows of SRAMs to hold the first 3 levels of a B-tree repre-
senting the index. The LPM is pipelined over the SRAMs
and the DRAM.

Previous work on software approaches has been focused
on designing data structures and algorithms to bound the
worst-case latency by minimizing levels in an index struc-
ture for a given amount of memory and reduce the size of
the index. The intent is to have general-purpose processors
perform the forwarding function. The two main techniques
use respectively tries [15] and binary searches on hash ta-
bles [16]. While the LC-trie method [10] does not result in
the most compact trie representation, it is competitive and
easier to build and update. The main differences between
these studies and ours is that we consider a multiprocessor
environment and consider the impact of caching on through-
put. This is consistent with the trend in current network
processors, e.g., Intel IXP and IBM NP, where multiple pro-

grammable engines are devoted to specific tasks [5].
The synthetic traces RandIP and RandNet are introduced

and their characteristics are compared to those of real traces
in [9]. This paper also uses average throughput as a metric
and models and validates cache performance when varying
the branching factor of the root. The main differences with
our study is that in [9] the emphasis is on validating an L2
cache model when the root branching factor can be very
large, thus yielding extensive on-chip and off-chip mem-
ory requirements for the index, while we try and limit the
on-chip memory to stay in the spirit of current network pro-
cessors. The study is also only for a single processor.

A totally different approach to caching is introduced in
[1, 2]. In these papers, the cache hierarchy holds the most
recent IP addresses translations [1] or ranges thereof [2].
The specialized cache design takes advantage of the pre-
dominance of some prefix lengths by selecting wisely the
bits that will index the cache. Because of this last con-
straint, the method is more beneficial when tuned to local
environments as for example in edge routers.

A recent study [13] investigates the use of a wide word
pipelined memory that allows concurrent accesses. This is
an interesting alternative to the multibanked shared memory
that we have been assessing but performance comparisons
are yet to be done.

6 Conclusion

In this paper we have investigated the throughput per-
formance of a multiprocessor architecture dedicated to fast
IP look-ups. Our results show that when a trie-based data
structure with prefix expansion (e.g., LC-trie) is used on a
network processor with multiple microengines, a cache can
be used to effectively increase throughput while decreasing
the need for more memory banks.

Specifically, the cache reduces the number of references
to external memory by taking advantage of the locality
among references to the nodes in the upper levels of the
trie; even completely random accesses to index entries cre-
ate some amount of locality among nodes nearest to the
root. Although hit rates are low, reducing the number of ex-
ternal memory references has two positive effects: reduced
memory latency for those references that hit in the cache,
and reduced contention for external memory for those ref-
erences that do not hit in the cache.

We found that throughput scales almost linearly with the
number of processors as long as memory contention is not
serious. Throughput is greatly enhanced, up to 65% in some
cases, by introducing a cache for the index structure.

In future work, we plan to extend this investigation to
other applications of the longest prefix match algorithm.
One challenging example can be found in firewalls or
distributed denial of service detection systems where ex-

tremely large legitimacy lists (often hundreds of thousands)
of valid or invalid hosts must be maintained. This applica-
tion occurs near the edge of the network, where packet ar-
rival rates are lower, but other challenges emerge: updates
are generally much more frequent, and matching must of-
ten be done in multiple dimensions (e.g., both source and
destination addresses).

Acknowledgments: This work was supported by NSF
Grant CCR-0072948 and a gift from Intel Corporation.

References

[1] T. Chiueh and P. Pradhan. High-performance IP routing
table lookup using CPU caching. In Proc. IEEE Infocom,
pages 1421–1428, 1999.

[2] T. Chiueh and P. Pradhan. Cache memory design for
network processors. In Proc. 6th Int. Symp. on High-
Performance Computer Architecture, pages 409–418, 2000.

[3] P. Crowley, M. Fiuczynski, J.-L. Baer, and B. Bershad. Char-
acterizing processor architectures for programmable net-
work interfaces. In Proc. Int. Conf. on Supercomputing,
pages 54–65, 2000.

[4] D.Shah and P.Gupta. Fast updating algoritms for TCAMs.
IEEE Micro, 21(1), Jan. 2001.

[5] The role of network processors in next generation networks.
http://developer.intel.com/design/network/papers/279048.htm,
2001.

[6] D. Knuth. The Art of Computer Programming. Vol 3, Search-
ing and Sorting. Addison-Wesley, Reading, Ma, 1973.

[7] J. Marshall. Cisco systems - Toaster 2. In P.Crowley et al.,
editor, Network Processor Design, pages 235–248. Morgan-
Kaufmann, 2003.

[8] IPMA reports. http://www.merit.edu/ipma/reports, 2002.
[9] G. Narlikar and F. Zane. Performance modeling for fast IP

lookups. In Proc. of ACM SIGMETRICS, 2001.
[10] S. Nilsson and G. Karlson. IP-address lookup using LC-

Tries. IEEE Journal on Selected Areas in Communications,
17(6):1083–1092, June 1999.

[11] M. O’Connor and C. Gomez. The iFlow address processor.
IEEE Micro, 21(2):16–23, Mar. 2001.

[12] L. Peterson and B. Davie. Computer Networks: A systems
approach - 2nd Ed. Morgan Kaufman, San Francisco, Ca,
2000.

[13] T. Sherwood, G. Varghese, and B. Calder. Suporting net-
work algorithms with a pipelined architecture. In Proc. of
ISCA 2003, 2003.

[14] S.Keshav and R. Sharma. Issues and trends in router de-
sign. IEEE Communications magazine, pages 144–151,
May 1998.

[15] V. Srinivasan and G. Varghese. Fast address lookups using
controlled prefix expansion. ACM TOCS, 17(1):1–40, Feb.
1999.

[16] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scal-
able high-speed prefix matching. ACM TOCS, 19(4):440–
482, Nov. 2001.

