
ModelNet: Towards a DataCenter Emulation Environment

∗Microsoft Research, † Aster Data, ‡ University of California, San Diego

Kashi Venkatesh Vishwanath∗, Diwaker Gupta†, Amin Vahdat‡ and Ken Yocum‡

Abstract—ModelNet is a network emulator designed
for repeatable, large-scale experimentation with real net-
worked systems. This talk introduces the ideas behind
ModelNet that have made it a successful experimental
platform. Beyond these core concepts, the talk highlights
the latest additions to our methodology to test the next
generation of network protocols and applications. Many
of these developments address the datacenter compute
environment: high-capacity networks, sophisticated in-
frastructure software (storage and virtualization), and
complex network load. While these efforts significantly
extend ModelNet’s capabilities, there remain a number of
open challenges, including incorporating new performance
objectives (energy) and multicore architectures.

I. Introduction: ModelNet v00.99
ModelNet [1] gives the experimenter control, repeata-

bility, and accuracy. The ModelNet emulator needs a
set of dedicated machines to mimic realistic deploy-
ment conditions. A subset of these machines (the core)
emulate a user-specified network topology, reproducing
the latency, bandwidth, and loss rates of individual
network hops. The remainder of machines (the edge
nodes) run end-user applications and transport proto-
cols. ModelNet allows unmodified operating systems,
networking stacks, and applications to communicate
across the emulated network. Unlike shared wide-area
testbeds, the network and edge nodes are dedicated to a
single user. This makes experiments reproducible; they
are isolated from external traffic, routing changes, or
CPU contention on the end nodes. This architecture
has proven to be a powerful design point for experi-
menting with networked systems and has been used to
develop various transport and application level protocols
including: DHTs [2] and overlays, content distribution
protocols [3], smart switch architectures [4], and to
evaluate bandwidth estimation tools [5].

II. The Need to Evolve
ModelNet was designed when network overlays, mul-

ticast protocols and peer-to-peer systems ran on hun-
dreds of machines across the wide area. Today, datacen-
ters are the dominant computing platform with current
estimates of 7000 data centers in the US alone [6].
Networked systems, including data processing archi-
tectures like MapReduce, run at multiple datacenters,
using thousands of machines and petabytes of data.
These datacenters internally use high-speed networking
technologies and are connected to each other via multi-
ple long/fat links. While traditional DHT systems have
found new life within the networking [7] and object-
based storage infrastructure [8], other infrastructure
software must manage the swarms of virtual machines
(and storage) that host client applications, providing the
proverbial “compute cloud.”

This environment challenges various aspects of the
original ModelNet design. In a datacenter setting, how
can we explore the impact of future networking tech-
nologies without buying the corresponding new hard-
ware? Or consider the task of buying a new storage
system: How can we test the system at scale (hun-
dreds to thousands of clients) without the hardware and
administrative overhead? Finally, datacenter networks
carry an incredibly diverse, time varying workload;
how will this impact other services? By appropriately
expanding the roll of ModelNet’s edge nodes, we can
make it easier to answer these kinds of questions.

III. Time Dilation
The ability to use unmodified end-user applications

is a key strength of the ModelNet architecture, but
it requires emulating the network in real time. This
fundamentally limits the fastest emulated link to the
fastest physical link in the ModelNet cluster. In contrast,
simulators [9] often manipulate time, trading hours of
real time to simulate fast (or huge) networks for a few
simulated minutes. But they must often run alternate,
simulated versions of the system under test.

We developedtime dilation [10] to resolve this seem-
ing impasse. Time dilation provides the illusion to an
operating system and its applications that time is passing
at a rate different from physical time. We modify a
virtual machine monitor to make time appear to move
slower for the guest OS. For example, time dilation
can convince a system that for every 10 seconds of
wall clock time, only one second of time passes in
the operating system’s dilated time frame. Time dilation
does not, however, change the arrival rate of events from
I/O devices such as the network interface. Hence, from
the guest OS’s perspective, physical resources appear 10
times faster: in particular, data arriving from a network
interface at a physical rate of 1-Gbps appears to the OS
to be arriving at 10-Gbps. We refer to the ratio between
the rate at which time passes in the physical world to
the operating system’s perception of time as thetime
dilation factor, or TDF.

By employing TDF values greater than one, time
dilation enables the network to appear to have more
capacity than is physically possible. Using this, for
instance, we can explore the impact of a potential
upgrade to 10-GigE equipment while still experimenting
on 1-GigE technology. We can also evaluate the impact
of networks with gigabits of bisection bandwidth or the
high-speed/high-latency links between datacenters. For
instance, while TCP is known to operate sub-optimally
across such links, time dilation makes it feasible to
evaluate new transport protocols designed for these high
bandwidth-delay environments [11].



IV. DieCast and Swing
Services within datacenters may use hundreds or

thousands of machines. Emulating how these work
at scale is critical but running an experiment with
thousands of nodes is challenging both economically
and technically. DieCast [12], leverages time dilation to
emulate large-scale services on a small set of physical
nodes trading time for physical resources. Time dilation
makes all devices appear faster, including the disk
and the CPU; DieCast exploits this to scale down the
physical hardware requirements for the experiment. By
modifying the virtual machine monitor’s CPU scheduler,
and integrating a disk model into the VMM, DieCast
allows a user to emulate many physical machines on
a single node. DieCast has been used to test and
validate commercial scalable storage systems. Panasas
builds PanFS, an object-based cluster filesystem. To
meet customer requirements, they need to make sure the
system can perform well under a given client’s access
pattern. Using DieCast, we were able to increase the
number of simultaneous clients used to stress-test their
system by an order of magnitude, multiplexing a 1000-
machine experiment on 100 physical machines.

Unlike live testbeds, such as Planetlab, a ModelNet
emulation will only see the traffic from the users ap-
plications. In order to understand the effects of cross
traffic we developed Swing [13]. Swing is a closed-
loop, network responsive traffic generator that accu-
rately captures the packet interactions of a range of ap-
plications using a simple structural model. Starting from
observed traffic at a single point in the network, Swing
automatically extracts distributions for user, application,
and network behavior. It then generates live packet
traffic corresponding to the underlying models in the
ModelNet environment. By modeling fine-grained user,
network and application behavior Swing can reproduce
burstiness in traffic across a range of timescales. Swing
also provides users with a set of intuitive knobs that
can be tuned to project traffic to alternate scenarios. For
instance, it allows the user to change assumptions about
network conditions, application mix and application
characteristics, for instance the response size of objects,
to generate new traffic.

V. Future work
With these facilities, ModelNet provides an emula-

tion environment for accurately testing the core net-
work, future networking scenarios and protocols, and
sophisticated large-scale distributed services. However
a number of challenges remain. ModelNet provides a
simplistic view of the emulated network with limited
packet processing and shortest path routing via static
routes. This limits the ability to experiment with new
routing architectures and protocols [14], [15]. Addition-
ally, models may be required for exploring energy-aware
networking, and for emulating various failure modes of
both end systems and network components. Our hope
is that this extra functionality can be realised by taking
advantage of emerging multicore architectures to limit
the impact on emulation scalability.

ModelNet is currently available for FreeBSD and
Linux. Efforts are underway for a new distribution that
includes a regression suite to ensure correct installation
along with a preliminary assist for debugging miscon-
figurations. More information may be found online at:
http://modelnet.sysnet.ucsd.edu.

References
[1] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kos-

tic, J. Chase, and D. Becker, “Scalability and Accuracy
in a Large-Scale Network Emulator,” inProceedings of
the Fifth Symposium on Operating System Design and
Implementation (OSDI), December 2002.

[2] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz,
“Handling Churn in a DHT,” inProceedings of USENIX
Technical Conference, June 2004.

[3] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat,
“Bullet: High Bandwidth Data Dissemination Using an
Overlay Mesh,” in19th ACM Symposium on Operating
Systems Principles, October 2003.

[4] K. Yocum, J. Chase, and A. Vahdat, “Anypoint Commu-
nication Protocol,” inPosition Summary at HotOS-VIII,
May 2001.

[5] K. V. Vishwanath and A. Vahdat, “Evaluating Distributed
Systems: Does Background Traffic Matter?” inProceed-
ings of the 2008 Usenix Annual Technical Conference,
2008.

[6] L. Siegele, “The Evolution of Data Centres,”The
Economist, vol. 389, no. 8603, October 2008.

[7] C. Kim, M. Caesar, and J. Rexford, “Floodless in
SEATTLE: A Scalable Ethernet Architecture for Large
Enterprises,” inACM Sigcomm, 2008.

[8] G. DeCandia, D. HAstorun, M. Jampani, G. Kaku-
lapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: Amazon’s Highly
Available Key-Value Store,” in Proceedings of the
Twenty First ACM Symposium on Operating Systems
Principles, 2007.

[9] The Network Simulator ns-2, “http://www.isi.edu/nsnam/
ns.”

[10] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, G. M.
Voelker, and A. Vahdat, “To Infinity and Beyond: Time-
Warped Network Emulation,” inProceedings of the 3rd
ACM/USENIX Symposium on Networked Systems Design
and Implementation (NSDI), San Jose, CA, May 2006.

[11] D. Katabi, M. Handley, and C. Rohrs, “Internet Conges-
tion Control for Future High Bandwidth-Delay Product
Environments,” inProceedings of the ACM Conference
on Communications Architectures and Data Communi-
cation (SIGCOMM), August 2002.

[12] D. Gupta, K. V. Vishwanath, and A. Vahdat, “DieCast:
Testing Distributed Systems with an Accurate Scale
Model,” in Proceedings of the 5th ACM/USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2008.

[13] K. V. Vishwanath and A. Vahdat, “Realistic and Re-
sponsive Network Traffic Generation,” inACM Sigcomm,
2006.

[14] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable,
Commodity Data Center Network Architecture,” inACM
Sigcomm, 2008.

[15] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable
and Flexible Data Center Network,” inACM Sigcomm,
2009.


