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Abstract—An increasing demand is seen from enterprises to
host and dynamically manage middlebox services in public clouds
in order to leverage the same benefits that network functions
provide in traditional, in-house deployments. However, today’s
public clouds provide only a limited view and programmability
for tenants that challenges flexible deployment of transparent,
software-defined network functions. Moreover, current virtual
network functions can’t take full advantage of a virtualized cloud
environment, limiting scalability and fault tolerance.

In this paper we review and evaluate the current infrastruc-
tural limitations imposed by public cloud providers and present
the design and implementation of GNFC, a cloud-based Network
Function Virtualization (NFV) framework that gives tenants the
ability to transparently attach stateless, container-based network
functions to their services hosted in public clouds. We evaluate
the proposed system over three public cloud providers (Amazon
EC2, Microsoft Azure and Google Compute Engine) and show
the effects on end-to-end latency and throughput using various
instance types for NFV hosts.

I. INTRODUCTION

Enterprise networks rely on hardware-based network appli-
ances or middleboxes. Middleboxes became fundamental parts
of networks, providing approx. 45% of the network devices
to enforce security (e.g., firewalls and intrusion detection sys-
tems), performance (e.g., rate limiters, proxies, load-balancers)
and reduced bandwidth costs (e.g. WAN optimizers) [24].
Studies also show that demand for in-network processing will
increase even further with the advent of diverse consumer
devices and multimedia protocols [2]. However, traditional,
hardware-based middleboxes have many drawbacks: they incur
significant capital investment due to being provisioned and
optimized for peak-demand, are cumbersome to maintain due
to the expert knowledge required, and cannot be typically ex-
tended to accommodate new functionality as new operational
requirements emerge. The proprietary software and hardware
limit innovation and create vendor lock-in [18].

Network Function Virtualization (NFV) is a novel approach
to address the above shortcomings of managing closed and
proprietary appliances through decoupling network functions
(NF)s from their hosting hardware platform. By using low-cost
commodity servers, NFV can reduce Capital and Operational
Expenditure and maximize Return on Investment (RoI) [9]. By
using Software-Defined Networking (SDN) to manage NFV,
the compatibility with existing deployments can be simplified,
and operation and maintenance procedures can be facilitated.
NFV has already gained a considerable momentum: seven of
the world’s leading telecom operators along with other 52
network operators, IT vendors and technology providers have
initiated a new ETSI standards group [17].

With the rise of public cloud computing, enterprises have
started to migrate resources to the cloud in order to increase
agility and scalability and to reduce maintenance costs of
their infrastructure. According to Forrester, adoption of public
clouds by enterprises will cross over the 36% mark this
year [23]. Despite the growing adoption, key challenges re-
main when migrating enterprise network services to the cloud
- including performance, privacy, and security issues [16].
Underlying many of these challenges is that network con-
figurability provided by public clouds is still very limited
(or absent) compared to enterprise’s in-house counterparts.
The cloud networking model has largely focused on provid-
ing basic reachability using private and public IP addresses
attached to the VMs and simple NFs such as firewalls or
basic load-balancers. While NFs are crucial for enterprises,
key network functions are still missing from today’s public
clouds, e.g. fine-grained network isolation, filtering and service
differentiation, policy-based routing, protocol acceleration,
control over addressing or caching for improved performance
or availability [25] [10].

However, to take full advantage of a virtualized cloud envi-
ronment, it is not sufficient to simply port an existing network
application to run on a Virtual Machine (VM) in the cloud. To
reach scalability, on-demand provisioning and fault recovery,
traffic between hosts should be managed dynamically and NFs
must have clear separation between their stateless application
code and data stored in logically centralized cloud storage.
This transformation from NFV to cloud-based virtual NFs has
recently defined the term Network Function Cloudification [4].

In this paper, we present and evaluate the existing limi-
tations of public Infrastructure-as-a-Service clouds that chal-
lenge the design of a cloud-based NFV framework. Follow-
ing those limitations, we propose GNFC (Glasgow Network
Function for the Cloud) an NFV framework for public clouds
that allows transparent and stateless container-based NFs to be
attached to arbitrary services. We present the design, imple-
mentation and evaluation of our proposed system that gives
tenants the ability to create and deploy their own NFs such as
network isolation, intrusion detection, service differentiation
or caching and attach them to any of their VMs. Unlike
traditional NFs (e.g. Sophos, Vyatta, ClickOS), GNFC NFs
are stateless and transparent to the services they are attached
to and can be enabled, disabled or migrated on-demand. This
novel model increases flexibility and functionality, saves cost
and deployment complexity compared to current approaches
where traffic steering needs to be configured manually for
every service using NFs.



The contributions of this work can be summarized as:
1) the review and evaluation of the limitations hindering the

deployment and management of NFV in public clouds
2) the design and implementation of GNFC, a framework

that allows NFs to be hosted and transparently attached
to arbitrary services in the cloud

3) the experimental evaluation of GNFC over popular pub-
lic clouds, comparing various instance types

II. LIMITATIONS OF PUBLIC CLOUDS

In this Section we describe the challenges and limitations
of implementing and managing NFV in public clouds.

A. Programmability

Network functions require traffic to be steered through
them. In traditional networks, it is done either by manually
configuring the forwarding tables of the switches and routers
along the path or automatically by using an SDN controller.
In public clouds, even when the network is configurable,
the programmability and flexibility of the virtual network is
extremely limited. Typically, the network is abstracted into a
single virtual switch connecting all the VM instances together
and to the Internet, and simple destination-based routing
entries can be inserted. Without the ability to generate more
complex virtual topologies where NFs can be placed on the
traffic path or allowing finer-grained control of the forwarding
policies with control protocols such as OpenFlow [21], the
deployment of network functions is hindered.

B. IP Forwarding

Cloud providers such as Amazon and Google have IP
forwarding functionality disabled by default in their clouds
and it can only be enabled when a VM is created. This
inability to change the IP forwarding policy of instances
can hinder deployment of transparent NFs in existing infras-
tructures as every instance would have to be recreated to
enable IP forwarding. Once IP forwarding is enabled, traffic
can be steered between instances as long as the source and
destination of the packet is local to the provider’s private
network and is confined to the tenant’s set of virtual machines.
As middleboxes typically apply policies on ingress Internet
traffic (e.g., IDPS, Firewall, VPN, WAN accelerator), limiting
IP forwarding to only private traffic prevents the use of a VM
instance as an Internet Gateway and therefore as a simple
mechanism for middlebox deployments.

C. Protocol support

In order to simplify Network Address Translation (NAT)
and shape the traffic to improve Quality of Service (QoS),
most public cloud providers only allow traditional transport
protocols (e.g., TCP, UDP, ICMP) to be used by the VMs.
Layer 2.5 protocols such as MPLS and Layer 3 protocols
such as IPsec, IP-in-IP or GRE are commonly not supported,
preventing traditional traffic encryption and encapsulations
mechanisms to be used.

TABLE I: Support for GRE and VXLAN tunneling protocols
in public cloud providers.

EC2 Azure GCE
GRE 3 7 7

VXLAN 3 3 3

D. Support for NFV frameworks

Today’s popular NFV frameworks (such as the high-
performance ClickOS [20] or Brocade Vyatta [1]) are often
built on top of specific software components or require net-
work configuration that is rarely supported by most public
providers. ClickOS for instance uses a highly modified XEN
hypervisor to improve network performance that prevents its
deployment on public clouds. Vyatta requires cloud-specific
network configuration and therefore cannot be ubiquitously
deployed over public cloud infrastructures.

III. GNFC ARCHITECTURE

To address the described limitations in Section II, we de-
signed GNFC, a framework for deployment and management
of NFs in public cloud environments. GNFC provides com-
ponents for centralized management of NFs (Section III-A),
transparent and flexible traffic steering using common tun-
nelling technologies and OpenFlow (Section III-B), instanti-
ation of container-based middleboxes (Section III-D), and a
user interface for the system (Section III-E). Through a set of
well defined APIs exposed by each component, GNFC gives
programmability to rigid networking environments, allowing
Layer 2 packets to be selectively and transparently steered
through one or more NF.

A. Orchestration

The system is orchestrated by the GNFC Manager, a com-
ponent implemented for the OpenDaylight SDN controller (as
shown in Figure 1). The Manager maintains a connection with
the registered Agents that start and stop NFs and send notifica-
tions and status information to the Manager. It supervises the
running NFs and the available GNFC servers (VMs running
the GNFC Agent), and allocates new NFs to the least loaded
GNFC server. It also stores the incoming notifications from
the NFs and exposes the main REST API to orchestrate the
entire system.

B. Traffic Management

To address the limitations of traffic forwarding while achiev-
ing transparent traffic steering in public cloud networks (de-
scribed in Section II), GNFC relies on tunnelling protocols
such as Virtual Extensible LAN [19] (VXLAN) or Generic
Routing Encapsulation [11] (GRE). By using tunneling proto-
cols, arbitrary Layer 2 (Ethernet) traffic can be encapsulated
within an IP or UDP frame and forwarded to any other host
using traditional routing mechanisms without modification of
the tunneled traffic. Other encapsulations, such as IP-in-IP
can be used, however as it encapsulates IP packets, it would
prevent the middleboxes from processing non-IP traffic such
as L2 broadcast messages or IPv6. Another option can be
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Fig. 1: High-level overview of GNFC.

using TCP tunnels between all VMs (e.g. an SSH tunnel),
however, using a reliable transport layer would deteriorate
encapsulated real-time application traffic bound by response
time instead of reliability (such as VoIP, media streams).
Therefore by encapsulating Ethernet frames in IP (GRE)
or UDP (VXLAN) packets, flexible and transparent traffic
steering can be achieved without relying on programmable
devices within the network.

Once the forwarding limitation has been addressed through
tunneling, the problem of protocol support arises. As VXLAN
encapsulates Ethernet frames within UDP datagrams while
GRE uses IP packets, it would be sensible to use GRE for
a lower encapsulation overhead, leading to higher MTU and
therefore higher goodput. However, as shown in Table I and
discussed in the Section II, providers such as Azure and
Google GCE drop any traffic that is not TCP, UDP or ICMP,
preventing GRE to be used by tenants. With the universal
support of UDP, VXLAN tunnels can be used in today’s
public cloud providers to configure tunnels at the source
and destinations hosts to steer traffic through a third VM
acting as the middlebox. However, to provide the ability to
quickly, elastically start and stop NFs, programmability and
centralisation are necessary.

Programmability can be achieved by using programmable
software switches on the VMs. Controlling them using the
SDN paradigm with a management API such as OpenFlow
allows the network to be configured on-demand and provides
the flexibility required to centrally and quickly redirect traffic
through dynamically instantiated NFs. Open vSwitch (OvS), a
popular and high-performance software switch has been used
to create and manage tunneled traffic between the VMs in
the cloud. As the recent versions of OvS support flow-based
tunneling for both GRE and VXLAN protocols, allowing the
configuration of the tunnels within the flow table. By using
OpenFlow’s Write-Metadata instruction, the tunnel’s unique
id (VXLAN Network Identifier or GRE Key) as well as the
remote host (the host running the NF) is specified by every
individual flow entry, allowing the controller to manage every
tunnel centrally.

TABLE II: OpenFlow rules required at the VMs to forward
packets between VM1 to VM2 through NF1 hosted on VM3.

Hop VM Match Action
1 VM1 in port=LOCAL

nw dst=VM2
set tunnel:100
set field:VM3->tun dst
output:tunnel

2 VM3 in port=eth0
tun id=100

output:veth1 (NF1’s input)

Middlebox processing of VM1 → VM2 packets in NF1
3 VM3 in port=veth2

(NF1’s output)
set tunnel:101
set field:VM2->tun dst
output:tunnel

4 VM2 in port=LOCAL
nw dst=VM1

set tunnel:102
set field:VM3->tun dst
output:tunnel

5 VM3 in port=eth0
tun id=102

output:veth1 (NF1’s input)

Middlebox processing of VM2 → VM1 packets in NF1
6 VM3 in port=veth2

(NF1’s output)
set tunnel:103
set field:VM1->tun dst
output:tunnel

7 VM1 in port=eth0
tun id=103

output:LOCAL

C. Network Controller

To centrally control the configuration of the tunnels and
insert the forwarding rules necessary to steer the traffic to
the appropriate NFs, we have designed the GNFC Network
Controller. This network controller is an SDN application
built on top of the OpenDaylight controller framework and
collocated with the GNFC Manager. To support different types
of NFs, GNFC implements three types of forwarding policies:

1) Exhaustive forwarding: All traffic coming from or going
into a VM goes through a NF, allowing inspection
and alteration of the entire traffic. Popular middleboxes
require exhaustive forwarding Intrustion and Prevention
Systems (IDPS), firewalls or VPN services.

2) Selective forwarding: A subset of services (selected by
ports) are routed through a NF, while other services use
the default forwarding policies. This type of forwarding
allows efficient redirection for load balancers or proxies
as they usually only require the traffic associated to a
specific service port (e.g. UDP 53 and TCP 80).

3) Replica forwarding: This policy has been added to sup-
port passive inspection of the traffic without modifying
it. This policy can be used for monitoring, intrusion
detection (IDS) or traffic characterisation middleboxes.

Figure 1 shows an example deployment of GNFC, where
VM1 and VM2 are hosts running tenant specific workload,
while VM3 (NFV host) runs the GNFC Agent and is therefore
capable of hosting NFs. VM4 hosts the network controller and
the manager to centrally orchestrate the system. In Table II,
we show the OpenFlow flow entries installed at the software
switches to traverse all traffic between VM1 to VM2 through
a NF hosted on VM3 using the exhaustive forwarding policy.
The next hop of the packets is set with set tunnel and set field
actions before the packets are forwarded to the local tunnel
interface (hop 1, 3, 4, 6 in Table II). The flows in Table II
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also ensure that the replies from VM2 to VM1 are forwarded
through the same NF.

D. Network Functions

While different, software-based middlebox platforms and
solutions such as ClickOS [20], FlowOS [8] and Vyatta [1]
exist, GNFC uses unmodified Docker [22] containers to en-
capsulate stateless middlebox functionality. Docker provides a
lightweight equivalent to VMs, allowing a much higher NF-to-
host density and smaller footprint at the cost of reduced control
over the kernel. On top of process and network isolation,
Docker delivers a way to version, reuse and store container
images in public or private repositories. Docker is available
on any Linux-based distribution, enabling its use over every
public cloud infrastructure, overcoming the limited support of
current NFV platforms described in Section II.

GNFC NFs are managed by the GNFC Agent that installs
and talks to the local Docker daemon to retrieve, start, stop
and delete containers. The Agent provides a REST API for
the Manager and sends status information and notifications
from the NFs to the Manager. On a create request from the
Manager, the Agent calls the local Docker daemon to pull the
images from the Docker public or private repository if the
image is not already available locally. Then, the Agent creates
a new container based on this image, registers it locally as
a GNFC managed container and sends an event on the event
stream to the Manager. While the containers are started, the
Agent creates two virtual Ethernet pairs (veth pairs) for the
ingress and egress and injects one end of the pair inside the
container’s namespace and the other end to the local software
switch, as shown in Figure 2.

GNFC NFs are able to send notifications (arbitrary mes-
sages) to the users by calling a REST endpoint accessible by
every container, provided by the local Agent. When the Agent
receives a notification from an NF, it forwards them to the
Manager to centrally store every NF notification.

E. User Interface

A web-based User Interface for GNFC has been designed
and implemented. The UI provides a user-friendly and visual
way to deploy, manage and monitor NFs and attach them to
services running on VMs in their cloud. It also allows the
inspection of the notifications sent by the NFs to monitor the
health and status of the system.

IV. EVALUATION

In this Section, we show the evaluation of GNFC over
three popular public clouds, namely Amazon EC2, Google
GCE and Microsoft Azure. The evaluation focuses on the
overhead (throughput and latency penalty) of the proposed
traffic management using traffic tunneling methods.

All measurements were taken in parallel, within a short
time period to avoid differences in network characteristics.
The VMs were started in the Western European region of the
providers. The measurements have been repeated 10 times at
every measurement round. Each measurement round involves
the request of new instances from the cloud provider to get a
new and randomly allocated set of participating VMs. When
VMs got co-located in a measurement round (giving a pairwise
throughput of 4-5 Gbit/s), our measurement script requested
new VMs to exclude this scenario. High-performance in-
stances (c4.large in EC2, D2 in Azure, n1-standard-2 in GCE)
were used as the source and destination VMs to eliminate
bottlenecks. Regardless of the provider, each VM used the
default image of Ubuntu Server 14.04 LTS provided with an
unmodified Open vSwitch 2.0.2. To measure the throughput
both in UDP and TCP mode we have used the Iperf utility.

Five experiments have been conducted for this paper. First,
the tunneling overhead through various instance types is shown
comparing the three providers (Section IV-A and IV-B). In
Section IV-C, GRE and VXLAN tunnels have been compared
over EC2. Finally, Section IV-D evaluates the overhead of
GNFC NFs compared to their static deployments.

A. Throughput

In this Section, we show the end-to-end throughput of the
traffic steered through a middlebox using VXLAN tunnels.
To evaluate the impact of the different instance types as
middleboxes on the network performances each instance is
simply running a software switch NF, forwarding transparently
the traffic from the source to the destination and vice-versa.
Figure 3 compares the UDP and TCP performance of the direct
traffic from source to destination (baseline) to the maximum
throughput achievable when the traffic is steered through a
software switch NF (a software switch NF forwards all packets
without modification). Most cloud’s network performance is
directly related to the instance type requested by the user, with
overall better network performance in terms of throughput,
latency and stability for more expensive instances. To evaluate
these differences, we used instance types ranging from a price
per hour of $2.450 (Azure A8) to $0.012 (GCE f1-micro).
Therefore, the instance name shown in the x-axis of the figure
represents the instance type of the VM hosting the NF, for
instance, t2.micro represents the throughput from a c4.large
instance to a c4.large instance through a software switch NF
hosted on a t2.micro instance.

As shown in the figure, baseline UDP performance is always
lower than baseline TCP performance at all providers. This
is important, as VXLAN operates over UDP and therefore
any traffic that is encapsulated with VXLAN will be capped
at UDP’s baseline performance. However, it is not surprising
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that cloud providers apply different QoS policies between TCP
and the rest of the traffic, as TCP is the dominant protocol
with 99.91% of the traffic [6] and other protocols without
congestion control can lead to flow unfairness, congestion and
bufferbloat [15].

In general, using small and micro instances (t2.micro, f1-
micro, A0) as NFV hosts, the end-to-end throughput de-
grades drastically. This can be attributed to the CPU shares
allocated to the VMs, especially impacting smaller instances
as described by Guohui Wang and Eugene Ng [26]. By
using instances with more and higher frequency vCPU cores
(e.g. m3.2xlarge on EC2, n1-highcpu-2 on GCE or A8 on
Azure), the achievable throughput is close to the UDP baseline
(maximum reachable) at all providers. It is also important to
mention that the relationship between the size (price) of the
instances and the achievable throughput using them as NFV
hosts is not always linear. For example, in our experiments
over Azure, using a compute-optimized, more expensive D1
instance we reached lower throughput than using a cheaper
A1 instance.

Stability of the throughput can also be observed from
Figure 3, as the error bars show the first and third quartile of
the throughput. While GCE delivers the highest performance,
the throughput is highly variable with a throughput 46% lower
than the median for the first quartile and 6% higher for the
third quartile (n1-standard-1). EC2 and Azure deliver lower
but consistently stable throughput over different measurement
rounds and instance types with a maximum of 27% (m3.large)
and 3% (D1) differences from the median respectively.

B. Delay
As the traffic is steered through an NF hosted on a VM with

an unknown physical location and distance from other VMs, it
is also necessary to evaluate the impact on the average delay
that such steering involves. To do so, the Round-Trip-Time
(RTT) has been measured with the various instance types.
The measurements were conducted using the ping utility,
sending 300 ICMP requests at each measurement round, with
each measurement round involving the same steps as defined
in the previous Section. A large number of measurement
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rounds have been conducted to avoid any particular virtual
machine placement. Figure 4 presents a scatter plot of the
mean throughput and RTT for the various instance types we
evaluated.

As shown in Figure 4, the RTT through EC2’s c4.large
instance is approx 0.3 ms, while using Azure’s A2 instance,
the RTT is 2.3 ms, almost 8 times higher. It can be clearly
seen that Amazon’s network provides the lowest latency for all
instances, followed by Google’s 1ms average RTT. On Azure,
a high RTT has been measured, even for the large, network
optimized instances (e.g., A8). We can also observe that the
delay is usually higher for the cheaper (small and micro)
instances at all providers. It is also interesting to observe that
the RTT for Azure instances depends highly on their type,
while EC2 and especially Google provide a more stable RTT
across various instance types.

On top of delay properties, Figure 4 highlights three distinct
clusters of instances that match the three providers. According
to this scatter plot, Azure delivers high RTT and average
throughput, EC2 provides low RTT and average throughput,
while GCE gives high throughput and mid-range RTT. This
difference in latency could simply imply that the network in



TABLE III: Comparing RTT and throughput using GRE and
VXLAN tunnels over EC2.

RTT (ms) Throughput (Mbit/s)
Instance GRE VXLAN G/V GRE VXLAN G/V
t2.micro 0.61 0.65 0.94 214.50 215.50 1.00
t2.small 0.64 0.62 1.03 232.50 236.50 0.98
t2.medium 0.49 0.51 0.97 292.50 300.00 0.97
m3.medium 0.48 0.47 1.01 290.50 286.50 1.01
m3.large 0.39 0.42 0.93 608.00 579.00 1.05
m3.2xlarge 0.33 0.37 0.89 745.00 696.50 1.07
c4.large 0.23 0.25 0.94 380.00 380.00 1.00

Average: 0.95 Average: 1.01

some providers is slower due to a slower switching fabric,
larger buffers or higher oversubscription. However, it could
also show the performance of the placement algorithm used by
the different providers, with Amazon EC2 bringing the VMs
closer together than GCE or Azure and consequently reducing
latency.

C. GRE vs VXLAN

As mentioned in Section III-B, GNFC can utilize two
popular tunneling techniques, namely GRE and VXLAN
tunnels. Due to the limited support of the GRE protocol,
the measurements presented in Section IV-A and IV-B used
VXLAN tunnels. In this Section, we compare the performance
of both tunneling techniques over Amazon EC2, as it supports
both. Table III presents the mean RTT and throughput using
GRE and VXLAN tunnels over different instance types.

As shown in Table III, we couldn’t measure significant
difference in throughput and RTT between GRE and VXLAN
tunnels over Amazon EC2. However, a slight improvement
in RTT (5% on average) and increase in throughput (1%
on average) can be noticed with GRE tunnels. This slight
improvement might be explained with the lower encapsulation
overhead of GRE, as mentioned in Section III-B.

D. GNFC NF Overhead

In this experiment, we measure the performance penalty
of GNFC NFs. We compare a static deployment of four
common NFs with deployments in GNFC container-based
NFs. The measurement were carried out on EC2 using c4.large
instances. Figure 5 presents the normalized throughput at the
90th percentile of the following example NFs1:

1) rate limiter: using the tc utility, this NF limits the traffic
to a specified bandwidth

2) software switch: using a simple Linux bridge, this NF
forwards all packets without modification

3) firewall: this NF relies on the well-known iptables to
filter packets

4) snort: the classic SNORT intrusion detection software
The results have been normalized to show GNFC’s impact

on network performance, instead of presenting configuration
and environment specific throughput, as for example SNORT’s

1More example NFs can be found at:
https://registry.hub.docker.com/repos/glanf/
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throughput is highly dependent on the configured level of
traffic inspection. As shown in Figure 5, GNFC’s container-
ization adds only a minimal penalty to the throughput. The
performance difference for the software switch and the rate
limiter NFs is less than 1% and in the worst case for the snort
NF it is maximum 3.4%. In the current implementation GNFC
uses a virtual Ethernet pairs to link OvS and the NF, however
multiple recent benchmarks highlight that OvS internal ports
provide better performance, potentially closing the small gap
between static and dynamic deployment performances [5]. For
this minimal performance degradation, container-based NFs
can be deployed, started and stopped by few calls on any Linux
host at all public cloud providers.

V. DISCUSSION

Network Function Cloudification or making today’s network
functions ‘cloud-native’ is a new paradigm driven by industry
leaders such as Mellanox, Metaswitch Networks and HP to
support agility and elasticity [4]. The re-architecting of today’s
NFV frameworks to be cloud-native with smaller failure do-
mains and stateless transactions is an ongoing and challenging
process that is likely to trend in the NFV communities in
the near future [14]. This provides two key challenges for
discussion: decoupling the state and achieving performance in
the face of decoupled state.

While it is known that, e.g., Deutsche Telekom is ex-
perimenting with Docker-based NFs [3], to the best of our
knowledge we are the first to publish an extensive evaluation
of container-based NFs over public clouds. However the
performance and security isolation provided by containers is
not yet on the same level as isolation provided by traditional
VMs, the technology evolved significantly during the last
few years and as highlighted by a recent Gartner report,
it is now mature enough for production deployments [12].
We see great potential in container NFs and in particular,
in Docker. Containers require less resources (approx. 5MB
memory for a running container), can scale easily and be
deployed in short timescales, and allow fast prototyping and
testing on commodity devices. Although we see Docker and
more globally container-based virtualization as a great fit for
NFV, containers can be easily replaced in GNFC with other
software-based middlebox by modifying the GNFC Agent.



VI. RELATED WORK

CloudNaaS [7] enables deployment of network functions
such as network isolation or service differentiation, and allows
flexible interposition of various middleboxes in a private cloud.
CloudNaaS relies on a modified cloud controller and it has
been designed on top of a controllable OpenFlow-enabled net-
work. In public cloud environments, the cloud controller can’t
be modified and the network is fully virtualized, providing no
access to the individual devices or topology. In contrast with
CloudNaaS, GNFC can be used in pubic clouds, however it
has no control over the network to provide optimal physical
placement for middleboxes.

Sherry et. al. designed and implemented APLOMB [25], a
service for outsourcing enterprise middlebox processing to the
cloud. APLOMB outsources the vast majority of middleboxes
from a typical enterprise network with impact on performance,
while providing a scalable, affordable solution for middlebox
processing. In GNFC, we present a way to use middlebox
processing for VMs already deployed in a public cloud.
By hosting both VMs and NFs in the cloud, the additional
latency and data transfer cost introduced by APLOMB can be
eliminated.

Authors of Stratos [13] argue that today’s cloud middlebox
deployments lack the same abstraction that are used for com-
pute or storage services in the cloud. Stratos allows tenants to
specify logical middlebox deployments and provides efficient
scaling, placement and distribution algorithms that abstract
away low-level issues ensuring effective application perfor-
mance. While Stratos can operate in public clouds delivering
efficient scaling and chaining of middleboxes, GNFC focuses
on the deployment of virtual, container-based middleboxes that
can be transparently attached to VMs in the cloud.

VII. CONCLUSION

Providing transparent and flexible middlebox processing for
applications in today’s public clouds is challenging due to the
limited programmability and access to the networks offered by
public clouds and the design of current NFV platforms. As an
approach to overcome these challenges, this paper presents
GNFC, a container-based NFV platform for public clouds.
GNFC enables end-users to attach stateless network functions
to their VMs and services by utilizing tunneling techniques
and software-defined networking. GNFC has been evaluated
over three popular public cloud providers (Amazon EC2,
Google Compute Engine, Microsoft Azure) to present how
various instance types impact the end-to-end throughput and
RTT of the proposed traffic management. We show significant
differences between various cloud providers that needs to be
taken into account by tenants when planning to move their
network functions to the cloud.
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