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Abstract— Physiological tremor is an involuntary and rhyth-
mic movement of the body specially the hands. The vibrations
in hand-held surgical instruments caused by physiological
tremor can cause unacceptable imprecision in microsurgery.
To rectify this problem, many adaptive filtering-based methods
have been developed to model the tremor to remove it from
the tip of microsurgery devices. The existing tremor modeling
algorithms such as the weighted Fourier Linear Combiner
(WFLC) algorithm and its extensions operate on the z, y,
and z dimensions of the tremor signals independently. These
algorithms are blind to the dynamic couplings between the
three dimensions. We hypothesized that a system that takes
these coupling information into account can model the tremor
with more accuracy compared to the existing methods. Tremor
data was recorded from five novice subjects and modeled with a
novel quaternion weighted Fourier Linear Combiner (QwFLC).
We compared the modeling performance of the proposed
QWwFLC with that of the conventional wFLC algorithm. Results
showed that QWFLC improves the modeling performance by
about 20% at the cost of higher computational complexity.

I. INTRODUCTION

Physiological tremor is an unintentional oscillatory
(roughly sinusoidal) movement of the body parts and is
mainly observed in human hands [1-3]. The physiological
hand tremor can be present in all healthy human beings and
typically ranges between 8Hz to 12Hz [1]. Although it is not
so much of problem for day to day task, it can cause major
imprecisions in microsurgeries. The microsurgical proce-
dures need surgeons to identify the tissues to be manipulated
looking through a microscope and navigate the surgical
tools in small volumes. Hence any oscillations due to such
physiological tremor can cause unintended manipulations on
the wrong place and result in tissue damage. For instance, it
can cause the tip of the device to oscillate by 50um in each
axis where a positioning accuracy of 10um is required [4].

A stand-alone steady robotic arm and robotic manipulators
were often proposed for better steadiness and precision [5].
The direct surgery however holds the demand over tele-
operated procedures as this involves direct correspondence
between the surgeon’s hand movement and his visual obser-
vation. In tele-operated procedures, there might be some time
lag between the surgeon’s decision and the action from the
actuator. Robotic surgery also limits surgeons natural feel and
lacks use of surgeon’s dexterity which can lead to inadequate
surgical performance [5]. Hence direct manual microsurgery
is preferred due to direct sensorimotor control and superior
feedback. These encourage scientists and engineers to cre-
ate effective tremor compensation system in surgical hand
held instruments for better precisions and greater surgical
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Fig. 1. A representative trace for the position of the tip of the microsurgical
device in the x axis during holding the device still in a fixed position (A)
and the physiological tremor calculated by bandpass filtering between 4Hz
and 20Hz in (B).

outcomes.

Research shows that natural upper-limb movement is often
a combination of regular sub movements between 1Hz to
4Hz [6]. The physiological tremor spectrum residing in a
higher frequency band and hence the voluntary movement
can easily be filtered out using a linear low-pass filter. In
order to achieve the sharp cut-off to allow only voluntary
movement through such filter needs larger number of taps.
This introduces a delay in the process [7] and renders linear
filter unsuitable for real-time microsurgery. Hand tremor is
quasi-periodic signal which amplitude and frequency is time
varying [2]. In Figure 1 a typical recording from hand whilst
holding an instrumented device and associated physiological
tremor signal are depicted

To attenuate the tremor at the tip of the hand-held device,
the device should sense its own motion, distinguish between
voluntary and tremulous movement, and then actuate the tip
in equal but opposite direction with no time delay [2, 4].
The adaptive noise cancelling frameworks based on the least
mean squares (LMS) algorithm have been extensively used
to track the unknown frequency and amplitudes of the tremor
from the primary motion (mixture of voluntary and tremulous
hand motion). The estimated signal further deducted from the
primary motion to extract only clean voluntary motion.

Although such an adaptive system is an ideal choice, for
it to function accurately, a reference signal that is correlated
with the true tremor needs to be fed to the filter. Hence,
the tremor signal is pre-filtered with digital filters prior
to the adaptive tracking system [1]. Due to quasi-periodic
characteristics, tremor was modeled with a truncated Fourier
series representation that tracks the unknown amplitude and



frequency of non-stationary tremor. The method was called
weighted Fourier linear combiner [1]. A second set of the
adaptive weights are repeatedly updated to approximate a
single frequency or multiple frequencies in tremor signal
with a running sum.

The existing mathematical frameworks such as weighted
Fourier linear combiner (WFLC) and its extensions treat the
3-d tremor signals as three independent one-dimensional
signals. Through correlation analysis, we have found the 3
dimensions are not independent time series and there exists
a subject-specific and dynamic coupling between channels.
Hence we hypothesized a hyper-complex adaptive system
which takes this cross-channel coupling information into
account can improve the modeling performance.

In this paper, we present a novel quaternion wFLC algo-
rithm to enable simultaneous modeling of tremor in the zyz
dimensions. We call it quaternion weighted Fourier linear
combiner (QWFLC). We briefly overview the existing wFLC
algorithm and development of proposed QWFLC. We test the
QwFLC and wFLC algorithms with tremor recordings of 5
healthy subjects; and compare the results obtained from both
algorithms.

II. METHODS

A. Fourier Linear Combiner (FLC)

With the FLC, Vaz et al. [8] demonstrated that any peri-
odic or quasi-periodic signal s of known main frequency wy
can be estimated $§ by adaptively combining sine and cosine
waves (1). FLC uses a truncated Fourier series representation

with its adaptive coefficients wy = [wlk,wlk, S We M,JT
with
M
§=") [wy, sin(rwok) + w4 s, cos(rwok)] ()
r=1

where k denotes the time, M is the order of the Fourier series
representing the measured signal s and {.}7 denotes the
vector transpose operation. By doing so, the FLC adapts to
the original signal amplitude and phase accurately. However,
FLC is not directly applicable to the case when s is the
tremor signal as exact tremor frequency is unknown and
is subject-specific and time-varying. Therefore the wFLC
algorithm was proposed [1].

B. Weighted Fourier Linear Combiner

wFLC can track single or multiple tremor frequencies
by modeling it as a running sum of an initial reference
frequency. This is done by replacing fixed wy with wo,
that the tracks spectrum of the tremor. The learning rates
o and pp govern the step size of the frequency and the
amplitude and phase updates, eventually determining the
speed of convergence. Mathematically,
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Fig. 2. The block diagram of the QWFLC algorithm. Symbol | denotes

the integration operation and ¥ and X represent quaternion summation and
vector multiplication, respectively.
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C. Quaternion weighted Fourier Linear Combiner

Our analysis showed that the tremor signal exhibits a
subject-specific coupling between dimension. The wFLC
algorithm is blind to this and does not benefit from any
cross-channel information. We exploited quaternion algebra,
modeled the 3-d tremor as a quaternion vector and developed
the QWFLC algorithm. Figure 2 depicts the block diagram
of the proposed algorithm.

We first combined the 3 individual xyz tremor components
5y, to form a pure quaternion signal Sk, (which approximates
Sk)l R

Sk = <§:c,7"ki + éy,?“kj + éz,'rkk (6)

where 4, j, and k are unit vectors representing the Cartesian
coordinates. Then, all wFLC formulae were recast in the
quaternion domain where all vectors are quaternion pure
vectors, for instance the adaptive filter weight V and the
error £. Hence the formulae for the QWFLC algorithm are:

& =Sk — WFS, (7)
and
Qs = Do, + 10(26,G" — G*E}) ®)
where
M . A
g= Z T(erSM+’r‘k - W]W*FT)« STk) (9)
r=1
and

Wis1 = Wi, + 11 (26:8; — Si &7, (10)



where {.}* denotes the vector conjugate transpose operation.

This expansion have been enabled by the recent work of
Cheong-Took and Mandic in [11] where quaternion LMS
(QLMS) was proposed and analytical derivations were pre-
sented. The QLMS algorithm incorporates both the pseudo-
covariance and the covariance while updating the filter
weights and hence the extra terms in equations (8) and
(9) e.g. £,G*. This property provides improvements in the
estimation compared to uni-dimensional and complex-valued
LMS.

In this formalism we kept po and pq fixed across all
channels. However, it is straightforward to augment the
QWwFLC to have channel-specific learning rates.

D. Performance Analysis

To quantify the modeling performance of both algo-
rithms we computed the normalized root mean square error
(nRMSE) defined by

L
Z (Xobs - Xest)2
nRMSE = | =2 - (11)
Z *Xvobs2
=1

where X,ps and X4 represent the observed and modeled
tremor signal and L denotes that length of the signal.

E. Experimental Setup

Tremor recordings were performed with the Micro Motion
Sensing System [3]. The resolution, minimum accuracy and
sampling rate of the recording system were 0.7 pm, 98%,
and 250 Hz [4]. Hand tremor recordings were performed for
stationary hand positions from 5 healthy subjects. Subjects
had their wrists rested on a comfortable seating position.
They were asked to hold an instrumented stylus between
their index finger and thumb, and were instructed to point
the laser light at the center of the platform for 5 seconds.
The stylus simulated a microsurgical tool. The experiment
was approved by local ethics committee.

In order to generate appropriate reference for adaptive
system we pre-filtered the tremor using a digital filter of pass-
band 4Hz-20Hz. This filtered out voluntary motion below
4Hz. The output of the band-pass filter was provided as a
reference to the adaptive system for tremor modeling.

IIT. RESULTS

Figure 3 depicts a typical modeling result. We have shown
the tremor recorded in the = axis and its predictions using
the QWFLC and wFLC algorithms. A closer look at the
figure confirms that the QWFLC can model the tremor more
accurately. In addition we calculated the cross-correlation
between the original signal and its predictions with the two
algorithm (Figure 3B). It can be seen that the time lag
between the original tremor signal and the QWFLC prediction
is smaller (by 1 lag) than that between the original signal and
wFLC prediction. Note that 1 time lag accounts for 4ms
(sampling rate: 250 Hz).
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Fig. 3. A representative trace for the position of the tip of the microsurgical
device in the z axis during holding the stylus still in a fixed position (A)
and the estimated cross-correlation between the original tremor signals and
QwWFLC and wFLC outputs in (B).
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Fig. 4. Performance comparison between the QWFLC and wFLC algo-
rithms in terms of the nRMSE parameter for different 1o and p1 values.

Figure 4 shows the average nRMSE results for all subjects
across all (xyz) dimensions; the only difference being that in
QWFLC the modeling was carried out in (zyz) concurrently
and in wFLC analysis was performed independently for each
channel and then the modeling errors in terms of the nRMSE
(eq. 11) index were averaged. It is clear from Figure 4 that
the QwWFLC improves the modeling performance by about
20%.



IV. CONCLUDING REMARKS

A new adaptive algorithm, namely the QwFLC, was
developed by extending the existing wFLC algorithm to
include cross-channel couplings. As a proof of principle, the
developed algorithm was applied to physiological tremor data
recorded from healthy subjects holding still an instrumented
stylus.

Preliminary analysis showed that not only QWFLC im-
proves the estimation performance by about 20%, it can
reduce the time lag between the predicted and actual tremor
which is of significant importance in real-life application.

Future work will include analysis of data recorded from
expert surgeons holding the stylus still as well the both
groups move the pen to track an instructed trajectory. An-
other area of work could be taking into account the force
by which the subjects held the stylus. The force data can be
included in the calculation as the real part of the quaternion
variable to model how 3-d tremor signal is modulated by
force. Our working hypothesis is that as the force increases
the tremor will decrease but that is subject-dependent, al-
though that may can reveal a non-linear interaction.

In addition, the proposed QWFLC structure could be
utilised in other applications such as, modelling of gait
analysis [9] and modeling of respiratory body motions [10].

The use of QWFLC will entail a significantly larger
computational load. Cheong and Mandic in [11] showed
that the computational complexity of the basic QLMS is
seven times that of the LMS. Future work will include
a complete analysis of computational complexity of the
developed algorithm and evaluating the feasibility of real-
time implementation.
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