
Biologically Inspired Genetic Algorithm to Minimize Idle Time of the Assembly

Line Balancing

Noraini Mohd Razali

School of Mechanical & Manufacturing Engineering

Dublin City University

Dublin 9, Ireland

norainimbr@ump.edu.my

John Geraghty

Enterprise Research Process Centre

Dublin City University

Dublin 9, Ireland

john.geraghty@dcu.ie

Abstract—Assembly line balancing (ALB) is a well-known

combinatorial optimization problem in production and

operations management area. Due to the NP-hard nature of the

ALB problem, many attempts have been made to solve the

problem efficiently. In this study, biologically inspired

evolutionary computing tool which is genetic algorithm (GA) is

adopted to solve the ALB problem with the objective of

minimizing the idle time in the workstation. The key issue in

solving ALB is how to generate a feasible task sequence which

does not violate the precedence constraints. This task

sequencing is a vital work to be solved prior assigning tasks to

workstation. In order to generate only feasible solution, a

repairing strategy based topological sort is integrated in the

GA procedure. The ALB test problems benchmarked from the

literature are used in the study and the computational results

show that the proposed approach is capable to obtain feasible

solution with minimum idle time for a simple model assembly

line.

Keywords-genetic algorithm; topological sort; assembly line

balancing; task sequencing; idle time

I. INTRODUCTION

Assembly lines are the most commonly used method in a
mass production environment, because they allow the
assembly of complex products by workers with limited
training, by dedicated machines or by robots. An assembly
line comprises a series of successive workstations connected
together by a material handling system in which the
components are consecutively assembled into a final
product. A workstation is a physical area where a worker
with tools and machines, or an unattended machine like
robot performs a particular set of tasks. The components are
processed depending on a set of tasks (operations), and they
are performed at each workstation during a fixed time called
as cycle time. The assembly line balancing (ALB) problem is
to assign a set of tasks to workstation according to given
precedence relationships among tasks and specific
restrictions which aim to optimize one or more objectives,
such as minimizing the number of stations and minimizing
the cycle time [1]. Assembly line balancing occurs whenever
an assembly line is reconfigure, redesigned or adjusted to
match the demand of new product or capacity. The main
focus of ALB problem is to obtain a task sequence which is

feasible, minimizes workstation and ensures minimum idle
times in the workstation so that the efficiency of the line is
maximized.

Due to computational complexity of the problem, ALB is
known to be an NP-hard problem [2]. The complexity of the
ALB problem makes the optimum seeking methods
impractical for problems of more than a few tasks or
workstations. The number of the possible sequences is
usually a factorial function of the number of tasks. This fact
obviously leads to a combinatorial explosion of the number
of alternatives to analyze for checking and selecting the best
assembly sequence and, consequently, to unacceptable
computation time. Many attempts have been made in the
literature to solve the ALB problem using exact seeking
methods, such as linear programming [3], integer
programming [4], dynamic programming [5], and branch and
bound approaches [6]. However, none of these methods has
proven to be of practical use for large problems due to their
computational inefficiency. Hence, numerous research
efforts have been directed towards the development of
heuristics and metaheuristics such as simulated annealing
[7], tabu search [8] and genetic algorithms [9].

Genetic algorithms (GA) are a well-known optimization
technique which appears to have been inspired by biology.
The GA is designed to mimic nature’s problem solving
strategies. The techniques have powerful performance for
such combinatorial optimization problems, especially for
sequencing problems such as TSP, flow-shop scheduling and
so on. However, when apply GA to synthesis practical
sequencing problems, the infeasible chromosomes are often
produced during crossover and mutation operations.
Therefore, keeping feasibility of chromosomes might be
considered as important issue when applying genetic
algorithm. In this paper, a repairing method based on
topological sort is integrated with GA in order to handle
precedence constraints and generate only feasible solution
during the evolutionary process. The paper consists of 5
sections. Following the introduction is the review of the
ALB problem in section 2. Section 3 is dedicated to the
design of the genetic algorithms to solve ALB problem. The
results of the experiments are reported in section 4. Finally,
conclusions are drawn.

II. REVIEW OF ASSEMBLY LINE BALANCING

Assembly line balancing (ALB) problem was first
introduced by Bryton [10] and the first scientific study was
published by Salveson [4]. The problem is to assign a set of
tasks to workstation with some measure of performance to be
optimized under the following restrictions: (i) each task is
assigned to one and only one workstation, (ii) the precedence
relationship among the tasks cannot be violated, and (iii) the
sum of the task times of any workstation should not exceed
the cycle time [11]. Since the task times allotted to
workstations may be unequal, parts are produced at different
speeds on the line. Accordingly, stations may either be
starved or a queue may build up in front of a station. To
regulate the flow of parts, assembly lines are often paced. In
a paced line, each workstation is given a fixed amount of
time called cycle time. The cycle time of an assembly line is
predetermined by a desired production rate. Such production
rate is set so that the desired amount of end product is
produced within a certain time period. Material handling
systems are designed so that after every certain cycle times,
the system indexes, advancing the part to the next station. If
a workstation finishes in less than cycle time given, it is idle
for the remaining period. The difference between the time
required by any station to complete its operations and the
cycle time is called the idle time of the station. It is
conventional to take the sum of all station idle times (called
total idle time) as a measure of the efficiency of the design of
a line.

The ALB is usually presented by the precedence graph.
Consider a precedence graph in Figure 1 which specifies the
order or sequence in which the task must be performed. The
number in each circle refers task number, and the number
above the circle refers the duration of the operation (task).
The arrow represents directions of flow of operation.

Figure 1. The precedence graph of simple assembly line.

The variable of interest for the ALB consists of number of
tasks (n), processing time, precedence relationships, and the
cycle time (CT). The goals of the ALB problems are to
minimize the number of workstations (m), minimize the idle
time (Tid), and maximize the line efficiency (E). Salveson [4]
was the first to give a mathematical form to the problem and
proposed a linear integer programming model to solve it.
Since then a large number of articles have been published,
detailing the advances in this field, and articles reviewing the
models proposed are published periodically. Formulations of
workstation, idle time, and line efficiency are given in (1) to
(3) respectively, where W is the total processing time and Ti
is the processing time of the ith workstation.

/m W CT= (1)

1

()
m

id i

i

T CT T
=

= −∑ (2)

1

/()
m

i

i

E T mCT
=

=∑ (3)

III. GENETIC ALGORITHM PROCEDURE FOR ALB

PROBLEM

The genetic algorithm (GA) introduced by J. Holland in
1975 [12] with the inspiration of biology evolution is a
stochastic techniques which become more and more popular
for searching the optimal or near optimal solutions to large-
scale optimization problems. The biological system’s
robustness, flexibility, efficiency encouraged scientists led
by John Holland to search for artificial systems. The GA
starts with a set of random solutions called population, and
each individual in the population is called chromosome. The
chromosomes evolve through successive iterations, called
generations, during which the chromosomes are evaluated by
means of measuring their fitness. To create the next
generation, new chromosomes called offspring are formed
by two genetic operators, i.e., crossover (merging two
chromosomes) and mutation (modifying a chromosome). A
new generation is formed by selection, which means that
chromosomes with higher fitness values have higher
probability of being selected to survive. After several
generations, the algorithm converges to the best
chromosome, which hopefully represents the optimal or near
optimal solution to the problem.

In order to find optimal solution to the ALB problem via

GA methods, five critical elements are required. First, an

appropriate representation is required. This is accomplished

by representing a task sequence in terms of chromosome.

Second, a repair method is needed to restore infeasible

chromosome generated in the initial population. Third, a

fitness function is required to evaluate the quality of

different potential solutions. Forth, a set of genetic operators

(i.e., parent selection, crossover and mutation) which

generate new chromosomes as a function of older

chromosomes must be defined. Finally, algorithm

parameters must be decided. Below are the steps in the GA

procedure for ALB problem;

1. Chromosome representation

2. develop method to obtain feasible sequence

3. develop the fitness function

4. develop a reproduction method

5. set up GA parameters

A. Chromosome Representation

The first step in constructing a genetic algorithm for ALB
problem is to define a genetic representation (encoding).
Before a genetic algorithm can be put to work on any
problem, a method is needed to represent potential solutions
to that problem in a form that a computer can process. One
common approach is to encode solutions as binary strings:

1

2

3 8

4

5

6

7

9

4

3

7

3

4

4

3

3

9
1

2

3 8

4

5

6

7

9

4

3

7

3

4

4

3

3

9

sequences of 1’s and 0’s. Another similar approach is to
represent solutions as arrays of integers or decimal numbers,
or to represent chromosomes as strings of letters. The path
representation also called permutation representation is
probably the most natural representation for sequencing
problem. The length of a chromosome is the number of tasks
to be processed in the assembly line. Since the chromosomes
are generated randomly, the possibility of which generated
chromosomes are infeasible due to breaking of one or more
precedence constraint is greater. The procedure of repairing
infeasible chromosome is necessary to convert the infeasible
chromosomes into feasible ones. The chromosomes in the
initial population are all randomly generated. The individual
will then be repaired by topological sort procedure in order
to obtain feasible sequence.

B. Repair Method for Feasible Solution

The key issue of the sequencing problem is to find an
appropriate order of tasks or operations. This is a
permutation problem in nature. Due to the existence of
precedence constraints among tasks, an arbitrary permutation
may yield an infeasible order. The approach to overcome
generating invalid sequence is based on a topological sort,
which allows the GA to generate only valid solutions in each
generation. The topological sort is a node ordering in a
directed graph such that if there is a path from a node vi and a
node vj, then vj appears after vi in the ordering [13]. In a
directed graph, the nodes represent tasks and the edges
represent the precedence relations between tasks. More than
single sequence of tasks can be derived from a directed graph
using the topological sort technique. The procedure to sort
nodes consists of selecting and storing any node that has no
incoming edges. Then the nodes and all the edges leading out
from the node are removed from the graph. Thus the path (vi,
vj) in the directed graph shows that node vi must be executed
or scheduled before node vj. If there is more than one node
that has no incoming edges, a few ways can be performed in
order to select the node such as by random selection,
comparison of lower number of nodes and comparison of
higher number of nodes. Then, the edges that start from the
selected nodes are removed. This procedure is continuous
until all nodes are selected. The procedure of the repair
mechanism using topological sort can be summarized as
below;

Step 1: form an initial available set of nodes having no

predecessors, and create an empty string.

Step 2: terminate, if the available set is empty. Otherwise,

go to step 3.

Step 3: select a node from the available set at random,

and append it to the string.
Step 4: update the available set by removing the selected
node and by adding every immediate successor of the
node if all the immediate predecessors of the successor are
already in the string. Go to step 2.

The infeasible chromosomes in the initial population as

well as the offspring’s chromosomes created from the

reproduction process need to be repaired before going

through the evaluation process. Consider Figure 1 and

infeasible chromosome (1-6-5-3-2-4-7-9-8). TABLE I

shows the step-by-step results after fixing this chromosome.

TABLE I. REPAIR MECHANISM WITH RANDOM SELECTION

OF NODES (TASKS)

Available

nodes(tasks)

Infeasible

chromosome

Updated

sequence

{1} 1 6 5 3 2 4 7 9 8 1

{2,3} 1 6 5 3 2 4 7 9 8 1 3

{2,5,6} 1 6 5 3 2 4 7 9 8 1 3 2

{4,5,6} 1 6 5 3 2 4 7 9 8 1 3 2 5

{4,6} 1 6 5 3 2 4 7 9 8 1 3 2 5 4

{6,7} 1 6 5 3 2 4 7 9 8 1 3 2 5 4 7

{6} 1 6 5 3 2 4 7 9 8 1 3 2 5 4 7 6

{8} 1 6 5 3 2 4 7 9 8 1 3 2 5 4 7 6 8

{9} 1 6 5 3 2 4 7 9 8 1 3 2 5 4 7 6 8 9

C. Fitness Evaluation Function

Fitness evaluation is to check the solution value of the

objective function subject to the problem constraints. In this

case, the objective function is simply to minimize the total

idle time.

Minimize

1

()
m

id i

i

T CT T
=

= −∑

Subject to precedence constraint

D. Genetic Operators

The genetic operators mimic the process of heredity of

genes to create new offspring at each generation. The

operators are used to alter the genetic composition of

individuals during representation. In essence, the operators

perform a random search, and cannot guarantee to yield an

improved offspring. There are three common genetic

operators: selection, crossover and mutation.

Selection for Reproduction – In keeping with the ideas of

natural selection, we assume that stronger individuals, that

is, those with higher fitness values, are more likely to mate

than the weaker ones. One way to simulate this is to select

parents with a probability that is directly proportional to

their fitness values. This method is called the roulette wheel

method. The idea behind the roulette wheel selection

technique is that each individual is given a chance to

become a parent in proportion to its fitness. The chances of

selecting a parent can be seen as spinning a roulette wheel

with the size of the slot for each parent being proportional to

its fitness. Obviously, those with the largest fitness (slot

sizes) have more chance of being chosen. By repeating this

each time an individual needs to be chosen, the better

individuals will be chosen more often than the poorer ones,

thus fulfilling the requirements of survival of the fittest. The

basic advantage of roulette wheel selection is that it discards

none of the individuals in the population and gives a chance

to all of them to be selected [14]. Therefore, diversity in the

population is preserved.

Crossover – The crossover operator is develops to change

the order between the task in a chromosome solution.

Through crossover, two parents chromosomes obtained

from selection process are mated at a given probability, and

produce two offspring (new chromosomes). Linear order

crossover (LOX), a modified version of Order crossover

(OX) is used in this study. The LOX operator treats the

chromosome as a linear entity. For this operator, the swap

occurs in the same fashion as it occurs in the OX operator,

but when sliding the parent values around to fit in the

remaining open slots of the child chromosome, they are

allowed to slide to the left or right. This allows the

chromosome to maintain its relative ordering and at the

same time preserve the beginning and ending values. In the

below example, after the values are swapped, there are two

open spaces in the front of the chromosome and three open

spaces at the end. The algorithm then goes through Parent 1

and finds the first two values that were not part of the swap,

in this example they are 5 and 4. These values are shifted

left to fill the first two chromosome locations. The final

three locations are filled in a similar manner.

 Parent 1 = 3 9|5 4 6 2|7 1 8

 Parent 2 = 7 4|3 8 9 2|1 5 6

Offspring 1 = * * 3 8 9 2 * * *

Offspring 2 = * * 5 4 6 2 * * *

Offspring 1 = 5 4 3 8 9 2 6 7 1

Offspring 2 = 7 3 5 4 6 2 8 9 1

Mutation – In order to avoid from getting stuck onto a local

minimum, population diversity is required to be kept up to

some extent. In genetic algorithms, this is achieved by the

help of a mutation mechanism, which causes some sudden

changes on the traits of individuals according to a

predefined mutation probability parameter. Mutation

operation is performed in a single chromosome to create a

single new offspring by different ways either by flipping,

inserting, swapping or sliding the allele values at two

randomly chosen gene positions. For this study, inversion

mutation (i.e., flipping) is applied to an individual after went

through crossover process. The inversion mutation operator

randomly selects two cut points in the chromosome, and it

reverses the subtour between these two cut points. Suppose

that the first cut point is chosen between task 9 and task 5,

and the second cut point between the 6
th

 and 7
th

 task. For

example, consider the chromosome

Parent: 3 9 5 4 6 2 7 1 8

This result in

Offspring: 3 9 2 6 4 5 7 1 8

E. Genetic Parameters

One of the main difficulties in building a practical GA is in

choosing suitable values for parameters such as population

size, crossover rate and mutation rate. The selections of

parameter values are very depend on the problem to be

solved.

Population size – The population size is the number of

candidate solutions in any one generation. In principle, the

population size should be sufficiently large such that the

population associated with the solution space can be

adequately represented. A larger population, however, needs

larger computation cost in terms of memory requirement

and computation time. The population size in this study is

set to be approximately half the total number of tasks.

Crossover rate, Pc – Crossover probability or crossover rate

is how often will be crossover performed. If there is no

crossover, offspring is exact copy of parents, but this does

not mean that new generation (population) consists of the

same old individual. If there is a crossover, offspring is

made from parts of parents’ chromosome. Most GA

literature suggests that crossover rate should be set between

0.5 and 1.0.

Mutation rate, Pm – Mutation rate is how often will be parts

of chromosome mutated. If there is no mutation, offspring is

taken after crossover or copy without any change. If

mutation is performed, part of chromosome is changed.

Generally, mutation acts as a background operator that

provides a small amount of random search. Its purpose is to

maintain diversity within the population and inhibit

premature convergence due to loss of information. Mutation

rate is often small which is in the range of 0.001 to 0.1.

Stopping condition – Since GA is a stochastic search model,

it is quite difficult to formally specify a convergence

criterion, as it is often observed that the fitness of a

population may remain static for a number of generations

before a superior string is found. If the GA has been

correctly implemented, the population will evolve over

successive generations so that the fitness of the best and

average chromosome in each generation decreases/increases

towards the global optimum. Commonly, the algorithm

terminates when either a maximum number of generations

has been produced, or a satisfactory fitness level has been

reached for the population. If the algorithm has terminated

due to a maximum number of generations, a satisfactory

solution may or may not have been reached. In this study,

numerical simulation experiments will be conducted based

on a fixed maximum number of generations.

Generational gap – It is possible that the chromosome with

the highest fitness value in a generation may not survive

selection process. A parameter called the generation gap

was defined to control the fraction of the population to be

replaced in each generation. Therefore 10% of the best

fitness values in the population is kept and preserve for the

crossover process.

IV. EXPERIMENTAL RESULTS & DISCUSSIONS

In this section, we present computational experiment
results to evaluate the effectiveness of our proposed
approach. For all experiments, the GA procedure utilize
roulette wheel selection, linear order crossover and inversion
mutation to generate new candidate solutions in every
generation. The proposed algorithms are coded in Matlab
2009b and run on a Pentium Core 2 Duo PC with 2.0 GHz
and 2.0 GB RAM under Windows XP operating system. For
each experiment, 10 trials of simulation are carried out and
the minimum idle time is taken as an optimal solution. As
the computational results were based on different computer
platforms or hardware, we do not conduct performance
comparison between the proposed GA and the other
algorithms.

The proposed GA was tested on a two benchmark single-
model ALB problems. The first experiment involve a simple
ALB problem from Scholl and Becker [15] which consists of
10 tasks and 10 precedence constraints as depicted in Figure
2. The total tasks time and the predetermined cycle time are
48 min and 11 min, respectively. The parameter setting of
the GA which is Pc and Pm is 0.6 and 0.1 respectively. The
population size is set to be half of the instance size and
maximum number of generation is set as a termination
criteria. TABLE II shows the optimal solution obtained from
the proposed GA in which the minimum idle time and
number of station are 7 min and 5 stations respectively.
These results are similar with the one obtained by [15] which
used heuristic technique in their work. This confirms that the
proposed GA procedure used in this study is well adapted to
solve ALB problem.

Figure 2. Precedence graph of 10 tasks

TABLE II. OPTIMAL SOLUTION FOR PROBLEM 1

Optimal task sequence: 1,3,2,4,5,6,7,8,9,10

Station Assigned Task
Processing

Time (min)

Idle Time

(min)

1 1,3 11 0

2 2,4 11 0

3 5,6 9 2

4 7,8 6 5

5 9,10 11 0

Total Idle Time, Tid 7

The line efficiency, E=87.27%

The second experiment has use a benchmark data sets
from Scholl [16] called Gunther problem which consists of
35 tasks and 45 precedence constraints as shown in Figure 3.
The total tasks time and the predetermined cycle time of the
Gunther problem are 483 min and 60 min, respectively. The
GA parameter setting used are as follows; Pc=0.9, and
Pm=0.01. The population size is set to be half of the instance
size. The results in terms of the number of stations, total idle
time, and the line efficiency are compared with the results
obtained by S. Suwannarongsri and D. Puangdownreong [8]
which used Tabu search to simulate the same problem.
TABLE III shows the results obtained from the proposed GA
used in this study. The utilization of 9 workstations gives a
great reduction in idle time as well as improving the line
efficiency. The idle time reduces 51.28% and line efficiency
improves about 10% of the results reported from [8].
Therefore the proposed GA procedure use in this study
outperforms the optimal solution obtained from the previous
work. The performance graph in Figure 4 shows the best idle
time found by the algorithm in each generation. The idle
time reduced towards optimal solution as the generation
increased and finally converged at a certain generation. This
indicates that the genetic operators such as crossover and
mutation used in the proposed algorithm are effective.

Figure 3. Precedence graph of Gunther problem

TABLE III. OPTIMAL SOLUTION FOR PROBLEM 2

Optimal task sequence:

1,10,5,6,8,9,13,2,3,4,7,14,15,16,12,18,19,11,17,20,21,30,22,23,31,32,24,

25,26,27,34,28,29,33,35

Station Assigned Task
Processing

Time (min)

Idle Time

(min)

1 1,10 59 1

2 5,6,8,9 47 13

3 13,2,3,4,7,14 57 3

4 15,16 48 12

5 12,18,19 51 9

6 11,17,20,21 60 0

7 30,22,23,31,32,24 60 0

8 25,26,27,34,28,29 59 1

9 33,35 42 18

Total Idle Time, Tid 57

The line efficiency, E=89.44%

29

1

2 3 4 11

65

10

12

18 19

14

7

8 9

15 16

17

20

21

22 23

25

30

26

24

27

28

29

33

35

34

32
31

13

3

6 14

5 22 23

40

2

1

2

55

29

2

192

2

19 29

225

2

30

30

6

10

23

16 23

55

5

40

2

29

1

2 3 4 11

65

10

12

18 19

14

7

8 9

15 16

17

20

21

22 23

25

30

26

24

27

28

29

33

35

34

32
31

13

3

6 14

5 22 23

40

2

1

2

55

29

2

192

2

19 29

225

2

30

30

6

10

23

16 23

55

5

40

2

1

3 4 5

2 7

6

8 9 10

5 5 5 5

2 9 2

466

1

3 4 5

2 7

6

8 9 10

5 5 5 5

2 9 2

466

Performance graph

40

50

60

70

80

90

100

110

120

130

0 10 20 30 40 50

Generations

Id
le

 t
im

e

Figure 4. Performance graph for Gunther problem.

V. CONCLUSIONS

In this study, we have demonstrated how the genetic
algorithm approach combined with a topological sort
procedure can be applied for solving ALB problems with the
objective that minimizes the total idle time in the
workstation. The role of topological sort is to generate
feasible task sequence while the GA is to further improve the
quality of the solution. We presented two benchmark
problems taken from the previous work and compare our
results with them. The numerical results revealed that our
approach is superior in terms of quality of the solution. The
proposed GA well address the number of tasks assigned for
each workstation giving a minimum idle time in the
workstation as well as minimizes the number of stations for a
given cycle time. The result of such solution would be
increased production efficiency. The presented GA approach
can thus be seen as the ideal compromise of optimizing
complex and large problem and is thus highly
recommendable for practical applications.

Our study is only concern on a simple model of an
assembly line with a single objective optimization. Future
research direction could be to further develop the proposed
approach for solving different assembly line such as mixed-
model production, two-sided lines and U-shaped lines, and
might also to consider a multi-objective optimization for
various ALB problems.

ACKNOWLEDGMENT

This study was supported by the Universiti Malaysia
Pahang (UMP), Malaysia in collaboration with Dublin City
University, Ireland.

REFERENCES

[1] S. Ghosh and R. J. Gagnon, “A comprehensive literature review and
analysis of the design, balancing and scheduling of assembly
systems,” International Journal of Production Research, vol. 27, Issue
4, 1989, pp. 637-670.

[2] I. Baybars, “A survey of exact algorithms for the simple assembly
line balancing problem,” Management Science, 1986, 32(8): 909-932.

[3] E. H. Bowman, “Assembly line balancing by linear programming,”
Operations Research, 8(3), 1960, pp. 385-389.

[4] M. E. Salveson, “The assembly line balancing problem,” Journal of
Industrial Engineering, 6, 1955, pp. 18-25.

[5] M. Held, R. M. Karp, and R. Shareshian, “ Assembly line balancing-
Dynamic programming with precedence constraints,” Operations
Research, 11, 1963, pp. 442-459.

[6] S. B. Liu, K. M. Ng, and H. L. Ong, “Branch-and-bound algorithms
for simple assembly line balancing problem,” Int. Journal Adv.
Manufacturing Technology, 2008, 36:169-177, doi:10.1007/s00170-
006-0821-y.

[7] P. McMullen and G. Frazier, “Using simulated annealing to solve a
multiobjective assembly line balancing problem with parallel work
stations,” International Journal of Production Research, vol. 44, 2006,
pp. 27-42.

[8] S. Suwannarongsri and D. Puangdownreong, “Optimal assembly line
balancing using tabu search with partial random permutation
technique,” International Journal of Management Science and
Engineering Management, vol. 3, 2003, No. 1, pp. 3-18.

[9] J. Rubinovitz and G. Levitin, “Genetic algorithm for line balancing,”
International Journal of Production Economics, 41, pp. 343-354.

[10] B. Bryton, “Balancing of a continuous production line,” M.S. Thesis,
Northwestern University, Evanson, ILL, 1954.

[11] U. Ozcan nd B. Toklu, “Multiple-criteria decision-making in two-
sided assembly line balancing: A goal programming and a fuzzy goal
programming models,” Computers & Operations Research, vol. 36,
2009, pp. 1955-1965.

[12] J. H. Holland, “Adaptation in natural and artificial system,” Ann
Arbor, Michigan: The University of Michigan Press, 1975

[13] C. Moon, J. Kim, G. Choi, and Y. Seo, “An efficient genetic
algorithm for the traveling salesman problem with precedence
constraints,” European Journal of Operational Research, vol. 140,
2002, pp. 606-617.

[14] D.E. Goldberg and K. Deb, A comparative analysis of selection
schemes used in genetic algorithms, in: G.J.E. Rawlins (Ed.),
Foundations of Genetic Algorithms, Morgan Kaufmann, Los Altos,
1991, pp.69–93.Hdgjhd

[15] A. Scholl and C. Becker, “State-of-the-art exact and heuristic solution
procedures for simple assembly line balancing,” European Journal of
Operational Research, vol. 168, 2006, pp. 666-693.

[16] A. Scholl, “Data of assembly line balancing problems”, TH
Darmstadt, http://www.assembly-line-balancing.de/

