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Abstract—Assembly line balancing (ALB) is a well-known 

combinatorial optimization problem in production and 

operations management area. Due to the NP-hard nature of the 

ALB problem, many attempts have been made to solve the 

problem efficiently. In this study, biologically inspired 

evolutionary computing tool which is genetic algorithm (GA) is 

adopted to solve the ALB problem with the objective of 

minimizing the idle time in the workstation. The key issue in 

solving ALB is how to generate a feasible task sequence which 

does not violate the precedence constraints. This task 

sequencing is a vital work to be solved prior assigning tasks to 

workstation. In order to generate only feasible solution, a 

repairing strategy based topological sort is integrated in the 

GA procedure. The ALB test problems benchmarked from the 

literature are used in the study and the computational results 

show that the proposed approach is capable to obtain feasible 

solution with minimum idle time for a simple model assembly 

line. 

Keywords-genetic algorithm; topological sort; assembly line 

balancing;  task sequencing; idle time 

I.  INTRODUCTION 

Assembly lines are the most commonly used method in a 
mass production environment, because they allow the 
assembly of complex products by workers with limited 
training, by dedicated machines or by robots. An assembly 
line comprises a series of successive workstations connected 
together by a material handling system in which the 
components are consecutively assembled into a final 
product. A workstation is a physical area where a worker 
with tools and machines, or an unattended machine like 
robot performs a particular set of tasks. The components are 
processed depending on a set of tasks (operations), and they 
are performed at each workstation during a fixed time called 
as cycle time. The assembly line balancing (ALB) problem is 
to assign a set of tasks to workstation according to given 
precedence relationships among tasks and specific 
restrictions which aim to optimize one or more objectives, 
such as minimizing the number of stations and minimizing 
the cycle time [1]. Assembly line balancing occurs whenever 
an assembly line is reconfigure, redesigned or adjusted to 
match the demand of new product or capacity. The main 
focus of ALB problem is to obtain a task sequence which is 

feasible, minimizes workstation and ensures minimum idle 
times in the workstation so that the efficiency of the line is 
maximized. 

Due to computational complexity of the problem, ALB is 
known to be an NP-hard problem [2]. The complexity of the 
ALB problem makes the optimum seeking methods 
impractical for problems of more than a few tasks or 
workstations. The number of the possible sequences is 
usually a factorial function of the number of tasks. This fact 
obviously leads to a combinatorial explosion of the number 
of alternatives to analyze for checking and selecting the best 
assembly sequence and, consequently, to unacceptable 
computation time. Many attempts have been made in the 
literature to solve the ALB problem using exact seeking 
methods, such as linear programming [3], integer 
programming [4], dynamic programming [5], and branch and 
bound approaches [6]. However, none of these methods has 
proven to be of practical use for large problems due to their 
computational inefficiency. Hence, numerous research 
efforts have been directed towards the development of 
heuristics and metaheuristics such as simulated annealing 
[7], tabu search [8] and genetic algorithms [9]. 

Genetic algorithms (GA) are a well-known optimization 
technique which appears to have been inspired by biology. 
The GA is designed to mimic nature’s problem solving 
strategies. The techniques have powerful performance for 
such combinatorial optimization problems, especially for 
sequencing problems such as TSP, flow-shop scheduling and 
so on. However, when apply GA to synthesis practical 
sequencing problems, the infeasible chromosomes are often 
produced during crossover and mutation operations. 
Therefore, keeping feasibility of chromosomes might be 
considered as important issue when applying genetic 
algorithm. In this paper, a repairing method based on 
topological sort is integrated with GA in order to handle 
precedence constraints and generate only feasible solution 
during the evolutionary process. The paper consists of 5 
sections. Following the introduction is the review of the 
ALB problem in section 2. Section 3 is dedicated to the 
design of the genetic algorithms to solve ALB problem.  The 
results of the experiments are reported in section 4. Finally, 
conclusions are drawn. 



II. REVIEW OF ASSEMBLY LINE BALANCING 

Assembly line balancing (ALB) problem was first 
introduced by Bryton [10] and the first scientific study was 
published by Salveson [4]. The problem is to assign a set of 
tasks to workstation with some measure of performance to be 
optimized under the following restrictions: (i) each task is 
assigned to one and only one workstation, (ii) the precedence 
relationship among the tasks cannot be violated, and (iii) the 
sum of the task times of any workstation should not exceed 
the cycle time [11]. Since the task times allotted to 
workstations may be unequal, parts are produced at different 
speeds on the line. Accordingly, stations may either be 
starved or a queue may build up in front of a station. To 
regulate the flow of parts, assembly lines are often paced. In 
a paced line, each workstation is given a fixed amount of 
time called cycle time. The cycle time of an assembly line is 
predetermined by a desired production rate. Such production 
rate is set so that the desired amount of end product is 
produced within a certain time period. Material handling 
systems are designed so that after every certain cycle times, 
the system indexes, advancing the part to the next station. If 
a workstation finishes in less than cycle time given, it is idle 
for the remaining period. The difference between the time 
required by any station to complete its operations and the 
cycle time is called the idle time of the station. It is 
conventional to take the sum of all station idle times (called 
total idle time) as a measure of the efficiency of the design of 
a line. 

The ALB is usually presented by the precedence graph. 
Consider a precedence graph in Figure 1 which specifies the 
order or sequence in which the task must be performed. The 
number in each circle refers task number, and the number 
above the circle refers the duration of the operation (task). 
The arrow represents directions of flow of operation. 

 

Figure 1.  The precedence graph of simple assembly line. 

The variable of interest for the ALB consists of number of 
tasks (n), processing time, precedence relationships, and the 
cycle time (CT). The goals of the ALB problems are to 
minimize the number of workstations (m), minimize the idle 
time (Tid), and maximize the line efficiency (E). Salveson [4] 
was the first to give a mathematical form to the problem and 
proposed a linear integer programming model to solve it. 
Since then a large number of articles have been published, 
detailing the advances in this field, and articles reviewing the 
models proposed are published periodically. Formulations of 
workstation, idle time, and line efficiency are given in (1) to 
(3) respectively, where W is the total processing time and Ti 
is the processing time of the ith workstation. 
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III. GENETIC ALGORITHM PROCEDURE FOR ALB 

PROBLEM 

The genetic algorithm (GA) introduced by J. Holland in 
1975 [12] with the inspiration of biology evolution is a 
stochastic techniques which become more and more popular 
for searching the optimal or near optimal solutions to large-
scale optimization problems. The biological system’s 
robustness, flexibility, efficiency encouraged scientists led 
by John Holland to search for artificial systems. The GA 
starts with a set of random solutions called population, and 
each individual in the population is called chromosome. The 
chromosomes evolve through successive iterations, called 
generations, during which the chromosomes are evaluated by 
means of measuring their fitness. To create the next 
generation, new chromosomes called offspring are formed 
by two genetic operators, i.e., crossover (merging two 
chromosomes) and mutation (modifying a chromosome). A 
new generation is formed by selection, which means that 
chromosomes with higher fitness values have higher 
probability of being selected to survive. After several 
generations, the algorithm converges to the best 
chromosome, which hopefully represents the optimal or near 
optimal solution to the problem. 

In order to find optimal solution to the ALB problem via 

GA methods, five critical elements are required. First, an 

appropriate representation is required. This is accomplished 

by representing a task sequence in terms of chromosome. 

Second, a repair method is needed to restore infeasible 

chromosome generated in the initial population. Third, a 

fitness function is required to evaluate the quality of 

different potential solutions. Forth, a set of genetic operators 

(i.e., parent selection, crossover and mutation) which 

generate new chromosomes as a function of older 

chromosomes must be defined. Finally, algorithm 

parameters must be decided. Below are the steps in the GA 

procedure for ALB problem;      

 

1. Chromosome representation 

2. develop method to obtain feasible sequence 

3. develop the fitness function 

4. develop a reproduction method 

5. set up GA parameters 

A. Chromosome Representation 

The first step in constructing a genetic algorithm for ALB 
problem is to define a genetic representation (encoding). 
Before a genetic algorithm can be put to work on any 
problem, a method is needed to represent potential solutions 
to that problem in a form that a computer can process. One 
common approach is to encode solutions as binary strings: 
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sequences of 1’s and 0’s. Another similar approach is to 
represent solutions as arrays of integers or decimal numbers, 
or to represent chromosomes as strings of letters. The path 
representation also called permutation representation is 
probably the most natural representation for sequencing 
problem. The length of a chromosome is the number of tasks 
to be processed in the assembly line. Since the chromosomes 
are generated randomly, the possibility of which generated 
chromosomes are infeasible due to breaking of one or more 
precedence constraint is greater. The procedure of repairing 
infeasible chromosome is necessary to convert the infeasible 
chromosomes into feasible ones. The chromosomes in the 
initial population are all randomly generated. The individual 
will then be repaired by topological sort procedure in order 
to obtain feasible sequence. 

B. Repair Method for Feasible Solution 

The key issue of the sequencing problem is to find an 
appropriate order of tasks or operations. This is a 
permutation problem in nature. Due to the existence of 
precedence constraints among tasks, an arbitrary permutation 
may yield an infeasible order. The approach to overcome 
generating invalid sequence is based on a topological sort, 
which allows the GA to generate only valid solutions in each 
generation. The topological sort is a node ordering in a 
directed graph such that if there is a path from a node vi and a 
node vj, then vj appears after vi in the ordering [13]. In a 
directed graph, the nodes represent tasks and the edges 
represent the precedence relations between tasks. More than 
single sequence of tasks can be derived from a directed graph 
using the topological sort technique. The procedure to sort 
nodes consists of selecting and storing any node that has no 
incoming edges. Then the nodes and all the edges leading out 
from the node are removed from the graph. Thus the path (vi, 
vj) in the directed graph shows that node vi must be executed 
or scheduled before node vj. If there is more than one node 
that has no incoming edges, a few ways can be performed in 
order to select the node such as by random selection, 
comparison of lower number of nodes and comparison of 
higher number of nodes. Then, the edges that start from the 
selected nodes are removed. This procedure is continuous 
until all nodes are selected. The procedure of the repair 
mechanism using topological sort can be summarized as 
below; 

Step 1: form an initial available set of nodes having no 

predecessors, and create an empty string. 

Step 2: terminate, if the available set is empty. Otherwise, 

go to step 3. 

Step 3: select a node from the available set at random, 

and append it to the string. 
Step 4: update the available set by removing the selected 
node and by adding every immediate successor of the 
node if all the immediate predecessors of the successor are 
already in the string. Go to step 2. 

 
The infeasible chromosomes in the initial population as 

well as the offspring’s chromosomes created from the 

reproduction process need to be repaired before going 

through the evaluation process. Consider Figure 1 and 

infeasible chromosome (1-6-5-3-2-4-7-9-8). TABLE I 

shows the step-by-step results after fixing this chromosome. 

TABLE I.  REPAIR MECHANISM WITH RANDOM SELECTION 

OF NODES (TASKS) 

Available 

nodes(tasks) 

Infeasible  

chromosome 

Updated  

sequence 

   
{1} 1 6 5 3 2 4 7 9 8 1 

{2,3} 1 6 5 3 2 4 7 9 8 1 3 

{2,5,6} 1 6 5 3 2 4 7 9 8 1 3 2 

{4,5,6} 1 6 5 3 2 4 7 9 8 1 3 2 5 

{4,6} 1 6 5 3 2 4 7 9 8 1 3 2 5 4 

{6,7} 1 6 5 3 2 4 7 9 8 1 3 2 5 4 7 

{6} 1 6 5 3 2 4 7 9 8 1 3 2 5 4 7 6 

{8} 1 6 5 3 2 4 7 9 8 1 3 2 5 4 7 6 8 

{9} 1 6 5 3 2 4 7 9 8 1 3 2 5 4 7 6 8 9 

 

C. Fitness Evaluation Function 

Fitness evaluation is to check the solution value of the 

objective function subject to the problem constraints. In this 

case, the objective function is simply to minimize the total 

idle time.  
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D. Genetic Operators 

The genetic operators mimic the process of heredity of 

genes to create new offspring at each generation. The 

operators are used to alter the genetic composition of 

individuals during representation. In essence, the operators 

perform a random search, and cannot guarantee to yield an 

improved offspring. There are three common genetic 

operators: selection, crossover and mutation. 

 

Selection for Reproduction – In keeping with the ideas of 

natural selection, we assume that stronger individuals, that 

is, those with higher fitness values, are more likely to mate 

than the weaker ones. One way to simulate this is to select 

parents with a probability that is directly proportional to 

their fitness values. This method is called the roulette wheel 

method. The idea behind the roulette wheel selection 

technique is that each individual is given a chance to 

become a parent in proportion to its fitness. The chances of 

selecting a parent can be seen as spinning a roulette wheel 

with the size of the slot for each parent being proportional to 

its fitness. Obviously, those with the largest fitness (slot 

sizes) have more chance of being chosen. By repeating this 

each time an individual needs to be chosen, the better 

individuals will be chosen more often than the poorer ones, 

thus fulfilling the requirements of survival of the fittest. The 

basic advantage of roulette wheel selection is that it discards 



none of the individuals in the population and gives a chance 

to all of them to be selected [14]. Therefore, diversity in the 

population is preserved. 

 

Crossover – The crossover operator is develops to change 

the order between the task in a chromosome solution. 

Through crossover, two parents chromosomes obtained 

from selection process are mated at a given probability, and 

produce two offspring (new chromosomes). Linear order 

crossover (LOX), a modified version of Order crossover 

(OX) is used in this study. The LOX operator treats the 

chromosome as a linear entity. For this operator, the swap 

occurs in the same fashion as it occurs in the OX operator, 

but when sliding the parent values around to fit in the 

remaining open slots of the child chromosome, they are 

allowed to slide to the left or right. This allows the 

chromosome to maintain its relative ordering and at the 

same time preserve the beginning and ending values. In the 

below example, after the values are swapped, there are two 

open spaces in the front of the chromosome and three open 

spaces at the end. The algorithm then goes through Parent 1 

and finds the first two values that were not part of the swap, 

in this example they are 5 and 4. These values are shifted 

left to fill the first two chromosome locations. The final 

three locations are filled in a similar manner.  

 

     Parent 1 = 3 9|5 4 6 2|7 1 8 

     Parent 2 = 7 4|3 8 9 2|1 5 6 

Offspring 1 = * * 3 8 9 2 * * * 

Offspring 2 = * * 5 4 6 2 * * * 

Offspring 1 = 5 4 3 8 9 2 6 7 1 

Offspring 2 = 7 3 5 4 6 2 8 9 1 

 

Mutation – In order to avoid from getting stuck onto a local 

minimum, population diversity is required to be kept up to 

some extent. In genetic algorithms, this is achieved by the 

help of a mutation mechanism, which causes some sudden 

changes on the traits of individuals according to a 

predefined mutation probability parameter. Mutation 

operation is performed in a single chromosome to create a 

single new offspring by different ways either by flipping, 

inserting, swapping or sliding the allele values at two 

randomly chosen gene positions. For this study, inversion 

mutation (i.e., flipping) is applied to an individual after went 

through crossover process. The inversion mutation operator 

randomly selects two cut points in the chromosome, and it 

reverses the subtour between these two cut points. Suppose 

that the first cut point is chosen between task 9 and task 5, 

and the second cut point between the 6
th

 and 7
th

 task. For 

example, consider the chromosome 

 

Parent:      3 9 5 4 6 2 7 1 8 

This result in 

Offspring: 3 9 2 6 4 5 7 1 8 

E. Genetic Parameters 

One of the main difficulties in building a practical GA is in 

choosing suitable values for parameters such as population 

size, crossover rate and mutation rate. The selections of 

parameter values are very depend on the problem to be 

solved.  

 

Population size – The population size is the number of 

candidate solutions in any one generation. In principle, the 

population size should be sufficiently large such that the 

population associated with the solution space can be 

adequately represented. A larger population, however, needs 

larger computation cost in terms of memory requirement 

and computation time. The population size in this study is 

set to be approximately half the total number of tasks.  

 

Crossover rate, Pc – Crossover probability or crossover rate 

is how often will be crossover performed. If there is no 

crossover, offspring is exact copy of parents, but this does 

not mean that new generation (population) consists of the 

same old individual. If there is a crossover, offspring is 

made from parts of parents’ chromosome. Most GA 

literature suggests that crossover rate should be set between 

0.5 and 1.0.  

 

Mutation rate, Pm – Mutation rate is how often will be parts 

of chromosome mutated. If there is no mutation, offspring is 

taken after crossover or copy without any change. If 

mutation is performed, part of chromosome is changed. 

Generally, mutation acts as a background operator that 

provides a small amount of random search. Its purpose is to 

maintain diversity within the population and inhibit 

premature convergence due to loss of information. Mutation 

rate is often small which is in the range of 0.001 to 0.1.  

 

Stopping condition – Since GA is a stochastic search model, 

it is quite difficult to formally specify a convergence 

criterion, as it is often observed that the fitness of a 

population may remain static for a number of generations 

before a superior string is found. If the GA has been 

correctly implemented, the population will evolve over 

successive generations so that the fitness of the best and 

average chromosome in each generation decreases/increases 

towards the global optimum. Commonly, the algorithm 

terminates when either a maximum number of generations 

has been produced, or a satisfactory fitness level has been 

reached for the population. If the algorithm has terminated 

due to a maximum number of generations, a satisfactory 

solution may or may not have been reached. In this study, 

numerical simulation experiments will be conducted based 

on a fixed maximum number of generations.  

 

Generational gap – It is possible that the chromosome with 

the highest fitness value in a generation may not survive 

selection process. A parameter called the generation gap 

was defined to control the fraction of the population to be 



replaced in each generation. Therefore 10% of the best 

fitness values in the population is kept and preserve for the 

crossover process. 

IV. EXPERIMENTAL RESULTS & DISCUSSIONS 

In this section, we present computational experiment 
results to evaluate the effectiveness of our proposed 
approach. For all experiments, the GA procedure utilize 
roulette wheel selection, linear order crossover and inversion 
mutation to generate new candidate solutions in every 
generation. The proposed algorithms are coded in Matlab 
2009b and run on a Pentium Core 2 Duo PC with 2.0 GHz 
and 2.0 GB RAM under Windows XP operating system. For 
each experiment, 10 trials of simulation are carried out and 
the minimum idle time is taken as an optimal solution. As 
the computational results were based on different computer 
platforms or hardware, we do not conduct performance 
comparison between the proposed GA and the other 
algorithms. 

The proposed GA was tested on a two benchmark single-
model ALB problems. The first experiment involve a simple 
ALB problem from Scholl and Becker [15] which consists of 
10 tasks and 10 precedence constraints as depicted in Figure 
2. The total tasks time and the predetermined cycle time are 
48 min and 11 min, respectively. The parameter setting of 
the GA which is Pc and Pm is 0.6 and 0.1 respectively. The 
population size is set to be half of the instance size and 
maximum number of generation is set as a termination 
criteria. TABLE II shows the optimal solution obtained from 
the proposed GA in which the minimum idle time and 
number of station are 7 min and 5 stations respectively. 
These results are similar with the one obtained by [15] which 
used heuristic technique in their work. This confirms that the 
proposed GA procedure used in this study is well adapted to 
solve ALB problem. 
 

 

Figure 2.  Precedence graph of 10 tasks 

TABLE II.  OPTIMAL SOLUTION FOR PROBLEM 1 

Optimal task sequence: 1,3,2,4,5,6,7,8,9,10 

Station Assigned Task 
Processing 

Time (min) 

Idle Time 

(min) 

1 1,3 11 0 

2 2,4 11 0 

3 5,6 9 2 

4 7,8 6 5 

5 9,10 11 0 

Total Idle Time, Tid 7 

The line efficiency, E=87.27% 

The second experiment has use a benchmark data sets 
from Scholl [16] called Gunther problem which consists of 
35 tasks and 45 precedence constraints as shown in Figure 3. 
The total tasks time and the predetermined cycle time of the 
Gunther problem are 483 min and 60 min, respectively. The 
GA parameter setting used are as follows; Pc=0.9, and 
Pm=0.01. The population size is set to be half of the instance 
size. The results in terms of the number of stations, total idle 
time, and the line efficiency are compared with the results 
obtained by S. Suwannarongsri and D. Puangdownreong [8] 
which used Tabu search to simulate the same problem. 
TABLE III shows the results obtained from the proposed GA 
used in this study. The utilization of 9 workstations gives a 
great reduction in idle time as well as improving the line 
efficiency. The idle time reduces 51.28% and line efficiency 
improves about 10% of the results reported from [8].  
Therefore the proposed GA procedure use in this study 
outperforms the optimal solution obtained from the previous 
work. The performance graph in Figure 4 shows the best idle 
time found by the algorithm in each generation. The idle 
time reduced towards optimal solution as the generation 
increased and finally converged at a certain generation.  This 
indicates that the genetic operators such as crossover and 
mutation used in the proposed algorithm are effective.  

 

Figure 3.  Precedence graph of Gunther problem 

TABLE III.  OPTIMAL SOLUTION FOR PROBLEM 2 

Optimal task sequence: 

1,10,5,6,8,9,13,2,3,4,7,14,15,16,12,18,19,11,17,20,21,30,22,23,31,32,24,

25,26,27,34,28,29,33,35 

Station Assigned Task 
Processing 

Time (min) 

Idle Time 

(min) 

1 1,10 59 1 

2 5,6,8,9 47 13 

3 13,2,3,4,7,14 57 3 

4 15,16 48 12 

5 12,18,19 51 9 

6 11,17,20,21 60 0 

7 30,22,23,31,32,24 60 0 

8 25,26,27,34,28,29 59 1 

9 33,35 42 18 

Total Idle Time, Tid 57 

The line efficiency, E=89.44% 
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Figure 4.  Performance graph for Gunther problem. 

V. CONCLUSIONS 

In this study, we have demonstrated how the genetic 
algorithm approach combined with a topological sort 
procedure can be applied for solving ALB problems with the 
objective that minimizes the total idle time in the 
workstation. The role of topological sort is to generate 
feasible task sequence while the GA is to further improve the 
quality of the solution. We presented two benchmark 
problems taken from the previous work and compare our 
results with them. The numerical results revealed that our 
approach is superior in terms of quality of the solution.  The 
proposed GA well address the number of tasks assigned for 
each workstation giving a minimum idle time in the 
workstation as well as minimizes the number of stations for a 
given cycle time. The result of such solution would be 
increased production efficiency. The presented GA approach 
can thus be seen as the ideal compromise of optimizing 
complex and large problem and is thus highly 
recommendable for practical applications. 

Our study is only concern on a simple model of an 
assembly line with a single objective optimization. Future 
research direction could be to further develop the proposed 
approach for solving different assembly line such as mixed-
model production, two-sided lines and U-shaped lines, and 
might also to consider a multi-objective optimization for 
various ALB problems. 
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