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Abstract—In previous work, we have developed a dynamic
learning paradigm for “programming” a general quantum com-
puter. A learning algorithm is used to find a set of parameters
for a coupled qubit system such that the system at an initial time
evolves to a state in which a given measurement results in the
desired calculation value. This can be thought of as a quantum
neural network (QNN). Here, we apply our method to a system
of three qubits, and demonstrate training the quantum computer
to estimate both pairwise and three-way entanglement.

Index Terms—quantum algorithm; entanglement; dynamic
learning

I. I NTRODUCTION

Detection and quantification of entanglement remains an
important basic challenge in quantum information. Many dif-
ferent measures have been proposed [1]–[3]. For a system of
two qubits (quantum bits) there does exist a general measure
[2], but for larger systems [4] there are many problems. Most
procedures require optimization [5], [6] and/or reconstruction
of the density matrix [7], both of which can rapidly become
impractical with increasing size of the system. Also, for
systems larger than two qubits there exist inequivalent kinds
of entanglement [8]. The “witness” approach [9] is useful, but
requires that the state of the system be “close”, in some sense,
to a given, known state.

Recently Behrman et al. [10], [11] proposed using an
approach based on adaptive computing: finding a set of pa-
rameters for the time evolution of a two-qubit system such that
the qubit-qubit correlation function at the final time is mapped
onto an entanglement witness. Remarkably, this witness did
not require “closeness” to a given initial state. Here, we extend
our work to a more complex three-qubit system. Our method
succeeds in finding a single set of parameters such that all three
qubit-qubit pairwise correlation functions give good witness
for the pairwise entanglements for large classes of states.
In addition, the three-point correlation function gives a good
approximation to the three-way entanglement. No optimization
procedure or prior state reconstruction is necessary.

II. DYNAMIC LEARNING FOR THECOUPLED THREE-QUBIT

SYSTEM: QNN

A quantum system, whether pure or mixed, evolves in time
according to the Schrodinger equation:

dρ

dt
=

1

ih̄
[H, ρ] (1)

whereρ is the density matrix andH is the Hamiltonian, whose
formal solution [12] is

ρ(t) = exp(iLt)ρ(0). (2)

In practice, especially for time-varying Hamiltonians, the
Schrodinger equation is usually integrated numerically; this
is the approach we shall use here. We consider a three-qubit
quantum system whose Hamiltonian is:

H = KAσxA +KBσxB +KCσxC

+ εAσzA + εBσzB + εCσzC

+ ζABσzAσzB + ζACσzAσzC + ζBCσzBσzC (3)

where{σ} are the Pauli operators corresponding to each of
the qubits,{K} are the tunneling amplitudes,{ε} are the
biases, and{ζ}, the qubit-qubit couplings. This represents
three interacting qubits, labeled A, B, and C, respectively. We
choose the so-called “charge basis ”, which for a system of
three qubits is the set:|000〉, |001〉, |010〉, |011〉, |100〉, |101〉,
|110〉, |111〉. The amplitude for each qubit to tunnel to its
opposing state, i.e., switch between the 0 and 1 states, is its
K value; each qubit has an external bias represented by itsε

value; and each qubit is coupled to each of the other qubits,
with a strength represented by the appropriateζ value. We call
ε a “bias” because, if its value is positive, it will tend to force
that qubit towards the|0〉 state (i.e., the energy for being in
that state is lower), and if its value is negative, towards the |1〉
state. Similarly the sign ofζ lowers/raises the energy of the
corresponding qubits to be aligned/antialigned. Note that, for
example,σxA acts only on qubit A. We can write that operator
in the charge basis as an 8x8 matrix:σx ⊗ I ⊗ I, whereσx

is the familiar 2x2 matrix

(

0 1

1 0

)

, I the identity matrix
(

1 0

0 1

)

, and⊗ the outer product. SimilarlyσzB is the 8x8
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matrix I ⊗ σz ⊗ I, whereσz is the matrix

(

1 0

0 −1

)

. Any

product term, e.g.,σzAσzB, can also be written as a single
matrix: σzAB = σz ⊗ σz ⊗ I.

The parameters{K, ε, ζ} control the time evolution of the
system in the sense that, if one or more of them is changed, the
way a given state will evolve in time will also change, because
of Eq. 1. This is the basis for using our quantum system
as a neural network. There is a mathematical isomorphism
between Eq. 2 and the equation for information propagation
in a neural network:φoutput = FWφinput, where φoutput

is the output vector of the network,φinput the input vector,
andFW the network operator, which depends on the neuron
connectivity weight matrixW . Here the role of the “weights”
of the network is played by the parameters of the Hamiltonian,
{K, ε, ζ}, all of which can be adjusted experimentally as
functions of time [13], [14]. By adjusting the parameters
using a neural network type learning algorithm we can train
the system to evolve in time to a set of particular final
states at the final timetf , in response to a corresponding
set of given inputs. Because the time evolution is quantum
mechanical (and, we assume, coherent), a quantum mechanical
function like an entanglement witness can be mapped to an
observable. Complete details, including a derivation of the
quantum dynamic learning paradigm using backpropagation
in time [15], [16], are given in [11].

The time evolution of the quantum system is calculated by
integrating the Schrodinger equation in MATLAB Simulink
[17]. The ODE4 fixed step size solver was used with a
integration step size of 0.05 ns. The system was initialized
(prepared in) each input state, in turn, then allowed to evolve
for 300 ns. All of the parameters were taken to be functions
of time; this was done in the simulation by allowing them
to change to a different constant value every 75 ns (i.e.,
four “time chunks”.) Discretization error for the numerical
integration was checked by redoing the calculations with a
timestep of a tenth the size; results were not affected. Since the
error needs to be back propagated through time, the integration
has to be carried out fromtf to 0. To implement this in
MATLAB Simulink, a change of variable is made by letting
t′ = tf − t.

III. PAIRWISE ENTANGLEMENT WITNESS

In earlier work on a two-qubit system, we used a training
set of only four pure states: the Bell, flat, a correlated product,
and a partially entangled state. See Table I. Though only
trained on these four states, the net, when tested on states
not trained on, successfully reproduced a good approximation
to the entanglement of formation for large classes of states,
including mixed states and product states as well as fully and
partially entangled states. We called this an “experimental”
entanglement witness, because no prior knowledge of the
state of the system was required: once the net was trained,
simple time evolution under the Hamiltonian followed by a
single measurement was sufficient to detect entanglement for
any input state. Indeed, the QNN did better than this: under

most conditions measurement gave an approximate amount of
entanglement, as well.

For a three-qubit system, we decided to build on this
earlier work directly, that is, with an initial training setthat
attempted only to learn the three distinct amounts of pairwise
entanglement present. Thus, we started with a training set of
twelve input-output pairs: three copies of the set of four we
had successfully used earlier for two qubits, one copy for each
pair of qubits. The input states are shown in Table II, and the
desired (target) outputs, in Table III. For example, the Bell
state for qubits B and C (for which we would train the entan-
glement output for the BC pair to be equal to one) could be any
(normalized) state of the form:[a0|0〉+ a1|1〉]⊗ [|00〉+ |11〉];
we chose to use theBellBC state[ 1√

2
|0〉]⊗[|00〉+|11〉]. Table

IV shows the parameters. The starting values for qubits A and
B are those found in our earlier work [11]; these were also
used as the initial values for qubit C. As before, we took as our
output the square of the two-qubit correlation function at the
final time. Thus the target values for the pairwise entanglement
between qubits B and C were trained to the output function
〈O(tf )〉 = 〈σzB(tf )σzC(tf )〉

2 = [tr(ρ(tf )σzBσzC)]
2, and

similarly for the pairs AB and AC.
Training results are shown in Tables III and IV for the

outputs and the trained parameters, respectively. RMS error
per output for the set of 36 outputs (three for each member of
the training set of 12), after 5000 passes through the training
set, was1.215 × 10−3. To determine whether the net has
actually learned, we then tested on a large number of states
not included in the training set, including fully entangled
states, partially entangled states, product (unentangled) states,
and also mixed states. A representative sample is shown in
Table V. RMS error per output for the set of 39 outputs
was 3.129 × 10−2. While errors are significantly larger, it
is also clear from the output matrix that there is definite
separation, in two senses: first, that it is easy to see where the
pairwise entanglement is (e.g., to distinguish between a state
with AB entanglement and one with BC entanglement); and,
second, that it is easy to tell the difference among unentangled,
partially entangled, and fully entangled states. In other words,
while this is not, strictly speaking, an entanglement measure,
it is quite a good witness.

IV. T HREE-WAY ENTANGLEMENT

Clearly the net has been trained successfully to calcu-
late an approximation to pairwise entanglement. But can it
distinguish between pairwise and three-way entanglement?
To find out, we then tested the pairwise-trained net on the
GHZ states 1√

2
(|000〉 ± |111〉). All the pairwise entangle-

ments tested as very small:〈σzA(tf )σzB(tf )〉
2 = 0.0031;

〈σzA(tf )σzC(tf )〉
2 = 0.0032; and 〈σzB(tf )σzC(tf )〉

2 =
0.0015, while the three-point correlation function at the final
time was significantly nonzero:〈σzA(tf )σzB(tf )σzC(tf )〉

2 =
0.57. This seemed to indicate that the QNN was able to distin-
guish between pairwise entanglement, as exhibited in the Bell
and EPR states, and the inequivalent, three-way entanglement
of a GHZ state. Perhaps the net could be trained to find yet



TABLE I
TRAINING SET AND DATA FOR THE TWO-QUBIT (AB) SYSTEM [11]. THE RELATIVE AMPLITUDES (FOR THE KET STATES) ARE GIVEN WITHOUT

NORMALIZATION FOR CLARITY. THE BELL STATE IS MAXIMALLY ENTANGLED , AND P IS PARTIALLY ENTANGLED . THE MIDDLE TWO ARE PRODUCT

STATES(FLAT = (|0〉+ |1〉)A(|0〉+ |1〉)B AND Cr = |0〉A(|0〉+ γ|1〉)B ) AND THUS HAVE ZERO ENTANGLEMENT. THE CLASSICAL CORRELATION IS
COMPUTED AS〈σzA(0)σzB(0)〉. Cr IS CLASSICALLY CORRELATED BUT NOT ENTANGLED. THE NEXT THREE COLUMNS SHOW THE ENTANGLEMENT AS

CALCULATED BY THE METHODS OFBENNETT [1] AND OF VEDRAL [5](USING THE VON NEUMANN METRIC AND THE BURES METRIC.) BOTH DISTANCE

MEASURES HAVE BEEN NORMALIZED TO UNITY. THE LAST COLUMN SHOWS THE TRAINED VALUES FROM OUR PREVIOUS WORK [11], FORθ = 0 AND
γ = 0.5, AFTER 2000EPOCHS; RMS ERROR= 1.08× 10−5 .

State Relative amplitudes of Classical Theoretical entanglement QNN
|00〉 |01〉 |10〉 |11〉 Correlation Bennett von Neumann Bures target output

Bell 1 0 0 eiθ 1 1 1 1 1 0.99997
flat 1 1 1 1 0 0 0 0 0 2.01× 10−6

Cr 1 γ 0 0 1−|γ|2
1+|γ|2 0 0 0 0 2.61× 10−5

P 0 1 1 1 −1/3 0.55 0.32 0.46 0.44317 0.44317

TABLE II
INPUT MATRIX FOR TRAINING THE THREE-QUBIT QNN ENTANGLEMENT WITNESSES. EACH COLUMN IS AN INPUT STATE, SHOWING AMOUNTS OF EACH

OF THE BASIS STATES. THE FIRST TWELVE STATES ARE THE SET USED FOR THE PAIRWISEWITNESS; ALL THIRTEEN WERE USED FOR THE SECOND

TRAINING SET.

Input BellAB BellAC BellBC flatAB flatAC flatBC CrAB CrAC CrBC PAB PAC PBC GHZ−
|000〉

√
2

√
2

√
2 0.5 0.5 0.5 0 0 0

√
3

√
3

√
3

√
2

|001〉 0 0 0 0 0.5 0.5 0 0 0 0
√
3

√
3 0

|010〉 0 0 0 0.5 0 0.5 0 0 0.5√
1.25

√
3 0

√
3 0

|011〉 0 0
√
2 0 0 0.5 0 0 1√

1.25
0 0 0 0

|100〉 0 0 0 0.5 0.5 0 0.5√
1.25

0.5√
1.25

0
√
3

√
3 0 0

|101〉 0
√
2 0 0 0.5 0 0 1√

1.25
0 0 0 0 0

|110〉
√
2 0 0 0.5 0 0 1√

1.25
0 0 0 0 0 0

|111〉 0 0 0 0 0 0 0 0 0 0 0 0 −
√
2

TABLE III
QNN ENTANGLEMENT TARGET AND OUTPUT MATRICES FOR TRAINING. EACH COLUMN IS AN INPUT STATE CORRESPONDING TO THE RESPECTIVE

COLUMN IN TABLE II; EACH ROW CORRESPONDS TO A TARGET FUNCTION FOR THE SPECIFIED ENTANGLEMENT FUNCTION: AB, 〈σzA(tf )σzB(tf )〉2 ;
AC, 〈σzA(tf )σzC(tf )〉2 ; BC, 〈σzB(tf )σzC(tf )〉2 ; AND ABC, 〈σzA(tf )σzB(tf )σzC(tf )〉2 . THE FIRST THREE ROWS ARE THE TARGETS(DESIRED

VALUES)FOR THE FIRST TRAINING SET(PAIRWISE ENTANGLEMENT ONLY - THE FIRST TWELVE STATES SHOWN INTABLE II); THE SECOND THREE, THE

TRAINED VALUES FOR THAT SET; THE NEXT FOUR, THE TARGETS FOR THE SECOND TRAINING SET(ALL THIRTEEN STATES SHOWN INTABLE II); THE
LAST FOUR, THE TRAINED VALUES FOR THAT SET. NONZERO TARGET VALUES ARE BOLDFACED FOR EASY COMPARISON.

BellAB BellAC BellBC flatAB flatAC flatBC CrAB CrAC CrBC PAB PAC PBC GHZ−
Targets: AB 1 0 0 0 0 0 0 0 0 0.44 0 0 -
Set 1 AC 0 1 0 0 0 0 0 0 0 0 0.44 0 -

BC 0 0 1 0 0 0 0 0 0 0 0 0.44 -
Trained AB 0.9943 0.0016 0.0001 0.0003 0.0018 0.0001 0.0007 0.0001 0.00020.4399 0.0008 0.0003 -

AC 0.0000 0.9930 0.0001 0.0006 0.0001 0.0012 0.0003 0.0002 0.0018 0.00100.4385 0.0016 -
BC 0.0000 0.0017 0.9945 0.0000 0.0009 0.0000 0.0013 0.0048 0.0002 0.0000 0.00000.4392 -

Targets: AB 1 0 0 0 0 0 0 0 0 0.44 0 0 0
Set 2 AC 0 1 0 0 0 0 0 0 0 0 0.44 0 0

BC 0 0 1 0 0 0 0 0 0 0 0 0.44 0
ABC 0 0 0 0 0 0 0 0 0 0 0 0 1

Trained AB 0.9911 0.0012 0.0000 0.0002 0.0023 0.0012 0.0010 0.0006 0.00050.4384 0.0016 0.0014 0.0039
AC 0.0002 0.9964 0.0000 0.0015 0.0001 0.0018 0.0000 0.0017 0.0001 0.00490.4386 0.0021 0.0001
BC 0.0002 0.0012 0.9969 0.0002 0.0001 0.0000 0.0000 0.0009 0.0000 0.0026 0.00060.4396 0.0066
ABC 0.0012 0.0000 0.0028 0.0001 0.0014 0.0002 0.0000 0.00010.0003 0.0006 0.0024 0.0007 0.9883

another output. Buoyed by hope and encouraged by these
results, we then proceeded to add one additional output for
the net to train, the three-point correlation function at the final
time, 〈σzA(tf )σzB(tf )σzC(tf )〉

2, and one additional training
pair to the input matrix:|GHZ−〉 = 1√

2
(|000〉 − |111〉),

for which we set the target outputs as 0, 0, 0, and 1 (for
each of the two point functions and the three point function,
respectively: see Table III.) The net was then retrained, begin-
ning from the values of the parameters found in the previous
section, with the new training set of thirteen. Results are

shown in Table III, and the new values for the parameters
are shown in Table IV. Testing on product states and on
pairwise-entangled states was repeated; though errors were
slightly larger, results were substantially similar. We also
tested |GHZ+〉 = 1√

2
(|000〉 + |111〉); the outputs for the

pairwise entanglements and for the three-way entanglement
were indistinguishable from the outputs for the trained state
|GHZ−〉. The net now seems to be able to recognize both
pairwise andthree-way entanglement.

If we had an experimental realization of the three-qubit



TABLE IV
PARAMETERS FOR ENTANGLEMENT, IN MHZ. EACH COLUMN IS A DIFFERENT PARAMETER, AS LABELLED . EACH PARAMETER IS A FUNCTION OF TIME;
THE FIRST COLUMN SHOWS THE TIMESLICE NUMBER. THE FIRST FOUR ROWS ARE THE INITIAL PARAMETERS, TAKEN FROM OUR EARLIER WORK[11];

THE NEXT FOUR, THE PARAMETERS AFTER TRAINING(5000EPOCHS; RMS ERROR= 1.215× 10−3) TO THE FIRST TRAINING SET, OF TWELVE, FOR JUST
PAIRWISE ENTANGLEMENT(THE INPUTS SHOWN INTABLE II, USING THE TARGET VALUES INTABLE III); THE LAST FOUR, AFTER TRAINING TO THE

SECOND SET, OF THIRTEEN(THE TWELVE PAIRWISE STATES PLUS ONE THREE-WAY.) TRAINING FOR THE SECOND SET WAS DONE FOR5000ADDITIONAL

EPOCHS; RMS ERROR= 1.801 × 10−3 .)

Timechunk KA KB KC εA εB εC ζAB ζAC ζBC

Initial 1 2.3576 2.3576 2.3576 0.10913 0.10913 0.10913 0.04503 0.04503 0.04503
2 2.3576 2.3576 2.3576 0.03768 0.06377 0.06377 0.10117 0.10117 0.10117
3 2.3577 2.3576 2.3576 0.08671 0.03880 0.03880 0.10771 0.10771 0.10771
4 2.3461 2.3546 2.3546 0.07146 0.07239 0.07239 0.04422 0.04422 0.04422

Set 1 1 2.0133 2.4955 2.4376 -0.08676 -0.44110 0.32887 -0.35415 0.06745 -0.08465
2 2.2238 2.0328 2.4116 -0.11451 -1.08901 -0.39170 0.81660 0.22532 -0.27369
3 2.4349 2.2618 2.4203 -0.05961 -0.31644 -0.04549 -0.61235 -0.33585 0.24552
4 2.5836 2.3423 2.3853 0.03040 0.05885 -0.02624 0.28887 -0.07233 0.13128

Set 2 1 2.1024 2.5880 2.3032 0.39188 0.55015 0.79315 -0.62404 -0.26318 -0.41928
2 2.4013 2.1874 2.3051 -0.04748 -0.38236 -0.37284 0.64560 0.21584 -0.09610
3 2.4969 2.2845 2.3047 -0.53340 -0.48951 -0.34083 -0.97289 -0.92255 -0.74675
4 2.5908 2.4842 2.4072 -0.31082 -0.10772 -0.16904 0.26100 -0.17536 0.01217

TABLE V
REPRESENTATIVEQNN PAIRWISE ENTANGLEMENT TESTING: TARGET AND OUTPUT MATRICES. NO ADDITIONAL TRAINING WAS DONE : MERELY, THE

OUTPUTS WERE EVALUATED USING THE TRAINED PARAMETERS FOR TIME EVOLUTION IN TABLE IV, FOR A NEW SET OF INPUT STATES. EACH COLUMN

IS AN INPUT STATE. THE FIRST THREE AREEPRSTATES OF THE FORM 1√
2
(|01〉 ± |10〉) FOR QUBITSAB, AC, AND BC, TIMES A SUPERPOSITION STATE

FOR THE THIRD QUBIT: 1√
2
(|0〉 + |1〉); THE NEXT THREE, PRODUCT(UNENTANGLED) STATES(THE FOURTH IS THE STATE

1√
8
(|000〉 + |001〉 + |010〉+ |011〉+ |100〉+ |101〉 + |110〉 + |111〉); THE FIFTH, THE STATE |000〉; THE SIXTH, THE PRODUCT STATE

0.64(0.8|0〉 + |1〉)|1〉(|0〉 + 0.7|1〉)); THE NEXT THREE, P’ STATES OF THE FORM|00〉 ± |11〉 FOR QUBITSAB, AC, AND BC, TIMES A SUPERPOSITION

STATE FOR THE THIRD QUBIT: 1√
2
(|0〉+ |1〉); THE NEXT THREE, BELL STATES TIMES A SUPERPOSITION STATE; AND THE LAST, A (COMPLETELY) MIXED

STATE: M± = 0.5(|000〉〈000| ± |111〉〈111|). EACH ROW CORRESPONDS TO A VALUE FOR THE SPECIFIED ENTANGLEMENT FUNCTION:
〈σzA(tf )σzB(tf )〉2 , 〈σzA(tf )σzC(tf )〉2 , AND 〈σzB(tf )σzC(tf )〉2 , RESPECTIVELY. THE FIRST THREE ROWS ARE THE TARGETS(DESIRED VALUES);

THE LAST THREE, THE CALCULATED OUTPUTS, USING THE PARAMETERS INTABLE III FOR THE FIRST(PAIRWISE) TRAINING SET. UPPER VS LOWER
SIGNS MADE ESSENTIALLY NO DIFFERENCE TO THE CALCULATED VALUES. NONZERO TARGET VALUES ARE BOLDFACED FOR EASY COMPARISON.

EAB EAC EBC F1 F2 F3 P ′
AB P ′

AC P ′
BC BlAB BlAC BlBC M

Targets AB 1 0 0 0 0 0 0.44 0 0 1 0 0 0
AC 0 1 0 0 0 0 0 0.44 0 0 1 0 0
BC 0 0 1 0 0 0 0 0 0.44 0 0 1 0

Outputs AB 0.9365 0.0000 0.0004 0.0019 0.0006 0.00510.4798 0.0022 0.0001 0.9661 0.0005 0.0004 0.0002
AC 0.0000 0.7991 0.0023 0.0010 0.0002 0.0006 0.00030.4034 0.0017 0.0028 0.9227 0.0009 0.0004
BC 0.0005 0.0001 0.9419 0.0080 0.0013 0.0081 0.0011 0.00220.3276 0.0026 0.0002 0.7692 0.0010

system, we could use these results to find (approximately) a
pairwise or three-way entanglement for any (initial) stateof
the system, by setting the various parameters to the determined
values, allowing the system to evolve for the set time, then
measuring the appropriate correlation function. Of course, any
real experimental system will have nonzero sources of error,
like noise and decoherence, which will mean the results of
the simulation will not be exactly correct. One of the great
advantages of the neural network approach is its ability to deal
easily with complications like these: with “online” training,
the QNN can take these into account in the training phase,
adjusting the values of the parameters accordingly.

Within the theoretical simulation, it is a simple matter
to calculate the entanglement of any state we wish. Some
interesting results are shown in the two figures. In Figure 1,
we plot the entanglement, as calculated by the QNN, for the
stateα|000〉+β|001〉+ |010〉+ |100〉 , as a function of bothα
andβ. The graph shows two kinds of pairwise entanglement,
AB (red) and AC (blue), and three-way entanglement (green).
The three-way entanglement (green) is zero on the scale of the
graph for all states plotted; the other pairwise entanglement,

BC, lies right on top of the AC (blue) entanglement on this
scale, and so is omitted for clarity. Along theα axis, when
β = 1 (left hand edge), the pairwise entanglements AB (red)
and AC (blue) are equal (i.e., the surfaces meet); this must
be true, of course, by symmetry. Whenα = 0 and β = 0
(front right corner), this is the EPR state in qubits A and
B, outerproducted with|0〉C ; its AB pairwise entanglement
(red) is maximal while other pairwise entanglements (blue),
as well as the three-way entanglement (green), are zero.
When α = 0 and β = 1 (front corner), this is the so-
called “W” [6] state (the three-qubit generalization of the
EPR state), in which entanglement is shared among all three
qubits, but in a dissimilar manner to that in the GHZ state
[18]. The net calculates that the W state has all three kinds
of pairwise entanglement, in (approximately) equal amounts:
〈σzA(tf )σzB(tf )〉

2 = 0.3899; 〈σzA(tf )σzC(tf )〉
2 = 0.4129;

and 〈σzB(tf )σzC(tf )〉
2 = 0.4042, while the three-way

(GHZ) entanglement is calculated to be essentially zero:
〈σzA(tf )σzB(tf )σzC(tf )〉

2 = 1.7628 × 10−3 . In the other
direction, atα = 1 and β = 0 (back corner), this is the
two-qubit partially entangled “P” state for the AB pair, and



Fig. 1. Entanglement of the pure state 1√
2+α2+β2

(α|001〉 + β|000〉 +
|010〉+ |100〉) , as a function ofα andβ, as calculated by the QNN, using
the trained parameters listed in Table IV. Each color represents a different
entanglement measure: red, the pairwise entanglement between qubits A and
B; blue, that between A and C; and green, three-way entanglement among A,
B, and C.

the net correctly calculates that the AB entanglement (red)is
about 0.4 while the other pairwise entanglements (blue) are
approximately zero (see Table III for precise numbers.)

Figure 2 shows three-way (GHZ) entanglement (green)
and pairwise AB entanglement (red), for the stateα|110〉 +
β|111〉+ |000〉, as a function of bothα andβ. Forα = 0 and
β = 0, this is the product|000〉 state, for which pairwise (red)
and three-way entanglement (green) are both zero; forα = 1
and β = 0, this is theBellAB state (outer producted with
|0〉C ), (|11〉+|00〉)⊗|0〉, which has maximal AB entanglement
(red) but zero three-way entanglement (green) ; whenα = 0
andβ = 1, this is the GHZ state|111〉+ |000〉, which has zero
AB entanglement (red) and maximal three-way entanglement
(green). The two surfaces can be seen to cross each other along
the black line which is projected onto theαβ plane; on the
scale of these calculations it is indistinguishable fromα = β.

V. CONCLUSION

We have shown that a quantum computer of three qubits
can be “trained” to compute, approximately, its own degree
of entanglement. Pairwise and three-way entanglement can
each be determined. No prior state reconstruction or tedious
optimization procedure is necessary, nor is “closeness” toany
particular state; rather, anyunknown state’s entanglement can
be estimated, whether pure or mixed.

Further work that extends these results to the four-qubit
system, with comparisons to the three-tangle [19] and other
measurements [20], is in progress.

Fig. 2. Entanglement of the pure state 1√
1+α2+β2

(α|110〉 + β|111〉 +
|000〉), as a function ofα andβ, as calculated by the QNN, using the trained
parameters listed in Table IV. The three-point correlationfunction, which
represents three-way entanglement, is in green; pairwise AB entanglement,
in red. The line along which the AB entanglement is equal to the ABC
entanglement is in black, projected onto theαβ plane.
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