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Abstract—In previous work, we have developed a dynamic Il. DYNAMIC LEARNING FOR THECOUPLED THREE-QUBIT
learning paradigm for “programming” a general quantum com- SysTEM: QNN

puter. A learning algorithm is used to find a set of parameters . .
for a coupled qubit system such that the system at an initialitme A quantum system, Whether pure or mixed, evolves in time
evolves to a state in which a given measurement results in the according to the Schrodinger equation:

desired calculation value. This can be thought of as a quanta dp 1
neural network (QNN). Here, we apply our method to a system — = —[H,p] (1)
of three qubits, and demonstrate training the quantum compter dt ih
to estimate both pairwise and three-way entanglement. wherep is the density matrix and is the Hamiltonian, whose
Index Terms—quantum algorithm; entanglement; dynamic formal solution [12] is
learning .
p(t) = exp(iLt)p(0). )

In practice, especially for time-varying Hamiltonians,eth
Schrodinger equation is usually integrated numericalys t
is the approach we shall use here. We consider a three-qubit

. INTRODUCTION quantum system whose Hamiltonian is:

H = Kpopa+ Kpoyg+ Kcozc
Detection and quantification of entanglement remains an +EA024 +EBO2B T ECOC
important basic challenge in quantum information. Many dif 4+ CaB0:40.8B + Cac0.40.c +(Bco-50c (3)

ferent measures have been proposed [1]-[3]. For a system %f . .
; . ; where {c} are the Pauli operators corresponding to each of
two qubits (quantum bits) there does exist a general measH_Ere

[2], but for larger systems [4] there are many problems. Moglzsg:blgié{léf ‘;:i thfbiil_m:siltlngosrﬂﬁ“t:dﬁfg rzreretQ(Snts
procedures require optimization| [5].! [6] and/or reconstian ' ' d q plings. P

of the density matrix([7], both of which can rapidly becoméhree Interacting qubits, labeled A, B, and C, respectivély

impractical with increasing size of the system. Also, foChOOSe the so-called “charge basis ", which for a system of

systems larger than two qubits there exist inequivalencﬂskin{hree qubits is the sej000), 001), [010), [011), [100), [101),

of entanglement [8]. The “witness” approach [9] is usefuit b [110), .|111>‘ The_ ampht_ude for each qubit to tunnel to '.ts.
requires that the state of the system be “close”, in someesen0 pos'”9 state, €., switch between the 0 and 1 statess 1S It
10 a given, known state. value; each qubit hqs an external bias represented hy |t_s
' value; and each qubit is coupled to each of the other qubits,

Recently Behrman et all [10]/ [11] proposed using a@ith a strength represented by the appropriatlue. We call
approach based on adaptive computing: finding a set of paa “bias” because, if its value is positive, it will tend to éer
rameters for the time evolution of a two-qubit system suett ththat qubit towards thé0) state (i.e., the energy for being in
the qubit-qubit correlation function at the final time is rpad  that state is lower), and if its value is negative, towards| th
onto an entanglement witness. Remarkably, this witness dighte. Similarly the sign of lowers/raises the energy of the
not require “closeness” to a given initial state. Here, wed corresponding qubits to be aligned/antialigned. Note, thoat
our work to a more complex three-qubit system. Our meth@egample s, 4 acts only on qubit A. We can write that operator
succeeds in finding a single set of parameters such thated thin the charge basis as an 8x8 matrix; @ I ® I, whereo,
qubit-qubit pairwise correlation functions give good veiss 0 1
for the pairwise entanglements for large classes of statiéssthe familiar 2x2 matrix( Lo )t the identity matrix
In addition, the three-point correlation function gives @od
approximation to the three-way entanglement. No optirfonat ( 1

0 . .
- Y , and® the outer product. Similarly . 5 is the 8x8
procedure or prior state reconstruction is necessary. 1
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most conditions measurement gave an approximate amount of

matrix I ® o, ® I, whereo, is the matrix . Any

-1 entanglement, as well.
product term, e.g.g.40.5, can also be written as a single For a three-qubit system, we decided to build on this
matrix: o,up =0, o, Q@ I. earlier work directly, that is, with an initial training sétat

The parameter$ K, ¢, (} control the time evolution of the attempted only to learn the three distinct amounts of pagwi
system in the sense that, if one or more of them is changed, édanglement present. Thus, we started with a trainingfset o
way a given state will evolve in time will also change, be@augwelve input-output pairs: three copies of the set of four we
of Eq.[d. This is the basis for using our quantum systehad successfully used earlier for two qubits, one copy fehea
as a neural network. There is a mathematical isomorphigrair of qubits. The input states are shown in Table Il, and the
between Eq[]2 and the equation for information propagaticiesired (target) outputs, in Table Ill. For example, thel Bel
in a neural network:goutput = Fw Pinput, WHere ¢oupy:  State for qubits B and C (for which we would train the entan-
is the output vector of the network,.,..« the input vector, glementoutput for the BC pair to be equal to one) could be any
and Fy the network operator, which depends on the neurgnormalized) state of the fornju,|0) + a1[1)] ® [|00) + [11)];
connectivity weight matriX¥. Here the role of the “weights” we chose to use thBellzc state[\/ii|0)]® [[00)+|11)]. Table
of the network is played by the parameters of the HamiltonialV shows the parameters. The starting values for qubits A and
{K,e,(}, all of which can be adjusted experimentally a8 are those found in our earlier work [11]; these were also
functions of time [[1B], [[14]. By adjusting the parametersised as the initial values for qubit C. As before, we took as ou
using a neural network type learning algorithm we can traisutput the square of the two-qubit correlation functionte t
the system to evolve in time to a set of particular findinal time. Thus the target values for the pairwise entanglem
states at the final timey, in response to a correspondingetween qubits B and C were trained to the output function
set of given inputs. Because the time evolution is quantuf®(ts)) = (o.5(tf)o.c(ts))? = [tr(p(ts)o.po.c)])?, and
mechanical (and, we assume, coherent), a quantum mecharsiailarly for the pairs AB and AC.
function like an entanglement witness can be mapped to anfraining results are shown in Tables Il and IV for the
observable. Complete details, including a derivation af troutputs and the trained parameters, respectively. RMS erro
guantum dynamic learning paradigm using backpropagatipar output for the set of 36 outputs (three for each member of
in time [15], [16], are given in[[11]. the training set of 12), after 5000 passes through the trgini

The time evolution of the quantum system is calculated Isgt, was1.215 x 1073. To determine whether the net has
integrating the Schrodinger equation in MATLAB Simulinkactually learned, we then tested on a large number of states
[17]. The ODE4 fixed step size solver was used with @ot included in the training set, including fully entangled
integration step size of 0.05 ns. The system was initializethtes, partially entangled states, product (unentahpgtetes,
(prepared in) each input state, in turn, then allowed towevoland also mixed states. A representative sample is shown in
for 300 ns. All of the parameters were taken to be functiodsible V. RMS error per output for the set of 39 outputs
of time; this was done in the simulation by allowing thenwas 3.129 x 10~2. While errors are significantly larger, it
to change to a different constant value every 75 ns (i.és, also clear from the output matrix that there is definite
four “time chunks”.) Discretization error for the numeidicaseparation, in two senses: first, that it is easy to see where t
integration was checked by redoing the calculations with pairwise entanglement is (e.g., to distinguish betweerate st
timestep of a tenth the size; results were not affectede3ime with AB entanglement and one with BC entanglement); and,
error needs to be back propagated through time, the integratsecond, that it is easy to tell the difference among uneteang
has to be carried out from; to 0. To implement this in partially entangled, and fully entangled states. In otherds,
MATLAB Simulink, a change of variable is made by lettingwhile this is not, strictly speaking, an entanglement measu
=ty —t. it is quite a good witness.

[1l. PAIRWISE ENTANGLEMENT WITNESS IV. THREE-WAY ENTANGLEMENT

In earlier work on a two-qubit system, we used a training Clearly the net has been trained successfully to calcu-
set of only four pure states: the Bell, flat, a correlated pood late an approximation to pairwise entanglement. But can it
and a partially entangled state. See Table I. Though orflistinguish between pairwise and three-way entanglement?
trained on these four states, the net, when tested on stdtesfind out, we then tested the pairwise-trained net on the
not trained on, successfully reproduced a good approximati6itiZ states—(|000) + [111)). All the pairwise entangle-
to the entanglement of formation for large classes of statesents tested as very smallo.4(ts)o.5(tf))*> = 0.0031;
including mixed states and product states as well as fully ao. 4 (tf)o.c(ty))? = 0.0032; and (o.5(tf)o.c(ts))? =
partially entangled states. We called this an “experiniénta.0015, while the three-point correlation function at the final
entanglement witness, because no prior knowledge of tti@e was significantly narero: (o, 4 (tf)o.5(tf)o.c(ts))? =
state of the system was required: once the net was trained,7. This seemed to indicate that the QNN was able to distin-
simple time evolution under the Hamiltonian followed by auish between pairwise entanglement, as exhibited in thie Be
single measurement was sufficient to detect entanglement &md EPR states, and the inequivalent, three-way entangteme
any input state. Indeed, the QNN did better than this: undef a GHZ state. Perhaps the net could be trained to find yet



TABLE |
TRAINING SET AND DATA FOR THE TWO-QUBIT (AB) sYSTEM[L11]. THE RELATIVE AMPLITUDES (FOR THE KET STATEY ARE GIVEN WITHOUT

NORMALIZATION FOR CLARITY. THE BELL STATE IS MAXIMALLY ENTANGLED , AND P IS PARTIALLY ENTANGLED. THE MIDDLE TWO ARE PRODUCT

STATES(FLAT = (|0) + [1)) a(|0) + |1)) B AND Cr = |0) 4(|0) + ~|1)) B) AND THUS HAVE ZERO ENTANGLEMENT. THE CLASSICAL CORRELATION IS
COMPUTED AS{0,4(0)0,5(0)). Cr IS CLASSICALLY CORRELATED BUT NOT ENTANGLED THE NEXT THREE COLUMNS SHOW THE ENTANGLEMENT AS
CALCULATED BY THE METHODS OFBENNETT [[1] AND OF VEDRAL [5](USING THE VONNEUMANN METRIC AND THE BURES METRIC.) BOTH DISTANCE

MEASURES HAVE BEEN NORMALIZED TO UNITY. THE LAST COLUMN SHOWS THE TRAINED VALUES FROM OUR PREVIOUS WOR[11], FORO = 0 AND

~ = 0.5, AFTER2000EPOCHS RMS ERROR= 1.08 x 1075,

State [ Relative amplitudes of Classical | Theoretical entanglement QNN

[00 [0I) 10 [11 Correlation | Bennett  von Neumann Burep target output
Bell 1 0 0 et? 1 1 1 1 1 0.99997
flat 1 1 1 1 0 0 0 0 0 2.01 x 1076

2
Cr 1 5 0 0 1;}1}2 0 0 0 0 2.61 x 105
P 0 1 1 1 —-1/3 0.55 0.32 0.46 | 0.44317 0.44317
TABLE I

INPUT MATRIX FOR TRAINING THE THREEQUBIT QNN ENTANGLEMENT WITNESSES EACH COLUMN IS AN INPUT STATE, SHOWING AMOUNTS OF EACH
OF THE BASIS STATES THE FIRST TWELVE STATES ARE THE SET USED FOR THE PAIRWISEITNESS,; ALL THIRTEEN WERE USED FOR THE SECOND
TRAINING SET.

Input Bellap Bellac Bellpc flatap flatac flatpe Crap Crac Crepco Pap Pac Ppc GHZ_

|000) | /2 V2 V2 0.5 0.5 0.5 0 0 0 V3 V3 V3 V2

|001) | O 0 0 0 0.5 0.5 0 0 0 0 V3 V3 0

|010) | O 0 0 0.5 0 0.5 0 0 25’; V3 0 V3 0

|011) | O 0 V2 0 0 0.5 0 0 11.25 0 0 0 0

|100) | O 0 0 0.5 0.5 0 0152 = 0152 = 0 V3 V3 o0 0

|101) | O V2 0 0 0.5 0 0 11_25 0 0 0 0 0

|110) | v2 0 0 0.5 0 0 1125 0 0 0 0 0 0

|111) | O 0 0 0 0 0 0 0 0 0 0 0 -2
TABLE Il

QNN ENTANGLEMENT TARGET AND OUTPUT MATRICES FOR TRAINING EACH COLUMN IS AN INPUT STATE CORRESPONDING TO THE RESPECTIVE
COLUMN IN TABLE Il; EACH ROW CORRESPONDS TO A TARGET FUNCTION FOR THE SPECIFIENFANGLEMENT FUNCTION: AB, (0. 4(tf)o. 5 (tf))?;
AC, (o, a(tf)osc(ty))?; BC, (o.5(tf)o.c(ts))?; AND ABC, (0, 4(tf)o.5(tf)o.c(ts))?. THE FIRST THREE ROWS ARE THE TARGET$DESIRED
VALUES)FOR THE FIRST TRAINING SET(PAIRWISE ENTANGLEMENT ONLY - THE FIRST TWELVE STATES SHOWN INTABLE II); THE SECOND THREE THE
TRAINED VALUES FOR THAT SET, THE NEXT FOUR, THE TARGETS FOR THE SECOND TRAINING SEALL THIRTEEN STATES SHOWN INTABLE II); THE

LAST FOUR, THE TRAINED VALUES FOR THAT SET NONZERO TARGET VALUES ARE BOLDFACED FOR EASY COMPARISON

Bellap Bellac Bellpc flatap flatac  flate Crap Crac Crpc Pap Pac Ppc GHZ_

Targets: | AB 1 0 0 0 0 0 0 0 0 0.44 0 0 -
Set 1 AC 0 1 0 0 0 0 0 0 0 0 0.44 0 -
BC 0 0 1 0 0 0 0 0 0 0 0 0.44 -

Trained | AB 0.9943 0.0016 0.0001 0.0003 0.0018 0.0001 0.0007 0.0001 0.00@4399 0.0008 0.0003| -
AC 0.0000 0.9930 0.0001 0.0006 0.0001 0.0012 0.0003 0.0002 0.0018 0.00D04385 0.0016 | -
BC 0.0000 0.0017  0.9945 0.0000 0.0009 0.0000 0.0013 0.0048 0.0002 0.0000 0.00004392

Targets: | AB 1 0 0 0 0 0 0 0 0 0.44 0 0 0
Set 2 AC 0 1 0 0 0 0 0 0 0 0 0.44 0 0
BC 0 0 1 0 0 0 0 0 0 0 0 0.44 0
ABC 0 0 0 0 0 0 0 0 0 0 0 0 1

Trained | AB 0.9911 0.0012 0.0000 0.0002 0.0023 0.0012 0.0010 0.0006 0.00@4384 0.0016 0.0014| 0.0039
AC 0.0002 0.9964 0.0000 0.0015 0.0001 0.0018 0.0000 0.0017 0.0001 0.00494386 0.0021 | 0.0001
BC 0.0002 0.0012  0.9969 0.0002 0.0001 0.0000 0.0000 0.0009 0.0000 0.0026 0.00064396 | 0.0066
ABC 0.0012 0.0000 0.0028 0.0001 0.0014 0.0002 0.0000 0.00@10003 0.0006 0.0024 0.000f 0.9883

another output. Buoyed by hope and encouraged by thet®wn in Table Ill, and the new values for the parameters
results, we then proceeded to add one additional output Bme shown in Table IV. Testing on product states and on
the net to train, the three-point correlation function & fimal pairwise-entangled states was repeated; though errore wer
time, (o,4(tf)o.p(ts)o.c(ts))?, and one additional training slightly larger, results were substantially similar. Wesaal
pair to the input matrix)GHZ_) = %(|OOO> — |111)), tested|GHZ.) = \/ii(|000> + |111)); the outputs for the

for which we set the target outputs as 0, 0, 0, and 1 (fpairwise entanglements and for the three-way entanglement
each of the two point functions and the three point functiomere indistinguishable from the outputs for the trainedesta
respectively: see Table Ill.) The net was then retrainedirbe |GHZ_). The net now seems to be able to recognize both
ning from the values of the parameters found in the previopsirwise_andhree-way entanglement.

section, with the new training set of thirteen. Results are . o .
If we had an experimental realization of the three-qubit



TABLE IV
PARAMETERS FOR ENTANGLEMENTIN MHZ. EACH COLUMN IS A DIFFERENT PARAMETER AS LABELLED. EACH PARAMETER IS A FUNCTION OF TIME
THE FIRST COLUMN SHOWS THE TIMESLICE NUMBERTHE FIRST FOUR ROWS ARE THE INITIAL PARAMETERSTAKEN FROM OUR EARLIER WORK[LT];
THE NEXT FOUR, THE PARAMETERS AFTER TRAINING(5000EPOCHS RMS ERROR= 1.215 x 1073) TO THE FIRST TRAINING SET OF TWELVE, FOR JUST
PAIRWISE ENTANGLEMENT(THE INPUTS SHOWN INTABLE I, USING THE TARGET VALUES INTABLE II1); THE LAST FOUR, AFTER TRAINING TO THE
SECOND SETOF THIRTEEN(THE TWELVE PAIRWISE STATES PLUS ONE THREBNVAY.) TRAINING FOR THE SECOND SET WAS DONE FOB000ADDITIONAL
EPOCHS RMS ERROR= 1.801 x 1073.)

Timechunk | K4 Kp K¢ €A cB ec CAB Cac ¢BC

Initial 1 2.3576 2.3576 2.3576 0.10913 0.10913 0.10913 0.04503 @3045 0.04503
2 2.3576 2.3576 2.3576 0.03768 0.06377 0.06377 0.10117 07101 0.10117
3 2.3577 2.3576 2.3576 0.08671 0.03880 0.03880 0.10771 1107 0.10771
4 2.3461 2.3546 2.3546 0.07146 0.07239 0.07239 0.04422 22044 0.04422

Setl | 1 2.0133 2.4955 24376 -0.08676 -0.44110 0.32887 -0.35415067a5 -0.08465
2 2.2238 2.0328 2.4116 -0.11451 -1.08901 -0.39170 0.81660 22582 -0.27369
3 24349 2.2618 2.4203 -0.05961 -0.31644 -0.04549 -0.61236.33585  0.24552
4 2.5836 2.3423 2.3853 0.03040 0.05885 -0.02624 0.28887 7283 0.13128

Set2 | 1 2.1024 2.5880 2.3032 0.39188 0.55015 0.79315 -0.62404 6308 -0.41928
2 24013 2.1874 2.3051 -0.04748 -0.38236 -0.37284 0.6456021584 -0.09610
3 2.4969 2.2845 2.3047 -0.53340 -0.48951 -0.34083 -0.97280.92255 -0.74675
4 2.5908 2.4842 2.4072 -0.31082 -0.10772 -0.16904 0.26100.17586 0.01217

TABLE V

REPRESENTATIVEQNN PAIRWISE ENTANGLEMENT TESTING TARGET AND OUTPUT MATRICES NO ADDITIONAL TRAINING WAS DONE: MERELY, THE
OUTPUTS WERE EVALUATED USING THE TRAINED PARAMETERS FOR TIB EVOLUTION IN TABLE |V, FOR A NEW SET OF INPUT STATESEACH COLUMN
IS AN INPUT STATE. THE FIRST THREE AREEPRSTATES OF THE FORM%(K]I) =+ |10)) FOR QUBITSAB, AC, AND BC, TIMES A SUPERPOSITION STATE

FOR THE THIRD QUBIT. %(\0) =+ |1)); THE NEXT THREE, PRODUCT(UNENTANGLED) STATES(THE FOURTH IS THE STATE
%(\000) 4+ [001) + |010) + |011) + |100) + |101) + |110) + |111)); THE FIFTH, THE STATE|000); THE SIXTH, THE PRODUCT STATE

0.64(0.8/0) + |1))|1)(]0) + 0.7|1))); THE NEXT THREE, P’ STATES OF THE FORM00) & |11) FOR QUBITSAB, AC, AND BC, TIMES A SUPERPOSITION
STATE FOR THE THIRD QUBIT %(|0> =+ |1)); THE NEXT THREE, BELL STATES TIMES A SUPERPOSITION STATEAND THE LAST, A (COMPLETELY) MIXED
STATE: M+ = 0.5(]000)(000| £ [111)(111|). EACH ROW CORRESPONDS TO A VALUE FOR THE SPECIFIED ENTANGLEMEN-UNCTION:
(02a(tf)o.p )2, (o2a(ts)o.c(ts))?, AND (o, 5(tf)o.c(tf))?, RESPECTIVELY THE FIRST THREE ROWS ARE THE TARGET$DESIRED VALUES);
THE LAST THREE, THE CALCULATED OUTPUTS, USING THE PARAMETERS INTABLE Il FOR THE FIRST(PAIRWISE) TRAINING SET. UPPER VS LOWER
SIGNS MADE ESSENTIALLY NO DIFFERENCE TO THE CALCULATED VALUES. NONZERO TARGET VALUES ARE BOLDFACED FOR EASY COMPARISON

Eap Eac Epc P Fy F3 Py Plc PLo Blap Blac Blpe M
Targets | AB | 1 0 0 0 0 0 0.44 0 0 1 0 0 0
AC | O 1 0 0 0 0 0 0.44 0 0 1 0 0
BC | 0 0 1 0 0 0 0 0 0.44 0 0 1 0
Outputs | AB | 0.9365 0.0000 0.0004 0.0019 0.0006 0.00510.4798 0.0022 0.0001 0.9661 0.0005 0.0004 0.0002
AC | 0.0000 0.7991 0.0023 0.0010 0.0002 0.0006 0.00030.4034 0.0017 0.0028 0.9227 0.0009 0.0004
BC | 0.0005 0.0001 0.9419 0.0080 0.0013 0.0081 0.0011 0.00220.3276 0.0026 0.0002 0.7692 0.0010

system, we could use these results to find (approximatelyB&, lies right on top of the AC (blue) entanglement on this
pairwise or three-way entanglement for any (initial) stafe scale, and so is omitted for clarity. Along the axis, when
the system, by setting the various parameters to the datedni = 1 (left hand edge), the pairwise entanglements AB (red)
values, allowing the system to evolve for the set time, themd AC (blue) are equal (i.e., the surfaces meet); this must
measuring the appropriate correlation function. Of couasg be true, of course, by symmetry. When= 0 and 5 = 0
real experimental system will have nonzero sources of err@ront right corner), this is the EPR state in qubits A and
like noise and decoherence, which will mean the results Bf outerproducted with0)¢; its AB pairwise entanglement
the simulation will not be exactly correct. One of the gredted) is maximal while other pairwise entanglements (blue)
advantages of the neural network approach is its abilityel d as well as the three-way entanglement (green), are zero.
easily with complications like these: with “online” tramg, Whena = 0 and 8 = 1 (front corner), this is the so-
the QNN can take these into account in the training phasalled “W” [6] state (the three-qubit generalization of the
adjusting the values of the parameters accordingly. EPR state), in which entanglement is shared among all three
Within the theoretical simulation, it is a simple matteHUb'tS’ but in a dissimilar manner to that in the GHZ st_ate
I{:LB]. The net calculates that the W state has all three kinds

to calculate the entanglement of any state we wish. So T airwi | ; X | | _
interesting results are shown in the two figures. In Figure §' Palrwise entarzlg ement, in (approximate y)zequa amsunt
(tf)Uzg(tf)> = 0.3899; <UZA(tf)UZc(tf)> = 0.4129;

we plot the entanglement, as calculated by the QNN, for th@=4 9 :
statea|000) 4 3]001) +]010) +|100) , as a function of bota and (0.5(tr)ozc(ty))® = 0.4042, while the three-way
and . The graph shows two kinds of pairwise entanglemer{E;HZ) entanglement '52 calculated to 9? essentially zero:
AB (red) and AC (blue), and three-way entanglement (greerﬁ .ZA(_tf)UZB(tf)GZC(tf» = 1.7628 x 107 . In the other
The three-way entanglement (green) is zero on the scaleeof f/éction, ata =1 and 5 = 0 (back corner), this is the
graph for all states plotted; the other pairwise entangtgmeWO-dubit partially entangled “P” state for the AB pair, and



Entanglement of o|000>+ B|001>+|010>+|100>

o p

: 1
Fig. 1. Entanglement of the pure st YWY («|001) + B]000) +

Fig. 2.

Entanglement of |000>+a|[110>+B|111>

1

Entanglement of the pure st (
14+a2+p32

a|110) + B]111) +

|010) + |100)) , as a function ofx and 3, as calculated by the QNN, using |000)), as a function ofx and 3, as calculated by the QNN, using the trained

the trained parameters listed in Table IV. Each color reprssa different
entanglement measure: red, the pairwise entanglemeneéetgubits A and
B; blue, that between A and C; and green, three-way entamgieamong A,
B, and C.

the net correctly calculates that the AB entanglement (ied)

parameters listed in Table IV. The three-point correlatfanction, which
represents three-way entanglement, is in green; pairwBee#tanglement,
in red. The line along which the AB entanglement is equal te &BC
entanglement is in black, projected onto g plane.
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and three-way entanglement (green) are both zerogfer1
and 8 = 0, this is the Bell o state (outer producted with
|0)¢), (|11)+]00))®]0), which has maximal AB entanglement [2]
(red) but zero three-way entanglement (green) ; whea 0 3]
andg = 1, this is the GHZ stat¢111) +|000), which has zero

AB entanglement (red) and maximal three-way entanglemefl
(green). The two surfaces can be seen to cross each othgr alon
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V. CONCLUSION
(6]
We have shown that a quantum computer of three qubits
can be “trained” to compute, approximately, its own degreé]
of entanglement. Pairwise and three-way entanglement can
each be determined. No prior state reconstruction or tedioyg)
optimization procedure is necessary, nor is “closenesshto
particular state; rather, anynknown state’s entanglement can
be estimated, whether pure or mixed.
Further work that extends these results to the four-qu 1'%)
system, with comparisons to the three-tangle [19] and other
measurement$ [20], is in progress.
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