
Scalable QoS-Based Event Routing in
Publish-Subscribe Systems

Nuno Carvalho
Filipe Arajo

Lus Rodrigues

DI–FCUL TR–05–4

February 2005

Departamento de Inforḿatica
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available athttp://www.di.fc.ul.pt/tech-reports . The files
are stored in PDF, with the report number as filename. Alternatively, reports are available by
post from the above address.





Scalable QoS-Based Event Routing in Publish-Subscribe Systems∗

Nuno Carvalho
University of Lisbon
nunomrc@di.fc.ul.pt

Filipe Araújo
University of Lisbon
filipius@di.fc.ul.pt

Luı́s Rodrigues
University of Lisbon

ler@di.fc.ul.pt

Abstract

For many distributed applications, the Publish-
Subscribe communication model emerges as a viable
alternative to the Request-Reply model. It provides a strong
decoupling among participants, simplify the reutilization of
components and the non-stop reconfiguration of applica-
tions. Unfortunately, this strong decoupling also makes it
hard to support Quality of Service (QoS) parameters, like
bandwidth and latency, in an efficient manner.

This paper presents a novel approach to support QoS
parameters in publish-subscribe systems. It proposes a
model that supports the decoupling of QoS characteriza-
tion from the event characterization while offering, at the
same time, an uniform treatment of both aspects. Further-
more, it describes the architecture of a distributed and scal-
able publish-subscribe broker with support for QoS. The
broker, calledIndiQoS, leverages on existing mechanisms
to reserve resources in the underlying network and on an
overlay network of peer-to-peer rendezvous nodes, to auto-
matically select QoS-capable paths. By avoiding flooding of
either QoS reservations or link-state information,IndiQoS
is able to scale with respect to network size and number of
reservations. Experimental results show the validity of our
approach.

1 Introduction

The indirect communication, in particular the publish-
subscribe communication model, is gaining increasing ac-
ceptance as a useful alternative to direct communication
models, such as the ones based on remote invocations. The
main advantage of this paradigm is its support for a weak
coupling among participants, which do not need to be aware
of the location or number of its peers. This simplifies the re-
configuration of the applications and eases the re-use of the
same components in different applications.

∗This work was partially supported by FCT and theIndiQoSproject
(POSI/CHS/41473/2001)

A limitation of most existing architectures that support
the publish-subscribe communication is their limited sup-
port for the negotiation or enforcement of Quality of Ser-
vice (QoS) parameters (such as required bandwidth or la-
tency). This observation applies both to models, such as
the CORBA Event Service [14], CORBA Notification Ser-
vice [15], Java Message Service [22] and to systems, such
as CEA (Cambridge Event Architecture) [3], Distributed
Asynchronous Collections [10] or SIENA (Scalable Inter-
net Event Notification Architectures) [8]. This is a signifi-
cant drawback, since QoS features are an important compo-
nent of applications, and its use and support has been widely
studied in the context of direct communication [5, 6, 23, 4].

There is a fundamental reason for the current state of the
art: traditional approaches to QoS provision are based on
the establishment of channels or connections that reserve
the resources required to provide the desired QoS param-
eters. This mode of operation fits in a natural way in the
direct communication model, where connections are always
explicitly setup, but it has an inherent mismatch with the de-
coupled nature of event based systems. In the indirect com-
munication model, the applications should not be forced
to explicitly setup channels. Instead, they should remain
oblivious to the number and location of the participants in-
volved in the communication and should be concerned ex-
clusively with the properties of the information they are able
to publish or subscribe.

Therefore, a new system model has to be designed to
allow the seamless integration of QoS features in indirect
communication systems. This model should:

• Allow the application to indirectly negotiate QoS pa-
rameters, by allowing it to express QoS properties as a
characterization of the information being produced or
subscribed.

• Delegate on the message broker the task of establish-
ing the required low-level connections, on behalf of
publishers and subscribers. These reservation need to
be based on dynamic information, like number, loca-
tion and characteristics of producers and consumers
and also on the QoS characteristics of the information



exchanged in the system.

In this paper we propose and evaluate an architecture,
calledIndiQoS, which allows QoS parameters to be treated
in a uniform way with regard to other event attributes in
publish-subscribe systems. In particular, similarly to well
known subject-based, content-based, or type-based sub-
scriptions, it is possible to make QoS-aware subscriptions.

Naturally, a key component of the architecture is a scal-
able QoS-aware distributed message broker that is able to
automatically perform the QoS reservations on behalf of
publishers and subscribers. Our broker builds on top of
network-level QoS architectures, such as the Integrated ser-
vices [5] and the Differentiated Services [4], and leverages
on recent results of peer-to-peer systems, to provide a QoS
support to publish-subscribe systems that is highly scal-
able. Experimental results show that theIndiQoS archi-
tecture provides a favorable trade-off between the resulting
network utilization, the end-to-end latency between pub-
lishers and subscribers, and the required signaling cost.

The rest of the paper is organized as follows. Section 2
introduces the QoS-aware publish-subscribe model used in
IndiQoSand Section 3 the requirements of a QoS-aware
distributed message broker. An overview of previous work
in presented in Section 4. TheIndiQoSarchitecture is de-
scribed in Section 5 and evaluated in Section 6. Finally,
Section 7 concludes the paper.

2 QoS-Aware Publishing and Subscribing

One of the main advantages of the publish-subscribe
model is that it decouples publishers and subscribers in sev-
eral dimensions. In [9] three dimensions of decoupling are
introduced: spacedecoupling (interacting parties do not
need to known each other);timedecoupling (parties do not
need to be actively participating in the interaction at the
same time); andflowdecoupling (asynchrony of the model).
In this paper we address a fourth dimension of decoupling,
QoS decoupling, that captures the separation of QoS param-
eters from the type or content of events.

The model advocated in this paper1 has the following
characteristics. The QoS of the event dissemination is es-
tablished in run-time, based on the desired properties ex-
pressed by subscribers, on the shape of the sources adver-
tised by the publishers, and on available resources. An im-
portant aspect is that subscribers should be able to express
QoS constraints using the same type of constructs they use
to express other sort of constraints (such as content-based
constraints). Publishers, on the other hand, do not tie a spe-
cific QoS with the information produced. However, they
must advertise theshapeof the information being produced,

1The model has been originally proposed by the authors in a position
paper in [2].

in the form of anevent QoS profile. The event QoS pro-
file is used in run-time by the message broker to estimate
the resources demanded by a given flow and to match the
QoS constraints specified by subscribers with the character-
istics of the information produced by publishers. The mes-
sage broker plays an important role in a QoS-aware publish-
subscribe system, because it must ensure that QoS require-
ments are met. Besides, the message broker must cope with
QoS related parameters present in advertisements, notifica-
tions and subscriptions.

To make our case, we will use the following exam-
ple. Consider a building where rooms are equipped with
a number of temperature sensors. These sensors adver-
tise the room temperature in an event of typeTemp. The
attributes of these events are:room, which identifies the
room where the temperature is being measured;tempera-
ture, which identifies the room temperature; andprecision,
which identifies the precision of the sensor.

Our case is independent of any particular language con-
struct to be used when specifying notifications or subscrip-
tions. In the following examples we will follow a notion that
closely resembles the type-based publish-subscribe model
of [10]. Using this model, a typical subscription would be:

01 Subscriber s = subscribeTemp
02 where (temperature> 60)

The expression corresponds to a subscription of events
from any room where the temperature is higher than60. On
the publisher side, the interface is:

01 Publisher p = new Publisher
02 of Temp
03 withProfile (room=“lab1”,
04 temperature=any,
05 precision=0.01);
06 e = new Temp (room=“lab1”,
07 temperature=16,
08 precision=0.01)
09 p.publish (e)

The Publisher is an auxiliary component that is used to
disseminate events. Among other purposes, it allows the
publisher to inform the message broker of the type of events
it is going to produce. This information takes the form of
advertisements. In the example above, we consider only a
content profile, the profile that characterizes the content of
the information being published. In this example, the pub-
lisher states that the events it produces may have different
values in thetemperaturefield but have a fixed value in the
room andprecisionfields. This information may be used
by the broker to optimize the dissemination of events [8].
We will now discuss how to advertise QoS related profile
information (in addition to thecontent profile).

2



Consider now that different sensors have different QoS
parameters. For instance, one sensor may produce sporadic
events, only when it detects a temperature change, and other
sensors may produce new events at a periodic pace, but with
different periods. The question is, of course, how to address
the QoS characterization of the events, both at the producer
and at the consumer. Since we are interested in giving the
application designer a uniform interface, we would like to
use mechanisms to express the QoS parameters that are sim-
ilar to the ones used before to express the content of the
information being produced.

One possible approach would be to code the QoS infor-
mation in the eventtype. For instance, one could define two
different types:SporadicSensor andPeriodicSensor and in-
clude other QoS information, such as the period, as an at-
tribute of thePeriodicSensor type. However, we believe that
this approach has several disadvantages. When combined
with other QoS attributes, such as reliability or availability,
this quickly leads to an explosion of different types for the
same information being produced. One of the main reasons
to reject this sort of coupling is that some QoS attributes can
only be derived at run-time. Consider for instance the case
where a subscriber is interested in receiving a temperature
event but wants to specify a minimum latency in the event
dissemination. Clearly, the latency is not an inherent prop-
erty of the information being disseminated. Furthermore,
latency is a function of several run-time parameters, such as
the relative location of the subscriber and the publisher and
the load of the links between these participants.

To address these issues we propose an architecture where
publication and subscription operations are augmented with
QoS attributes that can be used to define filtering conditions
in a similar way to that of content-based filtering. In or-
der to do so, publisher must advertise aprofile of the event
publishing pattern. In our example above, sensors should
characterize the nature of the event pattern, declaring if it
follows a sporadic or periodic profile. For instance, the pe-
riodic sensor declares the shape of the information produced
as aQoS profilethat can be provided in addition to the con-
tent profile:

01 Publisher p = new Publisher
02 of Temp
03 withProfile (room=“lab1”,
04 temperature=any,
05 precision=0.01)
06 withQoSProfile Periodic (period = 1)

On the subscriber side, the desired QoS attributes are ex-
pressed using a filtering condition similar to the one used
for the information contents. For instance:

01 Subscription s =subscribeTemp
02 where (temperature> 60)

03 withQoS ((Periodic(period<1) )
04 and (latency<10 ))

While advertisements are not mandatory in non-QoS-
aware publish-subscribe systems, they are of utmost impor-
tance in a QoS-aware system. In fact, some QoS related in-
formation, such as the period, is not a characteristic of each
individual event but of theshapeof the traffic produced by
the publisher. Given the type of decoupling aimed in the
model proposed here, theprofile of the source must be ad-
vertised independently of each individual publish operation.

There are a number of issues regarding this model that
need to be emphasized. First, some of the QoS attributes
specified in the subscription, such as the latency attribute,
have no match in the information being advertised, and must
be interpreted by the message broker itself. Other examples
include a QoS specification including a reliability attribute
that depends of the available transport protocols. Addition-
ally, a subscription may be refused due to lack of system
resources. For instance, it may be impossible to satisfy the
latency constraint specified in the subscription.

3 QoS-Aware Distributed Message Brokers

Some QoS parameters are already supported in some
publish-subscribe models or systems, such as CORBA No-
tification Service [15], Java Message Service [22] or Dis-
tributed Asynchronous Collections [10]. This is the case of
message reliability, message priority, message earliest de-
livery time, message expire time, duplicate message detec-
tion or message ordering, for instance. Depending on the
architecture, these QoS parameters may be supported or not.

As far as we know, QoS parameters that have been
widely studied in the direct communication paradigm, such
as latency and bandwidth, are not adequately addressed in
publish-subscribe systems. Hence, we envision a message
broker that also copes with these QoS parameters. This
is a difficult task that is considerably different from en-
suring existing QoS parameters such as message reliabil-
ity or message ordering, for instance. To ensure this sort
of QoS parameters it is necessary to do reservation of re-
sources along the path(s) connecting publishers and sub-
scribers. In a publish-subscribe system, to preserve the
decoupling among the participants, reservations should be
done by the message broker on behalf of the applications.
This clearly prompts for the development of QoS aware dis-
tributed message brokers.

A QoS-aware message broker is a distributed component
that manages the following entities:i) Advertisements of
publishers, including theQoS profilesof the information
being advertised;ii) Subscriptions, including desiredQoS
conditions; iii) System resources. The system resources
represent the networking, memory and processing resources

3



available to support the exchange of events. They encapsu-
late low-level QoS protocols, such as RSVP or other simi-
lar mechanisms widely used in direct communication sys-
tems [5, 6, 23, 4].

A naive implementation of a QoS-aware message bro-
ker could rely on a centralized event server: all partici-
pants would directly contact the server that would forward
the messages from publishers to subscribers. Unfortunately,
such solution is inherently non-scalable, as the capacity of
the system would be limited by the bandwidth and process-
ing power of the central server. In this paper we are partic-
ularly interested in building a scalable QoS-aware message
broker, i.e., a broker able to provide service to a large num-
ber of participants.

4 Related work

There are two classes of systems that are relevant to the
IndiQoS architecture: publish-subscribe message brokers
(typically without QoS support) and systems to support QoS
routing (that can be used to augment publish-subscribe bro-
kers with QoS support). We will now briefly review the
most relevant related work in these two classes.

4.1 Publish-Subscribe Message Brokers

There are three main different classes of publish-
subscribe systems:brokerlesssystems, where subscribers
connect directly to publishers;centralized brokersystems,
and decentralized brokersystems. TheCambridge Event
Architecture(CEA) [3] is an example of abroker-lesssys-
tem. The system uses thepublish-register-notifyparadigm,
where subscribers register directly in the publisher nodes
and messages flow directly from the latter to the former.
This model does not provide the level of decoupling re-
quired by many applications. TheCORBA Event Ser-
vice[14], theCORBA Notification Service[15] and theJava
Message Service[12] are examples of publish-subscribe
systems with a centralized broker. This approach is not
scalable in the number of applications and subscription sup-
ported. Examples of architectures using decentralized bro-
kers are theScalable Internet Event Notification Architec-
ture (SIENA) [8], the Scribe [21] and theHermes[17].

SIENA is composed by a network of routers that need
to first disseminate all advertisements among them2 and
then use reverse paths for matching subscriptions. When-
ever possible, SIENA merges advertisement or subscription
messages, to reduce signaling traffic, but the basic need
to flood information contained in the advertisements is not
eliminated. To preclude the flooding of information, Scribe

2Even if advertisement messages were not used, the same would be
necessary for the subscription messages.

and Hermes use a Distributed Hash Table (DHT), together
with the notion of rendezvous nodes. Subscriptions and ad-
vertisements are done on the rendezvous node of the spec-
ified type. Using this approach, the system does not need
to maintain the information about subscriptions and adver-
tisements in all routers: each event type is associated with
one router in a deterministic way and routing is performed
by the DHT.

The IndiQoSarchitecture leverages on the Hermes ar-
chitecture by augmenting it with appropriate QoS routing
mechanisms.

4.2 QoS Routing

Routing messages using QoS parameters as input vari-
ables naturally requires availability of QoS information to
the routers. Possible solutions to this problem may range
from flooding routers with QoS information, thus enabling
routers to locally decide which paths are best, to the other
extreme where no QoS information is distributed and any
routing decision is taken after flooding the entire data net-
work with a reservation request.

Quality of Service Extensions (QoSPF) is a well-known
example of a protocol that tries to maintain updated QoS
information at the routers [1]. To support QoS, QoSPF adds
two new link state advertisement messages to OSPF: one to
describe available resources, the other to describe resources
that are reserved (in a given link). Any change in the avail-
able resources or in the reservations triggers a new mes-
sage. In practice this makes QoSPF not scalable, because
the additional cost of these updates is not negligible. De-
spite this weakness, a similar approach is used to support
traffic-engineering [16] inside a single autonomous system.

A radically different approach is followed by the algo-
rithm in [18] that keeps QoS information local to the links.
However, unlike the previous approach, routers do not have
the necessary information to locally select paths. Therefore,
whenever an application requests a reservation of resources,
it must flood the request throughout the network. This
flooding will serve two purposes:i) do a tentative reser-
vation in the links it goes through andii) collect QoS infor-
mation kept in the links. This flooding process is kept under
control by a pruning mechanism, because paths known to
be non-optimal may be discontinued. This may happen at
all nodes that receive two or more messages relative to the
same reservation. Therefore, there is a wave moving for-
ward with the reservation messages and another one moving
backward pruning non-optimal paths. A third message is
needed to issue the definitive reservation, whenever an op-
timal path reaches destination(s). The reader should notice
that each reservation might require at least two messages by
link in the flooding process.

In a way that is similar to our own approach, there are

4



S − Subscriber
P − Publisher

S

S

S

S

S

P
Event Service

P

(a) Overview

API IndiQoS

Publisher

Network

API IndiQoS

Network

Subscriber

Resource Manager

Network

Pub−Sub with QoS

DHTResource Manager

Network

Pub−Sub with QoS

DHTResource Manager

Network

Pub−Sub with QoS

DHTResource Manager

Network

Pub−Sub with QoS

DHT

Event Service

(b) Interaction between the components of the system

Figure 1. IndiQoSarchitecture.

protocols that try to find a compromise between these two
extreme solutions. This is the case of protocols that build
trees taking into account QoS parameters. For instance, the
QoS Manager for Internet Connections(QoSMIC) builds
the tree restricting connections based on available band-
width [24]. When a node wants to join, it connects to the
nearest node that has the necessary bandwidth. To do this,
each tree node must know the network topology, including
the available bandwidth in the connections. This applies
also to other protocols, likeQoS Dependent Multicast Rout-
ing Algorithm(QDMR) [11]. However, in the context of a
publish-subscribe system,IndiQoSis inherently better than
any of the previously existing solutions, because it embod-
ies the lightweight structure of a DHT, which requires nodes
to have information of onlyO(log n) neighbors, keeps QoS
link state information local and, unlike [18], uses a re-
stricted dissemination of reservation messages.

5 The IndiQoSArchitecture

TheIndiQoSarchitecture, illustrated in the Figure 1, is a
type-based publish-subscribe system that uses a decentral-
ized message broker to connect publishers and subscribers.
The message broker is composed by a set of routers, struc-
tured in a peer-to-peer overlay network. The routing of
events is made by a DHT. Applications connect to the mes-
sage broker using one of the routers. This architecture is in-
spired by Hermes [17]. However,IndiQoSincludes mech-

anisms to manage the reservation of network resources to
provide QoS guarantees with small signaling overhead.

5.1 Decentralized Message Broker

The IndiQoSmessage broker is composed by a set of
nodes connected using an overlay network. These nodes
behave as event routers that cooperate to form event dissem-
ination trees able to satisfy the QoS requirements requested
by the applications. The routing functions required to build
the tree are provided by a DHT.

As depicted in Figure 1, each node of the overlay net-
work executes a protocol stack composed of: (i) a publish-
subscribe layer, that manages the advertisements and sub-
scriptions and, in response, automatically establishes the
reservations required to satisfy the applications; (ii) a DHT
(overlay) layer, that supports message routing and (iii) the
underlying network layer, encapsulated by abstract network
components.

A DHT is a fundamental building block for peer-to-peer
applications. Basically, it allows a group of distributed
hosts to collectively manage a mapping from keys to nodes.
The DHT used in the current implementation ofIndiQoS
is Bamboo[19]. Bamboo is based on Pastry [20] that uses
the same geometry3 but relies on alternative neighbor man-
agement algorithms that aim at improving the path quality
(namely the latency). We exploit these properties ofBam-
boobut we have slightly adapted its behavior to avoid the re-
configuration of the overlay in stable conditions (in order to
preserve the stability of established network reservations).

As in Hermes, theIndiQoSuses the notion ofrendezvous
nodes. The rendezvous nodes are responsible for keeping
control information about specific event types. Applications
interact with the message broker using one node as the gate-
way. The gateway uses the rendezvous node to find a path
between publishers and subscribers. As illustrated in Fig-
ure 2, advertisements and subscriptions related to a given
event type are both routed to the same rendezvous node.

One positive aspect of an architecture based on a DHT is
that it allows distribution of the load among the nodes of the
overlay and it offers a very efficient way for each participant
to contact the desired rendezvous node. The DHT just needs
an identifier to find a path to the rendezvous node. We use a
deterministic algorithm that maps event types to identifiers
and with this identifier, the DHT just routes the message to
the respective node. Using the DHT do distribute the ren-
dezvous among the nodes of the overlay network we reduce
the possibility of getting a bottleneck in some part of the
network.

3The termgeometryis used to refer to the pattern of neighbor links in
a DHT, independent of the routing algorithms used.

5



P − Publisher
R − Rendezvous Node

P

R

Event Service

(a) Advertisement

S − Subscriber
P − Publisher
R − Rendezvous Node

S

S

P

R

SS

S

Event Service

(b) Subscriptions

Figure 2. Paths in the message broker.

5.2 Event Distribution Trees

IndiQoScreates event distribution trees where the pub-
lisher is the root of the tree, the subscribers are the leafs,
and the rendezvous acts as a bifurcation point. By build-
ing the dissemination tree in this way, the rendezvous node
may easily become a bottleneck, since all the events of the
corresponding type have to pass through this node. To al-
leviate this effect, any node of the overlay can intercept a
subscription: if there is already a path to the rendezvous
node that satisfies the subscription, a bifurcation is placed
in the intercepting node. Therefore, the distribution tree is
constructed in a distributed way: the publisher starts by reg-
istering itself, sending an advertisement to the rendezvous
node. In a similar manner, subscribers also route the sub-
scription to the rendez vous. The first subscription estab-
lishes the necessary resource reservations in the path from
the subscriber to the rendezvous (and from the rendezvous
to the publisher). Subsequent subscriptions that cross this
path do not need to be forward up to the rendezvous: in-
stead, a bifurcation is established at the crossing point. As
the system evolves, bifurcations are more likely to be found
closer to the subscribers. This is illustrated in Figure 2. As
it can be seen in Figure 3, in the final tree, there is a bifur-
cation of events not only in the rendezvous nodeR, but also
in the routersR1, R3 eR4.

S − Subscriber
P − Publisher
R − Rendezvous Node

S

S

P

R

SS

S

Serviço de Eventos

R1

R3

R4

R5

R6

R2

Figure 3. Dissemination tree.

5.3 Quality of Service

TheIndiQoSarchitecture is independent of the network-
level mechanisms used to reserve resources on individual
links. Available mechanisms include those proposed by
the Integrated Services or the Differentiated Services archi-
tectures. This independence is provided by encapsulating
concrete network level mechanisms inside abstract network
components calledInfopipes[13]. Infopipes are software
components that can be connected to each other to form
an overlay network. These components are connected to
each-other by ports. Information items are received by In-
fopipes through source ports and forward to other Infopipes
through destination ports. A set of connected Infopipes is
called aInfopipeline. There are several types of Infopipes.
For instance,SourceandSinkconnect Infopipelines to ap-
plications; theSplit Teesimulates multicast, connecting one
incoming Infopipe to several outgoing Infopipes; and the
Netpipeconnects two different hosts. The most important
Infopipe to be defined in this context is theNetpipe. The
Netpipe is the Infopipe responsible for transferring events
between different hosts. A Netpipe can be defined as a
quadruple〈S, D, L, W 〉, whereS is the Source host,D is
the Destination host,L is the Length of the Netpipe, which
also represents its latency, and finallyW , the Width of the
Netpipe, represents its maximum bandwidth. This software
component also has an interface to the above layer in theIn-
diQoSrouters, exporting an API to make reservations, get-
ting information about important parameters of the network.
We can have different implementations of the Infopipes and,
in particular, we implement the Netpipe using several solu-
tions to make the real resource reservations.

The resources are reserved by aResource Manager, us-
ing theNetpipeinterface. Reserved resources are managed
internally by this component. So, is the resource manager
that makes the real reservations in theNetpipes, distributing
them by publications and subscriptions as they arrive. In the
IndiQoSsystem, two QoS parameters are guaranteed: la-
tency and bandwidth. Messages are only routed to links that

6



satisfy the requested resources. The reservations made by
the Resource Manager are only made locally in each router
and only when paths are already defined. A system client,
after contacting the rendezvous node, receives a reply that
already contains a path that satisfies the QoS requirements.
Having this path defined, it is enough to send a control mes-
sage in the reverse direction to commit the respective reser-
vations in the Resource Manager of each router of the over-
lay network. As the paths are bound in the rendezvous node,
this node has to verify that the requested QoS can be satis-
fied by the system. When the publisher and the subscriber
are both registered, the rendezvous node makes use of the
information about the requested bandwidth and latency re-
quested by the subscriber. With this information, the ren-
dezvous node verifies if the QoS can be satisfied. In the
case of the presence of several publishers of the same event
type, but advertising information with different QoSs, the
rendezvous node can also choose the publisher most apt to
satisfy a subscriber’s request.

5.4 Replication of the Rendezvous Points

The use of a single rendezvous point for each event type
may limit the performance, scalability and fault tolerance
of the system. If a given rendezvous node fails, all the con-
trol information has to be rebuilt as soon as the underly-
ing DHT is reconfigured. Also, the limited bandwidth and
processing power of the rendezvous limits the scalability of
the system in terms of the number of applications advertis-
ing/subscribing to a given event type. Therefore,IndiQoS
replicates each rendezvous node.

To associaten rendezvous replicas to one type, one can
trivially modify the algorithm that maps types to keys of
the DHT to deterministically returnn keys instead of one.
Furthermore, it is necessary to adapt the algorithm that con-
structs the event distribution trees to supportn rendezvous
nodes for each type. The publisher, after gettingn keys,
registers itself in all replicas of the rendezvous. The sub-
scribers, on the other hand, also make request to then ren-
dezvous replicas, receivingn replies. These replies are then
evaluated by the subscriber, who chooses the rendezvous
replica that better fits the requested QoS. When the ren-
dezvous replica is chosen, the subscriber registers and is
added to the correspondent dissemination tree.

Figure 4 shows a distribution tree for one event type with
two rendezvous replicas. A significant advantage on having
several rendezvous replicas for each event type is that the
paths are distributed and there is no longer a single bottle-
neck point in the overlay. The compairison between Fig-
ure 3 and 4 illustrates the difference between a configura-
tion that uses a single rendezvous and a system that uses
two replicas of the rendezvous. As the number of ren-
dezvous replicas grows, the system has more alternative

R − Rendezvous Node

S − Subscriber
P − Publisher

S

S

S

S

S

P

P

R

R

Event Service

Figure 4. Using a replicated rendezvous.

paths between publishers and subscribers and it becomes
more likely finding a path satisfying the QoS requirements
of any subscription.

6 Evaluation

This section presents the results obtained in the evalua-
tion of theIndiQoSarchitecture. The results show the ben-
efits of using the DHT and the replication of rendezvous
nodes. We also compare our system with different ap-
proaches for building the event distribution trees.

To evaluate theIndiQoSsystem, we have used the net-
work simulator provided with the distribution of the Bam-
boo DHT [19]. The network was generated by GT-ITM [7]
using a transit-stub network. In our simulations, there are
252 IndiQoSnodes and 30% of these nodes have one sub-
scriber application connected. The system has also one pub-
lisher for each event type. The simulations generate sub-
scriptions until the maximum network usage is reached for
the tested configuration. Each subscription requires 12.5%
of the bandwidth available in each link. The subscription
requests are randomly assigned to subscribers and we as-
sume that the maximum network usage was reached when
we detect a sequence of 100 consecutive refused subscrip-
tions.

6.1 Benefits the DHT

Using a DHT to implement a system likeIndiQoShas
several advantages. One advantage is that, in opposition
to a centralized server approach, the load imposed by sub-
scriptions is distributed, given that subscriptions associated
with different event types are routed through different ren-
dezvous points distributed among the network nodes. An-
other advantage is that the DHT provides a very efficient
way for each participant to locate, and contact, the ren-
dezvous point for any given event type. This advantage is
inherent to the routing way of the DHT.

7



Figure 5. Network utilization vs event types.

Figure 5 shows the increase in network utilization as
the number of event-types increases. With a single event
type, all advertisements and subscription are managed by
the same rendezvous node (this corresponds to a centralized
solution). The bandwidth to this node quickly becomes ex-
hausted while other links in the network may remain under-
utilized. By increasing the number of types, and the number
of corresponding rendezvous nodes, a better utilization of
system resources is promoted.

6.2 Benefits of Rendezvous Replication

A key aspect of theIndiQoSarchitecture is the replica-
tion of rendezvous nodes for each event type. This strategy
has two complementary goals. In the first place, it increases
the amount of subscriptions supported for each type. Given
that there is a limited amount of bandwidth available to each
rendezvous node, the replication of the rendezvous nodes
increases the available bandwidth for each event type. In
second place, when more than one rendezvous node is able
to coordinate the reservations for a given subscription, it
becomes possible to select the path that offers a better end-
to-end latency.

Figure 6 depicts the maximum achievable network uti-
lization as a function of the number of replicas of the ren-
dezvous node for a single event type. As expected, it is
observed an increase in the number of subscriptions that
are satisfied as the number of replicas of the rendezvous
increases.

Figure 7 depicts average latency between the publisher
and the subscribers as a function of the number of replicas
of the rendezvous node. An interesting aspect of the results
is that significant latency gains can be achieved with as few
as four replicas, and that further increase in the number of

Figure 6. Network utilization vs replication.

Figure 7. Average latency vs replication.

replicas does not provide a significant improvement.

Naturally, the advantages of augmenting the number of
replicas of a rendezvous node come with cost: there is an
increase in the signaling required for satisfying a subscrip-
tion. This happens because a subscription needs to be for-
ward to the different replicas of the rendezvous node. Fig-
ure 8 shows the average number of control messages for
each request that had success. Increasing the number of
replicas also increases the number of control messages to
register in the rendezvous nodes and make resource reser-
vations. As wee will show next, when comparing our ap-
proach with other alternatives, the signaling cost is compet-
itive for a small number of replicas.

8



Figure 8. Signaling vs replication.

6.3 Comparison With other Strategies

A fundamental goal of theIndiQoSarchitecture is to im-
plement a scalable message broker. In particular, we are
interested in measuring the signaling costs of our solution
when compared with 1 and 3 replicas of the rendezvous
node (IndiQoS1 PC and 3 PC). Is also compared to other so-
lutions. There are two alternative approaches that we have
used for comparison:

i) One approach consists in using a link-state protocol
to ensure that every node keeps an up-to-date representa-
tion of the network state (FNS). As a result, each node
can autonomously select the best path to satisfy a given
subscription. This approach is used in commercial traffic-
engineering solutions (such as [16]): it requires each node
to keep the state of the complete network and to flood a
link-state update whenever the bandwidth of a link changes
significantly.

ii) Another approach consists in flooding a subscription
request to every node of the network in order to find an ac-
ceptable path (FR). This approach, used in [18], does not
require every node to keep up-to-date information about the
state of the network, but has a significant signaling cost as-
sociated with each subscription.

Figure 9 shows the signaling cost ofIndiQoS against
these two alternatives. As it can be seen, the signaling cost
is substantially smaller (five times less). Naturally, given
that IndiQoSoperates without global knowledge of the net-
work conditions, it cannot find paths as good as the other
approaches. However, it can be seen that the increase in
latency is smaller when compared with the signaling gains.

Figure 9. Comparison.

7 Conclusions and Further Work

The paper presented theIndiQoS architecture, a scal-
able QoS-aware publish-subscribe system. With QoS-aware
publications and subscriptions that preserve the decoupling
that makes the publish-subscribe model so appealing. Us-
ing QoS based subscription, consumers of information may
specify in a declarative manner both the type, content and
QoS attributes such as latency, reliability, etc, of the in-
formation they are interested in. To support such model,
theIndiQoSincludes a decentralized message-broker based
on a Distributed Hash Table that leverages on underlying
network-level QoS reservation mechanisms. To increase the
network usage and to reduce the end-to-end latency, and still
offer low-cost signaling, we propose to replicate the ren-
dezvous points for each event type. Experiments show that
the resulting system offers a small signaling overhead with-
out a significant performance penalty (end-to-end latency
and network utilization), when compared to solutions that
require the system to maintain or obtain global knowledge.

9



References

[1] G. Apostolopoulos, D. Williams, S. Kamat, R. Guerin,
A. Orda, and T. Przygienda. QoS routing mechanisms and
OSPF extensions, August 1999. RFC 2676.

[2] F. Araújo and L. Rodrigues. On QoS-aware publish-
subscribe. InProceedings of the International Workshop on
Distributed Event-Based Systems, pages 511–515, Vienna,
Austria, July 2002. IEEE. (Proceedings the 22nd Interna-
tional Conference on Distributed Computing Systems Work-
shops).

[3] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil,
O. Seidel, and M. Spiteri. Generic support for distributed
applications.IEEE Computer, March 2000.

[4] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An architecture for differenciated services, De-
cember 1998. RFC 2475.

[5] R. Braden, D. Clark, and S. Shenker. Integrated services in
the internet architecture: an overview, June 1994. RFC 1633.

[6] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Re-
source reservation protocol (RSVP) — version 1 functional
specification, September 1997. RFC 2205.

[7] K. Calvert, M. Doar, and E. Zegura. Modeling internet topol-
ogy. IEEE Communications Magazine, June 1997.

[8] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and eval-
uation of a wide-area event notification service.ACM Trans-
actions on Computer Systems, 19(3):332–383, August 2001.

[9] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec.
The many faces of publish/subscribe.ACM Computing Sur-
veys, 35(2):114–131, June 2003.

[10] P. Eugster, R. Guerraoui, and J. Sventek. Distributed asyn-
chronous collections: Abstractions for publish/subscribe in-
teraction. InIn 14th European Conference on Object Ori-
ented Programming (ECOOP 2000), pages 252–276, June
2000.

[11] L. Guo and I. Matta. QDMR: An efficient QoS dependent
multicast routing algorithm. InProc. of the Fifth IEEE Real-
Time Technology and Applications Symposium (RTAS ’99),
1999.

[12] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout.
Java Message Service. Sun Microsystems, April 2002.

[13] R. Koster, A. P. Black, J. Huang, J. Walpole, and C. Pu. In-
fopipes for composing distributed information flows. InPro-
ceedings of the International Workshop on Multimedia Mid-
dleware, pages 44–47. ACM, October 2001.

[14] OMG. Event Service Specification. Object Management
Group, March 2001.

[15] OMG. Notification Service Specification. Object Manage-
ment Group, August 2002.

[16] E. Osborne and A. Simha.Traffic Engineeering with MPLS.
Cisco Press, 2003.

[17] P. Pietzuch and J. Bacon. Hermes: A distributed event-
based middleware architecture. In22nd IEEE International
Conference on Distributed Computing Systems Workshops
(DEBS ’02), 2002.

[18] H. Pung, J. Song, and L. Jacob. Fast and efficient flooding
based QoS routing algorithm. InProceedings of IEEE IC-
CCN99, pages 298–303, September 1999.

[19] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a DHT. Technical report, University of California
at Berkeley, December 2003.

[20] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems.Lecture Notes in Computer Science, 2218, 2001.

[21] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
SCRIBE: The design of a large-scale event notification in-
frastructure. InNetworked Group Communication, pages
30–43, 2001.

[22] Sun Microsystems, 901 San Antonio Road, Palo Alto, CA
94303, USA.Java Message Service, November 1999.

[23] J. Wroclawski. The use of RSVP with IETF integrated ser-
vices, September 1997. RFC 2210.

[24] S. Yan, M. Faloutsos, and A. Banerjea. QoS-aware multi-
cast routing for the internet: The design and evaluation of
QoSMIC, February 2002.

10


