
HAL Id: hal-03966159
https://hal.science/hal-03966159v1

Submitted on 1 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ALDER: Unlocking blockchain performance by
multiplexing consensus protocols

Kadir Korkmaz, Joachim Bruneau-Queyreix, Sonia Ben Mokhtar, Laurent
Réveillère

To cite this version:
Kadir Korkmaz, Joachim Bruneau-Queyreix, Sonia Ben Mokhtar, Laurent Réveillère. ALDER: Un-
locking blockchain performance by multiplexing consensus protocols. 2022 IEEE 21st International
Symposium on Network Computing and Applications (NCA), Dec 2022, Boston, United States. pp.9-
18, �10.1109/NCA57778.2022.10013556�. �hal-03966159�

https://hal.science/hal-03966159v1
https://hal.archives-ouvertes.fr

ALDER: Unlocking blockchain performance by
multiplexing consensus protocols

Kadir Korkmaz
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI

UMR 5800, F-33400 Talence, France

Joachim Bruneau-Queyreix
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI

UMR 5800, F-33400 Talence, France

Sonia Ben Mokhtar
Liris - CNRS
Lyon, France

Laurent Réveillère
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI

UMR 5800, F-33400 Talence, France

Abstract—Most of today’s online services (e.g., social networks,
search engines, marketplace places) are centralized, which most
users recognize as unsatisfactory for various reasons (e.g., cen-
tralized governance, censorship, loss of control over personal
data). Blockchain technologies promise a new Web revolution
(Web 3.0) through the decentralization of online services. How-
ever, one of the fundamental limitations for this revolution to
happen at a planetary scale is the poor performance of today’s
permissionless blockchains. In this paper, we propose ALDER, a
generic construction that multiplexes off-the-shelf permissionless
blockchain protocols to address the performance bottleneck
due to store-validate-forward block dissemination techniques in
blockchain protocols. We apply ALDER to two representa-
tive blockchains, namely Algorand (Proof-of-Stake) and Bitcoin
(Proof-of-Work), to illustrate the benefits it brings to blockchain
performance. Our evaluations show that ALDER can drastically
improve the throughput of blockchains when bottlenecks exist.

Index Terms—Blockchain systems, performance.

I. INTRODUCTION

Blockchain systems are consistent replicated systems that
operate on networks of untrusted nodes that repeatedly agree
on a block of data to append to a shared log of chained
blocks. Since the emergence of Bitcoin [1], permissionless
blockchains have demonstrated the ability to run arbitrary
distributed applications [2] with the promise of supporting
entire decentralized economies [3], business ecosystems across
industries [4], decentralized service infrastructures [5] and
even have ambitions to decentralize the entire web [6]. The
realization of these latter use cases requires efficient and
effective blockchain solutions. From the oldest design (e.g.,
Bitcoin) to the most recent (e.g., OHIE, Algorand), the race
toward more efficient and effective blockchains is still on.
Although some blockchain proposals aim to replace others,
it is commonly accepted that there is no single blockchain
that meets the needs of the wide variety of distributed appli-
cations [7]. In this context, solutions that aim to improve the
performance of off-the-shelf blockchains make real sense.

A fundamental building block that is often considered a bot-
tleneck in blockchain performance is the consensus protocol
used to agree on the next block to extend the blockchain [8].

Significant efforts have been made to enhance the perfor-
mance of existing consensus protocols that can be used in
permissioned blockchains [9], [10], [11] where the number
and identity of nodes are known to all. However, improving the
performance of existing consensus protocols in permissionless
blockchains remains an open problem. There are a variety of
these protocols, e.g., Proof-of-Work-based [1], [12], [13],
[14], [15], Proof-of-Stake-based [3], [16], committee-based
[3], [17], [14], [18] or leadlerless-based protocols [19], [20].

In this paper, we focus on leader-based permissionless
blockchain consensus protocols. These protocols, deployed
at the heart of major blockchains (e.g., Bitcoin, Ethereum,
Algorand), elect a leader responsible for proposing a block.
Two effective ways for increasing the performance of a given
leader-based blockchain protocol are to increase the size of
the proposed blocks or to increase the frequency at which
leaders propose blocks. Although these solutions seem simple
to implement, they can rapidly reach their limits due to
the store-validate-forwad block dissemination used by these
blockchains. First, the improvements in block size do not
necessarily compensate the resulting increase in block dissem-
ination delay, which caps the effective throughput. Second,
augmenting the block proposal frequency also has drawbacks
because it impacts the way the protocol operates along with its
performance. For example in a blockchain such as Bitcoin, a
higher block proposal frequency increases the occurrences of
forks, thus decreasing the mining efficiency [13] and reaching
suboptimal throughput.
Contributions. To address the limitations of these two strate-
gies, we present ALDER, a general construction that mul-
tiplexes permissionless blockchain consensus protocols to
append not one (large) but several (smaller) blocks to the
blockchain. Specifically, ALDER lets multiple nodes propose
candidate blocks while allowing the blockchain system to
compose and agree on a macroblock, an ordered set of
blocks.ALDER leverages leader candidates not exploited in
the original consensus protocols. Leaders independently pro-
pose concurrent blocks containing disjoint sets of transactions,
the union of which constitutes a macroblock. To assess the ef-
fectiveness of ALDER, we apply its principles to two family-979-8-3503-9730-7/22/$31.00 ©2022 European Union

representative blockchains: Algorand[3], a scalable proof-of-
stake blockchain, and the iconic Bitcoin. Our evaluation,
involving up to 10,000 nodes deployed on 100 physical
machines, shows that ALDER provides performance gains up
to 300%.
Outline. First, we describe ALDER’s foundations in Sec-
tion II and detail its building blocks in Section III. Sec-
tion IV illustrates the use of ALDER on two representative
blockchains. We evaluate the resulting systems in Section V.
Finally, we compare ALDER to the state of the art in
Section VI before concluding in Section VII.

II. ALDER’S FOUNDATIONS

We assume a permissionless leader-based blockchain system
composed of n node processes. The blockchain system enables
all nodes to reach consensus on an ordered set of blocks
proposed by elected leaders. Consensus is performed in a
decentralized, tamper-proof, and publicly-verifiable way. Each
newly accepted block extends the blockchain. We assume
that nodes implement a blockchain protocol operating under
network synchrony or eventually network synchrony assump-
tions. We model the blockchain protocol as the composition
of several steps: the election of leaders, the creation of blocks,
the dissemination of blocks throughout the system, and a
consensus algorithm that allows all nodes to agree on a
block. The blockchain protocol satisfies safety and liveness
properties, that have been translated into common prefix, chain
quality and chain growth defined in previous work [21], [22],
[23]Abstracting from the specifics of consensus protocols em-
ployed in leader-based permissionless blockchains, we provide
the informal definitions of these properties:
• Chain-quality: any (large enough) subset of an honest node’s

chain contains blocks from honest nodes.
• Chain-growth: the chain of any honest node grows at least

at the rate of successful rounds.
• Common prefix: the chains of all honest nodes must be

identical, except for a few tail blocks that are not yet
stabilized, i.e., if two honest nodes discard a sufficient
number of blocks from their respective chains, they obtain
the same prefix.
Our work excludes leaderless consensus [19] and leaderless

blockchain models such as Avalanche [20].

A. Store-validate-forward block dissemination bottleneck

Throughput and latency are key metrics to assess the per-
formance of blockchain protocols. They respectively represent
the amount of data that a blockchain protocol can append to
the chain per unit of time, and the duration before a proposed
block is added to the ledger. Two effective ways to improve
the performance of blockchains are increasing the frequency
at which blocks are proposed, and increasing the block size.
While these solutions seem straightforward, they rapidly reach
their limits. This is due to the store-validate-forward block
dissemination mechanism used in these protocols that requires
nodes to validate the content of each received block before
forwarding it to their neighbors.

Increasing the block size can be counterproductive because
nodes should first validate each block before forwarding it.
Therefore, larger blocks would be added to the blockchain at
a slower rate, which in the optimistic scenario would keep
a steady throughput, but with increased latency. There are
also drawbacks to increase the frequency of block proposals
such as in consensus protocols whose probabilistic termination
properties allow the existence of forks, usually with proof-of-
work based blockchains (e.g., Bitcoin or Ethereum). As the
frequency of block proposals increases, the number of forks
appearing in the system increases, resulting in a larger share
of generated blocks not appended to the ledger. This lack of
efficiency, in this example the mining power efficiency, makes
the envisioned performance improvement strategy suboptimal,
with a significant proportion of blocks generated quickly and
not used to improve blockchain throughput. At this point, the
fundamental limits of these two strategies (larger block and
faster block generation) are reached, preventing any further
performance gains for blockchain consensus protocols.

B. ALDER: multiplexed blockchain consensus

The work presented in this paper aims to improve the per-
formance of existing leader-based permissionless blockchain
protocols by circumventing the store-validate-forward bottle-
neck encountered when increasing the block size or the block
generation frequency. Our approach, ALDER, consists in
multiplexing the execution of blockchain consensus protocols.
We call multiplexing a consensus instance the process by
which the nodes in the system propose and agree to append
a macroblock, i.e., a set of blocks totally ordered, to the
blockchain instead of a single block per round. The blocks
composing the resulting macroblock contain disjoint sets of
transactions.

With these new capabilities, the resulting blockchain pro-
tocol disseminates a larger number of smaller blocks com-
pared with the original protocol. Then, the consensus pro-
tocol decides on a set of these blocks, gathered together
into a macroblock by each node. This construction allows
circumventing the store-validate-forward bottleneck by fine-
tuning the operations of the multiplexed blockchain protocol:
either by increasing the number of blocks inside a macroblock
(a result of increased block generation frequency), or by
increasing the size of each block inside a macroblock, or a
mix of both. As a result, the dissemination of these blocks
from different nodes in the system optimizes the consumption
of network resources and increases the throughput of the
blockchain system.

III. ALDER: MULTIPLEXING BLOCKCHAIN CONSENSUS
PROTOCOL

In this section, we present the principles of ALDER
that transform a leader-based Blockchain Consensus Protocol
(BCP) into its multiplexed version BCP++ to increase its
performance. Fig. 1 illustrates this transformation on a BCP in
its canonical form that executes in time-based rounds: leader
election, block proposal, block dissemination, and consensus.

1 BlockALDER

Leader
election

Block
proposal

Block
dissemination Consensus

1 Macroblock of
Cl blocks

Ro
un

d
r-

1

...

Instance of BCP
Ro

un
d

r-
1

...

BCP chain

BCP++ chain

Ro
un

d
r+

1
Ro

un
d

r+
1

rr-1r-2r-3r-4

rr-1r-2r-3r-4

Multiple
leader

election

Disjoint block
proposal

Block
dissemination

Multiplex
consensus

Instance of BCP++

Fig. 1: Multiplexing a blockchain BCP using ALDER

In each round, BCP++ elects several leaders, leveraging
the election mechanism of the original BCP that identifies a
node (sometimes several, either by design principle or by side
effect) that must propose a candidate block. BCP++ partitions
the transaction hash space into Cl disjoint regions called
buckets, where Cl is the concurrency level of BCP++, which
denotes the number of blocks composing the macroblocks.
BCP++ assigns a separate transaction bucket to each leader
in a publicly verifiable way. Then, leaders propose blocks
with disjoint sets of transactions using the assigned transaction
bucket. Finally, BCP++ runs a multiplexed version of the BCP
consensus to agree on an ordered composition of the proposed
blocks, i.e., a macroblock. The nodes in the system wait for
this decision before assembling the agreed-upon list of blocks
and appending the locally constructed macroblock to the chain
before proceeding to the next round.

To multiplex BCP, ALDER leverages three primitives: (1)
transaction space partitioning, (2) multiple leader election
and bucket assignment, and (3) multiplexed consensus and
macroblocks. We now detail these primitives and how they
relate to each other.

A. Transaction hash space partitioning

Appending multiple blocks of transactions in a given round
poses the problem of duplicated transactions and duplication
attacks. Indeed, in a simple approach, leaders create blocks
with the transactions they possess. As a result, some blocks
could include transactions already present in other proposed
blocks. This redundancy would reduce the throughput gain
envisioned in our approach and increase the complexity of the
transaction execution phase. Duplication of transactions also
opens the doors to duplication attacks by an adversary con-
trolling Byzantine nodes. When Byzantine nodes are elected,
the adversary can wait to learn about the blocks proposed by
honest leaders and have Byzantine leaders propose blocks con-
taining the same transactions, thus reducing the performance
gain of BCP++. To address this problem, ALDER creates
a transaction hash space partitioned into Cl disjoint regions

B
[1]

B
[1]

B
[0]

B
[0]

B
[0]

B
[2]

B
[2]

B
[2]

B
[1]

B
[0]

B
[2]

round r-1 round r round r+1 round r+2

(a) Example of a chain of mac-
roblocks with a concurrency level
Cl = 3. Dashed lines represent
macroblocks, and solid squares indi-
cate the composing blocks referenc-
ing the previous macroblock hash.

Leader Hash(election proof) % Cl

Transactions Hash(tx) % Cl

Bucket
3

Bucket
1

Bucket
2

(b) Mapping a transaction to a
bucket, and a leader to a bucket
with Cl = 3. The election
proof is a blockchain consen-
sus protocol-dependent value.

Fig. 2: ALDER macroblockchain structure and bucket assign-
ment

called buckets, deterministically assigns each transactions to
one of the buckets, and forces leaders to propose blocks with
transactions from a unique bucket. Cl is the concurrency level
of BCP++, set at its bootstrap. Fig. 2b illustrates the mapping
of a received transaction, tx to one of the three available
buckets.

Upon receiving a transaction tx, a node first checks its va-
lidity before computing its image from a secure cryptographic
hash function. To determine the corresponding bucket number
that will store the transaction, the modulo Cl operation is used
against the hash image of the transaction. Nodes regularly
remove transactions from their buckets as transactions appear
in appended macroblocks.

B. Multiple leader election and bucket assignment

ALDER extends the leader election of BCP to ensure
that enough leaders are identified, to avoid macroblocks from
being partially filled, and to assign a bucket to each elected
leader in an unforgeable and publicly verifiable way. To
this end, ALDER leverages the protocol-dependent tamper-
resilient election proof employed in BCP to prove the leader’s
legitimacy in conducting the task of creating and proposing a
block. For example, an election proof in Bitcoin is a solution
to the cryptographic puzzle set by the system. Regarding
Algorand, the election proof results from a cryptographic
sortition procedure evaluating a verifiable random function on
publicly known variables.

The bucket assignation in BCP++ results directly from
the computation of the election proof modulo the number
of buckets Cl. Fig. 2b illustrates the bucket assignment to
a leader, with Cl = 3. Each block proposed by a leader
must exclusively include transactions whose hashes fall within
the bucket assigned to the leader. In this way, any node can
validate the correct fabrication of a received block by checking
its contents against the bucket number assigned to the block
proposer. Using the described construction, leaders of ALDER
submit disjoint blocks that can be aggregated to construct one
macroblock.

We distinguish two bucket assignment approaches based
on whether the election proof is known before or after the

block is created. In the first case, the bucket assignment
approach is straightforward as one can directly compute the
assignment decision from the existing proof. However, con-
sidering blockchain protocols, e.g., PoW-based ones, where
nodes have to commit to the content of a block to generate
an election proof, the assignment decision cannot be derived
from the generated proof without risking a mismatch between
the committed block and the resulting assignment. In this
configuration, the bucket assignment approach consists in con-
ducting altogether the block creation and bucket assignment
by having each node commit to Cl blocks from the Cl disjoint
transaction buckets. Once the election proof is known, the
node derives the assigned bucket and corresponding block. In
section IV, we detail bucket assignment techniques for each
approach.

C. Multiplexed consensus and macroblocks

Multiplexing consensus requires the nodes to agree on
not one, but a set of proposed blocks i.e., a macroblock.
Although multiplexing is highly implementation-dependent,
we formalize the consensus results required to preserve the
safety and liveness properties of the blockchain model we
consider. The consensus decision d = {hi}i∈[0..Cl−1] on a
macroblock takes the form of a Cl-long vector of block hash
values hi where i is the bucket number from which each block
originates. Each node in the system listens for the blocks
proposed by the leaders and locally builds a macroblock based
on the consensus decision produced.

A macroblock is a logical composition of up to Cl blocks
of size bs bytes. Each block in the macroblock contains the
election proof of the leader proposing a block, along with the
reference to the previously appended macroblock in the form
of a hash image of the previous consensus decision d. Fig. 2a
depicts an example of a chain of macroblocks.

Upon receiving a block, each node proceeds through a
series of validity and semantic checks regarding the block
content and its creation process. Namely, the nodes verify: the
leader’s election legitimacy carried out by the election proof
delivered with the block; the validity of a bucket assignment
to the leader; the validity of the transactions themselves;
the transactions’ membership to the claimed bucket; and the
presence of the hash value referencing the previously appended
macroblock. If any verification returns a negative result, the
node discards the block. If the block passes all checks, it is
stored in a global data structure until the end of the round,
and is passed on to other nodes in the system according to the
block dissemination protocol of BCP++. This semantic check
is not limited to ALDER and can be extended according to
other protocol-specific constraints.

Upon a node receives all blocks for a given macroblock
in a given round, it verifies that all blocks refer to the
same previously appended macroblock, and then applies a
global verification to assess double-spending attempts. Indeed,
a malicious party might try to double-spend by appending
transactions referencing the same unspent transaction outputs
into different blocks within the same macroblock. In such

a case, ALDER deterministically solves double-spending at-
tempts by considering as valid the first transaction listed in
the macroblock, and discarding the others. More specifically,
invalid transactions are left unexecuted.

ALDER does not require that each macroblock contain
exactly Cl blocks, as shown in Fig. 2a. Indeed, the blockchain
protocols considered for BCP include existing protocols that
can produce empty blocks, such as Algorand [3].

In consensus protocols with probabilistic termination (such
as PoW-based ones), there could be valid blocks generated by
legitimate leaders competing for the same bucket number. In
this case, ALDER requires an additional protocol-dependent
deterministic consensus rule assigning a priority to competing
blocks.

D. ALDER Security Analysis

In this section, we give a sketch of the security of ALDER.
ALDER leverages three primitives: multiple leader election,
transaction hash space partitioning for disjoint block proposal,
and multiplex consensus and macroblocks. In the following,
we analyze each of these components in light of the vulnera-
bilities they may introduce.

a) Multiple leader election: ALDER extends the elec-
tion mechanism of the BCP by allowing the election of
multiple leaders. In practice, ALDER does not replace the
leader election algorithm with another algorithm. Instead, it
leverages the existing leader election protocol, which often
already elects multiple leader candidates (e.g., in Algorand
and Bitcoin). If the protocol does not natively enable mul-
tiple leader candidates, ALDER extends the leader election
algorithm. In both cases, the resulting election mechanism
does elect byzantine nodes in greater proportions than in the
base protocol, and does not introduce vulnerabilities into the
resulting blockchain beyond those of the underlying election
protocol (in the same way as Bitcoin, Bitcoin++ will have
forks and these will be fixed similarly).

b) Disjoint block proposal: Having multiple leaders
proposing blocks may introduce vulnerabilities. To solve this
problem, ALDER relies on a mechanism that allows candidate
leaders to propose disjoint blocks. While correct leaders will
faithfully follow the protocol, malicious leaders may very well
propose blocks without respecting their assigned bucket. In
this case, the proposed block will be rejected by the correct
nodes, which will eventually check whether the leaders have
built their block using the legitimate bucket.

c) Multiplex consensus: Additional verification steps
must be performed by the correct nodes in order to validate
a macroblock and execute its transactions. Specifically, a
correct node that reconstructs a macroblock must perform
the following verification. First, it verifies that all blocks
composing the macroblock contain the hash of the same
previous macroblock. Then, it verifies that all blocks were
generated by legitimate leaders. For example, in the case of
Bitcoin, the correct node checks the cryptographic puzzle
solution. In the case of Algorand, it checks the proof of
election resulting from the evaluation of verifiable random

functions with the node’s stake in the system. In addition,
a correct node verifies that the assignment of the bucket to
the leader is valid. Finally, a correct node checks that all
transactions within blocks are valid (with respect to UTXO
-unspent transaction output- semantics and the buckets they
originate from). In addition, each node checks for double-
spending transactions in the blocks composing the macroblock.
Where applicable, the total order established over the set of
transactions resulting from the ordered set of blocks within
the macroblock allows nodes to ignore transactions spending
the same UTXO more than once. The above verification allows
correct nodes to discard blocks submitted by malicious leaders
and discard invalid transactions submitted by malicious clients.

d) Safety and liveness sketch: We explain why the mac-
roblockchain resulting from ALDER preserves the chain-
quality, chain-growth and common-prefix properties of the
original blockchain. Indeed, although ALDER increases the
number of elected nodes, the proportion of elected Byzantine
nodes remains the same because ALDER does not change
the intrinsic behavior of the election mechanism. Similarly,
ALDER does not change the underlying way nodes are
selected to participate in the consensus protocol, thus the ratio
of Byzantine nodes is unchanged. Therefore, ALDER does
not allow Byzantine nodes to take further control over the
consensus protocol, and thus does not change the proper-
ties of the blockchain. For these reasons, the chain-quality,
chain-growth and common-prefix properties of the resulting
blockchain remains.

IV. CASE STUDIES

In this section, we explain the application of ALDER
on two different permissionless blockchains, each represen-
tative of a different blockchain family: We begin with Algo-
rand [3], one of the most scalable stake- and committee-based
blockchain protocols achieving fast transaction confirmation.
Then, we cover the case of Bitcoin, the original PoW-based
blockchain protocol described by Nakamoto [1]. We provide
the full description of Bitcoin++ in Appendix IV-B.

A. Applying ALDER to Algorand

Algorand [3] is among the most scalable PoS-based permis-
sionless blockchain. In the following, we explain its protocol,
highlight its bottlenecks, and describe Algorand++.

1) Overview of Algorand: Fig. 3 depicts the main course
of an Algorand round. First (❶), Algorand creates several
committees responsible for conducting the following steps:
block proposal ❸, reduction ❺, and the multiple steps ❻ of
the binary agreement of Algorand’s Byzantine agreement BA⋆.
To do so, each node executes a cryptographic sortition that
produces an election proof and a verifiable priority value used
to determine its membership in the different committees. This
cryptographic sortition elects nodes at random based on their
weights (i.e., their currency stake in the system) in a pub-
licly verifiable, and non-interactive way relying on Verifiable
Random Functions (VRFs) [24]. The sortition is designed to
elect an expected number τproposer of block proposers and

to assign each selected node a priority, along with its proof.
This sortition protects nodes against an adversary aiming at
learning the identity of committee nodes and forging targeted
attacks. In addition, committees are different for each step of
the protocol to prevent targeted attacks on committee members
once they send a message.

Once elected as a member of the proposal committee (❷),
a node builds a block before sending it along with the priority
and election proof value to its neighbors (❸), disseminating
these messages via gossiping. To reduce unnecessary commu-
nications(❹), and because only one of the proposed blocks
will be appended to the chain, each node disseminates blocks
based on the priority of the block proposer, ignoring blocks
with lower associated priorities. The Byzantine agreement
procedure BA⋆ from Algorand reduces (❺) the problem of
agreeing on one among many block hashes to agreeing on
one selected block hash or a default empty block hash.
Nodes operate this reduction in two communication steps,
and then reach consensus on one of these two values via
a binary agreement called BinaryBA⋆ (❻) requiring 2 to 11
steps depending on whether the block proposed was honest or
not. Nodes wait a certain amount of time to receive priority
messages and blocks (respectively 10 seconds and 1 minute,
empirically set by the authors [3]). If a node does not receive
a block within this delay, it proceeds to the protocol step
considering an empty block. Finally (❼), every node counts
vote casts during the BA⋆ phase to learn about the outcome
of the agreement procedure, reaching consensus.

2) Bottlenecks of Algorand: Algorand has transaction con-
firmation latency of the order of a minute. Despite the im-
pressive performance of Algorand compared with the iconic
Bitcoin blockchain (125-fold throughput improvement), it still
suffers from performance limitations. In particular, when in-
creasing the size of blocks appended to the chain, Algorand’s
throughput rapidly saturates. Indeed, the time of gossiping
blocks in the network largely dominates the duration required
for the protocol to reach consensus which remains constant at
15 seconds on average. This long gossip is a significant lim-
itation to increasing throughput, as shown in our preliminary
experiment depicted in Fig. 4.

3) Algorand++: In each round, Algorand++ elects multiple
leaders to submit disjoint blocks. Then, Algorand++ decides
on a subset of the proposed blocks in the form of a mac-
roblock. Fig. 3 depicts the course of a round.

a) Multiple leader election and bucket assignment:
Electing multiple leaders is already part of Algorand. Assign-
ing buckets in an unforgeable and publicly verifiable way is
performed by directly applying the Cl modulo operation over
the election proof generated by the cryptographic sortition.
To avoid buckets from being unassigned, Algorand++ must
ensure a sufficiently high number of nodes being elected
as block proposers. A too low τproposer value could lead
to buckets being frequently unassigned, which would not
only hinder the envisioned throughput gains but also lead
to transactions with specific hashes being ignored for some
period. To devise an appropriate value for τproposer, we

Bucket
assignment +
Disjoint block

proposals

Multivalue
Reduction

Multiplexed
Binary BA★

Final or
tentative

multiplexed
consensusCrypto. Sort. Crypto. Sort.

Round r

Multiple
Leader

Election
Crypto. Sort.

Gossip-based
disjoint block
dissemination

Macroblock
in round r

Many
leaders

Multiplexed BA★ consensus

∏
<latexit sha1_base64="rdqhxpJO3Qb7KlC6bvENV2Zh4dk=">AAAC9XicjVLLSsNAFL2Nr1pfVZdugkVwVZIq2GXRjcsK9oFtkSSd1sE0CclEKaV/4bauxK3f4x8o/oRnximoxceEJGfOPefO3LnjRj5PhGU9Z4y5+YXFpexybmV1bX0jv7lVT8I09ljNC/0wbrpOwnwesJrgwmfNKGbOwPVZw70+kfHGDYsTHgbnYhixzsDpB7zHPUeAumh3edAf2eXD8WW+YBUtNcxZYGtQID2qYf6N2tSlkDxKaUCMAhLAPjmU4GmRTRZF4Do0AhcDcRVnNKYcvClUDAoH7DW+fcxamg0wlzkT5fawio83htOkPXhC6GJguZqp4qnKLNmfco9UTrm3If6uzjUAK+gK7F++qfL/vggV97A3eTK/1yygK6taOdSRYuQpeHq1VJ2erND8VL1AhgicxF3EY2BPOaf9MJUnUWcke+Co+ItSSlbOPa1N6VVWg4tgf2/7LKiXivZBsXRWKlSO9ZXI0g7t0j76fkQVOqUq1ZA7oDua0L1xa0yMB+PxQ2pktGebvgzj6R2BEpvX</latexit> π

<latexit sha1_base64="nkR5ykPKIw8t2O6VFVC3X75ssRw=">AAAC9XicjVLLSsNAFL2Nr1pfVZdugkVwVZKK2GXRjcsK9oFtkSSd1sE0CclEKaV/4bauxK3f4x8o/oRnximoxceEJGfOPefO3LnjRj5PhGU9Z4y5+YXFpexybmV1bX0jv7lVT8I09ljNC/0wbrpOwnwesJrgwmfNKGbOwPVZw70+kfHGDYsTHgbnYhixzsDpB7zHPUeAumh3edAf2eXD8WW+YBUtNcxZYGtQID2qYf6N2tSlkDxKaUCMAhLAPjmU4GmRTRZF4Do0AhcDcRVnNKYcvClUDAoH7DW+fcxamg0wlzkT5fawio83htOkPXhC6GJguZqp4qnKLNmfco9UTrm3If6uzjUAK+gK7F++qfL/vggV97A3eTK/1yygK6taOdSRYuQpeHq1VJ2erND8VL1AhgicxF3EY2BPOaf9MJUnUWcke+Co+ItSSlbOPa1N6VVWg4tgf2/7LKiXivZBsXRWKlSO9ZXI0g7t0j76fkQVOqUq1ZA7oDua0L1xa0yMB+PxQ2pktGebvgzj6R2Dm5vY</latexit>∂
<latexit sha1_base64="5CkInOYvJuP/HzMLecd62IWaa6c=">AAAC9XicjVLLTsJAFL3UF+ILdemmkZi4Im1dyJLoxiUm8ohATFsGnNBX2qmGEP7CLa6MW7/HP9D4E54ZS6ISH9O0PXPuOXfmzh0n8ngiDOM5py0sLi2v5FcLa+sbm1vF7Z1GEqaxy+pu6IVxy7ET5vGA1QUXHmtFMbN9x2NNZ3gq480bFic8DC7EKGJd3x4EvM9dW4C67PR4MBibFWtyVSwZZUMNfR6YGShRNmph8Y061KOQXErJJ0YBCWCPbErwtMkkgyJwXRqDi4G4ijOaUAHeFCoGhQ12iO8As3bGBpjLnIlyu1jFwxvDqdMBPCF0MbBcTVfxVGWW7E+5xyqn3NsIfyfL5YMVdA32L99M+X9fhIr72Js8md9rFtBVVK0c6kgx8hTcbLVUnZ6sUP9UvUCGCJzEPcRjYFc5Z/3QlSdRZyR7YKv4i1JKVs7dTJvSq6wGF8H83vZ50LDK5lHZOrdK1ZPsSuRpj/bpEH0/piqdUY3qyB3QHU3pXrvVptqD9vgh1XKZZ5e+DO3pHXwAm9U=</latexit>

∫
<latexit sha1_base64="2N0+0Q8rW6mmPv2wJMQELFDZD94=">AAAC9XicjVLLSsNAFL2Nr1pfVZdugkVwVZIK2mXRjcsK9oFtkSSd1sE0CclEKaV/4bauxK3f4x8o/oRnximoxceEJGfOPefO3LnjRj5PhGU9Z4y5+YXFpexybmV1bX0jv7lVT8I09ljNC/0wbrpOwnwesJrgwmfNKGbOwPVZw70+kfHGDYsTHgbnYhixzsDpB7zHPUeAumh3edAf2eXD8WW+YBUtNcxZYGtQID2qYf6N2tSlkDxKaUCMAhLAPjmU4GmRTRZF4Do0AhcDcRVnNKYcvClUDAoH7DW+fcxamg0wlzkT5fawio83htOkPXhC6GJguZqp4qnKLNmfco9UTrm3If6uzjUAK+gK7F++qfL/vggV97A3eTK/1yygK6taOdSRYuQpeHq1VJ2erND8VL1AhgicxF3EY2BPOaf9MJUnUWcke+Co+ItSSlbOPa1N6VVWg4tgf2/7LKiXivZBsXRWKlSO9ZXI0g7t0j76fkQVOqUq1ZA7oDua0L1xa0yMB+PxQ2pktGebvgzj6R2GJJvZ</latexit>

Macroblock
in round r-1

∑
<latexit sha1_base64="Eo/9914/gxxK4jyBkHl/Vv7w0yE=">AAAC9XicjVLLTsJAFL3UF+ILdemmkZi4Ii0uZEl04xITeUQgpi0DTihtM51qCOEv3OLKuPV7/AONP+GZsSQq8TFN2zPnnnNn7txxI5/H0rKeM8bC4tLySnY1t7a+sbmV396px2EiPFbzQj8UTdeJmc8DVpNc+qwZCeYMXZ813MGpijdumIh5GFzIUcQ6Q6cf8B73HAnqst3lQX9sl48mV/mCVbT0MOeBnYICpaMa5t+oTV0KyaOEhsQoIAnsk0MxnhbZZFEErkNjcAKI6zijCeXgTaBiUDhgB/j2MWulbIC5yhlrt4dVfLwCTpMO4AmhE8BqNVPHE51ZsT/lHuucam8j/N001xCspGuwf/lmyv/7IlTcw97Uyfxes4SurGvlUEeaUafgpasl+vRUhean6iUyROAU7iIugD3tnPXD1J5Yn5HqgaPjL1qpWDX3Um1Cr6oaXAT7e9vnQb1UtI+KpfNSoXKSXoks7dE+HaLvx1ShM6pSDbkDuqMp3Ru3xtR4MB4/pEYm9ezSl2E8vQN+iZvW</latexit>

Many
disjoint
blocks

Less
blocks

1 vector
of block
hashes

Many
votes

Fig. 3: Round structures of Algorand (black texts and arrows) and Algorand++ (in green)

1 2 4 8 12 16 20 24
Block Size (MB)

50

100

M
ed

ia
n

La
te

nc
y

(s
ec

on
ds

)

Algorand

(a) Latency

1 2 4 8 12 16 20 24
Block Size (MB)

50

100

150

M
ed

ia
n

Th
ro

ug
hp

ut
 (K

B/
s)

(b) Throughput

Fig. 4: Algorand bottleneck

rely on the uniform distribution of the probability (1
Cl) of

bucket assignment to a leader, directly derived from the
properties of hash functions employed in the sortition. In
other words, each node has equal chances of being assigned
one bucket over another; a bucket is assigned to at least
one proposer with probability 1 − (1 − 1

Cl)
τproposer ; and all

buckets are assigned to at least one proposer with probability
p =

∑Cl
i=0(−1)Cl−i

(
Cl
i

)(
i
Cl

)τproposer . We set τproposer so that
p = 0.95.

b) Disjoint block proposal and dissemination: The block
proposal step of Algorand++ is very similar to that of Algo-
rand, except that nodes can be assigned the same transaction
bucket as other nodes. Because only one proposed block per
bucket number will be appended to the chain, Algorand++
extends the original gossip-based dissemination protocol to
reduce unnecessary communications. Similarly to Algorand,
each block proposer employs an additional priority value
derived by hashing the VRF hash output concatenated with
publicly verifiable information of the node’s stake in the
system and the assigned bucket number. This priority value
is then used during block dissemination to discard blocks

originating from the same bucket but with lower priority.
c) Multiplexed consensus and macroblocks: The multi-

plexed BA⋆ agreement protocol takes as input a set of hashes
from blocks originating from different buckets. It produces
a (possibly not full) vector of block hashes composing the
macroblock to be appended at the end of the round. In the
multiplexed reduction step, committee members reduce the
problem of agreeing on a set of proposed blocks to agreeing
either on a vector of Cl disjoint block hashes ordered by their
bucket number (some of which could be default empty block
hashes as in Algorand), or on a vector consisting only of empty
block hashes. Then, the multiplexed Byzantine binary agree-
ment is executed to decide one of the two possible solutions.
Once reached, nodes gather the blocks Algorand++ has agreed
on, proceed through the checks described in section III-C, and
build the macroblock corresponding to the consensus decision
before appending it and continuing to grow the chain.

B. Applying ALDER to Bitcoin

We first explain the Bitcoin protocol, highlight its bottle-
necks, and briefly describe Bitcoin++. The full explanations
are provided in Appendix IV-B.

1) Overview of Bitcoin: The global course of a round is
depicted in Fig. 6 and includes the following steps: (1) each
node builds a 1-MB block of transactions and generates a
cryptographic puzzle from the associated block header that
contains, among others, the hash of the previously appended
block, a Merkle root of the transaction set, and a nonce
value; (2) Then each node attempts to solve the cryptographic
puzzle and disseminates the block to its neighbors via a gossip
protocol when it finds a valid solution. Bitcoin sets the puzzle
difficulty to obtain one solution, i.e., one proposed block, every
10 minutes on average. (3) Upon receiving a valid block, the
nodes append the latter to their blockchain; (4) If a fork occurs,
i.e., more than one valid block exist to extend the chain, the
nodes rely on the longest chain consensus rule by adopting
the fork representing the largest amount of computation.

2) Bottlenecks of Bitcoin: The two main bottlenecks of
Bitcoin limiting performance are the small block size and the
low frequency at which blocks are added to the chain [13].
Increasing the block size would result in a longer block
dissemination time, consequently increasing the occurrences
of forks. Similarly augmenting the block generation frequency
leads to the same results as it shortens the average duration
between the discovery of two valid cryptographic puzzle

124 8 16 32 64
Concurrency Level - Cl
(#Blocks/10 minutes)

0.4

0.6

0.8

1.0

M
in

in
g

po
we

r
ut

ilis
at

io
n

Bitcoin
Bitcoin++

Fig. 5: Ratio of the amount of data appended to the chain over
the amount of data generated by the mining nodes

Leader election+
bucket assignment +

disjoint block proposal

Gossip-based
block

dissemination

Multiplexed
consensus

rules

Round r

Block in
round r-1

Macroblock in
round r-1

Fig. 6: Round structures of Bitcoin (black texts and arrows)
and Bitcoin++ (in green)

solutions. When forks are detected and solved, part of the
generated blocks are left orphan, which leaves the system with
suboptimal throughput compared to the case where there is no
fork. For example, increasing the block generation frequency
by a factor of 64 leads to more than half of the generated
blocks being discarded (cf., Fig. 5).

3) Bitcoin++ overview: Bitcoin++ allows multiple nodes
to independently propose blocks containing disjoint sets of
transactions and grow the chain by appending a subset of the
proposed blocks in each round. To obtain Cl leaders in the
same time interval as in Bitcoin (10 minutes on average), the
mining difficulty is divided by Cl.

a) Bucket assignment and disjoint block proposal:
For the bucket assignment to be unforgeable and verifiable,
ALDER requires that the assignment derives from the election
proof of Bitcoin++. In Bitcoin, each node creates a block
and then attempts to find an election proof, i.e., a solution
to the crypto puzzle. To prevent each node from mining a
block that may not match the resulting bucket assignment,
Bitcoin++ modifies the cryptographic puzzle by having each
node commit and mine a set of Cl disjoint blocks, one of
which will be selected once the puzzle is solved. To do so,
Bitcoin++ replaces the Merkle tree of the block’s transaction
set from each block header, i.e., from the puzzle, by the root
of the Merkle tree that takes as leaves the Merkle roots of the
blocks to which the node is committed. When found, the node
gossips its election proof and its block along with the Merkle
path necessary to validate the block content.

Because the bucket assignment process may assign one
bucket to more than one leader, the time required to obtain
Cl disjoint blocks could be greater than 10 minutes, which
could inhibit the performance gain envisioned by ALDER.

Bitcoin++ addresses this issue by introducing a mechanism
reducing the competition for the same bucket numbers. Bit-
coin++ adds to each block header a Cl-long array called
sibling. During the mining process, the miner fills this array
with the hashes of the valid blocks it receives from other nodes
and for specific bucket numbers in the same round. Suppose
the miner solves the puzzle and finds an election proof pointing
to a bucket already in use in the sibling array. In that case,
the Bitcoin++ node deterministically selects the next available
bucket in the sibling array.

b) Multiplexed consensus and macroblocks: Each node
waits to collect Cl valid blocks from Cl different buckets,
then constructs a macroblock, conducts the series of checks
described in section III-C, and appends it to its chain before
proceeding to the next round.

In Bitcoin++, forks occur when two valid blocks compete
for the same bucket number in the same macroblock, causing
the chain to be extended by two valid macroblocks. To
narrow down the fork space probability, Bitcoin++ employs an
additional consensus rule with lower priority than the Bitcoin’s
longest-chain rule: when receiving multiple blocks for the
same bucket, nodes prioritize the blocks based on their hash
values (the highest wins) to help them decide which one to
consider. We distinguish two cases by differentiating when the
existence of another candidate block is known. If a node learns
that another valid block exists for an already filled bucket
in the macroblock for which it is currently mining, then the
node selects the block with the highest hash value and updates
its sibling array accordingly. If a node learns about another
valid block for a macroblock other than the current one, the
node selects and mines on top of the chain of macroblocks
containing the highest amount of computational power, i.e.,
applying the longest chain rule of Bitcoin.

V. EVALUATION

This section evaluates the extent of ALDER’s ability to
improve the performances of the two blockchains we con-
sidered. We first detail our implementation and evaluation
environment before presenting the performance of Algorand++
and Bitcoin++.

A. Implementation and evaluation environment

We implemented all baseline protocols and their multi-
plexed versions using Golang. Experiments were carried out
on Grid’5000 [25] with powerful physical machines with 18
cores, 96 GB of memory, and 25Gbps network connectivity.
In all experiments, we emulate wide-area network conditions
as in major blockchain propositions [3]: we cap the bandwidth
for each process to 20 Mbps and add a one-way latency
of 50 milliseconds to each communication link. Each node
communicates with 8 peers for Bitcoin and Algorand as
recommended by the authors. In addition, we rely on a registry
service to bootstrap the system: at startup, a node registers
itself to this service and receives a list of available peers. Each
node has access to a pre-initialized transaction pool to populate
block payloads.

1 2 4 8 12 16 20 24
Macro Block Size (MB)

50

100
M

ed
ia

n
La

te
nc

y
(s

ec
on

ds
)

Algorand
Algorand++-Cl=2
Algorand++-Cl=4
Algorand++-Cl=8

Algorand++-Cl=16
Algorand++-Cl=20
Algorand++-Cl=32

(a) Round latency

1 2 4 8 12 16 20 24
Macro Block Size (MB)

200

400

600

800

M
ed

ia
n

Th
ro

ug
hp

ut
 (K

B/
s)

(b) Throughput

Fig. 7: Performance comparison between Algorand++ and
Algorand with various concurrency levels and macroblock size

B. Algorand++ Performance Evaluation

We conducted two sets of experiments to evaluate the
performance improvements of Algorand++ compared to Al-
gorand. In the first set of experiments, we compare the perfor-
mance of both protocols using 1,000 nodes on 10 machines.
In the second set, we deployed up to 10,000 nodes on 100
machines to compare the scalability characteristics of both
protocols.

To evaluate the performance of Algorand and Algorand++,
we varied the macroblock size from 1 MB to 24 MB, and the
concurrency level of Algorand++ from 1 to 32. Elected leaders
in Algorand++ build blocks of size the expected macroblock
size divided by Cl., while leaders in Algorand consider
block size matching the size of macroblocks appended to the
Algorand++ chain. Each experiment lasts 150 rounds.

We measure the round latency of the two protocols, in-
dicating the time it takes for a block to be appended, i.e.,
the duration between the time a block is proposed and the
time all nodes observe this block in the chain. The results are
depicted in Fig. 7a. The round latency of Algorand increases
rapidly as the size of the appended blocks becomes larger,
reaching a latency of 134 seconds for blocks of 24 MB. Al-
gorand++’s latencies largely outperform the ones of Algorand
for macroblock sizes larger or equal to 2 MB. For instance, for
4 MB blocks, Algorand++’s latencies are respectively 66% and
53% the latencies of Algorand with Cl=2 and Cl=8. The gap
between the two blockchains protocols becomes considerably
high with larger block sizes. Indeed, for 24 MB blocks, we
observe latencies decreased to respectively 56% and 22% the
ones of Algorand with Cl = 2 and Cl = 32.

We also evaluate the effective throughput of the two pro-

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
Number of nodes

0

25

50

75

100

Ro
un

d
du

ra
tio

n
in

cr
ea

se
 (

%
)

Algorand
Algorand++ Cl-20 BlockSize-20MB

(a) Latency degradation (lower is better)

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
Number of nodes

0

20

40

60

Th
ro

ug
hp

ut
de

gr
ad

at
io

n(
%

)

Algorand
Algorand++ Cl-20 BlockSize-20MB

(b) Throughput degradation (lower is better)

Fig. 8: Throughput and latency degradation at scale

tocols. Because macroblocks may contain fewer blocks than
expected, i.e., Cl, we cannot derive throughput directly from
the round latency and the macroblock size. We define effective
throughput as the amount of data appended to the blockchain
per second. As shown in Fig. 7b, Algorand++ outperforms
Algorand in all configurations by reaching up to 743 KB/s with
Cl=20 and 24 MB blocks. This configuration is 3.17 times
more throughput efficient than Algorand with 24 MB blocks,
5.35 times more efficient than the Algorand configuration
that exposes the same round latency (with 4-MB blocks),
presents 12 times the throughput of the original Algorand
configuration with 1 MB blocks. Our results also highlight the
limits Algorand++. Indeed, we reach the maximum throughput
with Cl = 20, and increasing the concurrency level does not
improve performance further.

To evaluate how both protocols scale, we vary the number
of machines in the testbed from 10 to 100 with 100 nodes
per machine, emulating up to 10,000 nodes. We use 1 MB
blocks for Algorand and 20 MB blocks and Cl = 20 for Algo-
rand++. We measure performance degradation, i.e., throughput
decrease and latency increase relative to the performances
of each protocol in their baseline configuration with 1,000
nodes. Results in Fig. 8 show that the two protocols present
similar trends in performance degradation. Further, ALDER
helps to slightly diminish the degradation of performance at
large scales thanks to better usage of network resources, as
illustrated by the configuration with 10,000 nodes that shows
6% lower throughput degradation on Fig. 8b and 33% lower
latency increase on Fig. 8a.

C. Bitcoin++ Performance Evaluation

We conducted experiments with 1000 nodes running on
20 machines to evaluate the performance of Bitcoin++ and

124 8 16 32 64
Concurrency Level

(#Blocks/10 minutes)

0

200

400

600

M
ea

n
Bl

oc
k

In
te

rv
al

(s
ec

on
ds

)
Bitcoin++ Bitcoin

(a) Latency

124 8 16 32 64
Concurrency Level - Cl
(#Blocks/10 minutes)

0

20

40

60

80

M
ed

ia
n

Th
ro

ug
hp

ut
(K

B/
s)

Bitcoin++ Bitcoin-1M

(b) Throughput

Fig. 9: Round latency and throughput of Bitcoin++ with
various block generation frequencies

compare them to the ones of Bitcoin with similar crypto-
graphic puzzle difficulty, i.e., with similar block generation
frequencies. To this end, we measure both protocols’ mining
power utilization, defined as the ratio between the amount
of data appended to the blockchain and the amount of data
generated by the system in the form of blocks. We also
measure each protocol’s throughput and block/macroblock
latency (block time interval). We vary the concurrency level of
Bitcoin++ from 1 to 64, i.e., increasing the block generation
frequency from one block every 600 seconds to one block ev-
ery 9.37 seconds. To do so we reduce the cryptographic puzzle
difficulty inversely proportional to the concurrency level. We
considered blocks of size 1 MB. In the Bitcoin++ case, this
translates into nodes gathering Cl blocks into a macroblock,
making macroblocks of size Cl MB. Each experiment runs
until the chains of all nodes share a common prefix of 90
macroblocks.

Fig. 9 shows the median throughput and mean block in-
terval time for both protocols. The configuration Cl = 1
represents the original Bitcoin protocol providing a throughput
of 1.6KB/s with a mean latency of 618 seconds. Bitcoin++
always provides a higher throughput than Bitcoin. With Cl =
64, Bitcoin++ provides 91 KB/s, 2.25 times the throughput
of Bitcoin with the same block generation frequency, and a
x57 improvement to the original Bitcoin protocol. To better
understand the origins of such throughput gains, we correlate
these results with the mining power utilization ratio depicted
in Fig. 5 that remains steady between 0.9 and 0.95 in the
Bitcoin++ case when the concurrency level increases, while
dropping to 0.44 with Bitcoin. This shows that Bitcoin++
can effectively collect the generated blocks at a high block

generation frequency, while Bitcoin can hardly do so. Indeed,
in Bitcoin with Cl = 64, more than 56% of the generated
blocks are not included in the blockchain shared by all nodes at
the end of the experiment. This measure also helps understand
the extent of fork occurrences in each protocol. The corollary
of these results is visible on the mean macroblock block
interval that remains at 600-650 seconds for all Bitcoin++
configurations while dropping to approximately 10 seconds
for Bitcoin with Cl = 64. Indeed, Bitcoin can append
blocks quickly, but forks occur very frequently with higher
block frequency. Bitcoin++ does not suffer from this problem
because macroblocks are added at a slow rate (once per 600-
650 seconds), which leaves enough time for any forks to be
resolved.

VI. RELATED WORK

The last decade has witnessed the emergence of propositions
to improve the performance of some existing permissionless
blockchains. Among the proposed approaches, sharding tech-
niques have been applied in OHIE [15] to Bitcoin, composing
many parallel instances of Bitcoin’s Nakamoto consensus pro-
tocol. Similarly, the second version of Ethereum’s consensus
protocol employs sharding [26]. Decoupling leader election
from transaction serialization in the Bitcoin protocol has
been proposed in BitcoinNG [13]. BitcoinNG lets each leader
appends multiple blocks before another leader is found and
takes over with proposing new blocks. Layer-2 solutions, such
as rollups [27], have been proposed to address performance
improvement without handling the complexity of consensus
protocols. Despite all these techniques suffering from the
same performance bottleneck due to the store-validate-forward
block dissemination mechanism, they are solutions that can
be applied to a specific blockchain protocol only. Contrarily,
ALDER presents a generic solution that can be applied
to many blockchain protocols and solves the store-validate-
forward block dissemination bottleneck.

Generic constructions were proposed to improve the perfor-
mance of BFT consensus and state-machine-replication algo-
rithms that can be used in closed/permissioned blockchains
such as Hyperledger Fabric[2]. For example, ISS provides
a generic construct for state-machine replication that en-
capsulates all the consensus logic under a new primitive
called sequenced-broadcast. ISS implements state-machine-
replication by multiplexing multiple instances of sequenced-
broadcast which operate concurrently on a partition of the
domain of client requests. Similar to ALDER, Mencius [28],
BFT-Mencius [11], Mir-BFT [29], OMADA [10], RCC [30],
and ISS are solutions that employ multiple leaders and dis-
tribute the cost of leadership among them to improve the per-
formance of existing consensus algorithm. All these algorithms
assume that the space of consensus sequence number and the
partition of the domain of client requests can be evenly and
deterministically shared between the multiple leaders. This
assumption is valid in the case of closed and deterministic
systems where the identities of nodes are known in advance,
and where the consensus algorithm produces final results

frequently. However, this assumption does not hold in the case
of open blockchain systems that do not rely on deterministic
BFT consensus algorithms such as Algorand and Bitcoin. In
this kind of system, sequence numbers and transaction domain
partitions cannot be distributed between contributing nodes to
the consensus because the identities of contributing nodes are
not known in advance. ALDER handles this case by relying
on dynamic bucket assignment according to election proof
obtained from the underlying protocol. To the best of our
knowledge, ALDER is the first generic construction of its kind
that targets permissionless blockchain consensus protocols to
improve them with multiple leaders, unlike previously listed
solutions,

VII. CONCLUSION

We presented ALDER, a set of reusable principles that
improve the performance of leader-based permissionless
blockchains that cannot reach their full performance due to the
store-validate-forward block dissemination mechanism they
rely on. ALDER alleviates this problem by multiplexing the
consensus protocols of these blockchains to append a mac-
roblock, i.e., a set of disjoint blocks, per consensus instance.
We applied ALDER’s principles to two family-representative
permissionless blockchains (Algorand and Bitcoin) and evalu-
ated the performance of the resulting blockchain protocols.
Our evaluation, involving up to 10,000 nodes, shows that
ALDER provides performance improvements up to 300% in
comparison with the baseline protocol.

ACKNOWLEDGMENT

This work was partially funded by Région Nouvelle-
Aquitaine, under grant 2018-1R50117 (project B4IOT), and
the French Agence Nationale de la Recherche (ANR), under
grant ANR-21-CE25-0021 (project GenBlock)

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

[2] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the thirteenth EuroSys conference (Eu-
roSys 18), 2018, pp. 1–15.

[3] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th symposium on operating systems principles (SOSP 17), 2017,
pp. 51–68.

[4] “Hyperledger – Open Source Blockchain Technologies.” [Online].
Available: https://www.hyperledger.org/

[5] R. B. Uriarte and R. DeNicola, “Blockchain-based decentralized
cloud/fog solutions: Challenges, opportunities, and standards,” IEEE
Communications Standards Magazine, vol. 2, no. 3, pp. 22–28, 2018.

[6] S. Raval, Decentralized applications: harnessing Bitcoin’s blockchain
technology. " O’Reilly Media, Inc.", 2016.

[7] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A survey
on blockchain interoperability: Past, present, and future trends,” ACM
Computing Surveys (CSUR 21), vol. 54, no. 8, pp. 1–41, 2021.

[8] R. Guerraoui et al., “The consensus number of a cryptocurrency,” in
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing (PODC 19), 2019, pp. 307–316.

[9] C. Stathakopoulou, M. Pavlovic, and M. Vukolić, “State machine
replication scalability made simple,” in Proceedings of the Seventeenth
European Conference on Computer Systems (EuroSys 22), 2022, pp.
17–33.

[10] M. Eischer and T. Distler, “Scalable byzantine fault-tolerant state-
machine replication on heterogeneous servers,” Computing, vol. 101,
no. 2, pp. 97–118, 2019.

[11] Z. Milosevic, M. Biely, and A. Schiper, “Bounded delay in byzantine-
tolerant state machine replication,” in 2013 IEEE 32nd International
Symposium on Reliable Distributed Systems (SRDS 13). IEEE, 2013,
pp. 61–70.

[12] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[13] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng: A
scalable blockchain protocol,” in 13th USENIX symposium on networked
systems design and implementation (NSDI 16), 2016, pp. 45–59.

[14] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing bitcoin security and performance with strong consistency
via collective signing,” in USENIX Security Symposium, 2016, pp. 279–
296.

[15] H. Yu, I. Nikolić, R. Hou, and P. Saxena, “Ohie: Blockchain scaling
made simple,” in 2020 IEEE Symposium on Security and Privacy (S&P
20). IEEE, 2020, pp. 90–105.

[16] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EuroCrypt 18). Springer, 2018, pp. 66–
98.

[17] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman, “Solida:
A blockchain protocol based on reconfigurable byzantine consensus,”
arXiv preprint arXiv:1612.02916, 2016.

[18] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS 18), 2018,
pp. 931–948.

[19] K. Antoniadis, A. Desjardins, V. Gramoli, R. Guerraoui, and M. I.
Zablotchi, “Leaderless consensus,” in IEEE 41st International Confer-
ence on Distributed Computing Systems (ICDCS 21), 2021.

[20] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer, “Scalable
and probabilistic leaderless bft consensus through metastability,” arXiv
preprint arXiv:1906.08936, 2019.

[21] C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas, “Ouroboros
genesis: Composable proof-of-stake blockchains with dynamic availabil-
ity,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (CCS 18), 2018, pp. 913–930.

[22] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EuroCrypt 17).
Springer, 2017, pp. 643–673.

[23] R. Pass and E. Shi, “Fruitchains: A fair blockchain,” in Proceedings of
the ACM symposium on principles of distributed computing (PODC 17),
2017, pp. 315–324.

[24] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
40th annual symposium on foundations of computer science (cat. No.
99CB37039). IEEE, 1999, pp. 120–130.

[25] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot,
Y. Jégou, S. Lanteri, J. Leduc, N. Melab et al., “Grid’5000: A large scale
and highly reconfigurable experimental grid testbed,” The International
Journal of High Performance Computing Applications, vol. 20, no. 4,
pp. 481–494, 2006.

[26] V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao, D. Ryan,
J. Sin, Y. Wang, and Y. X. Zhang, “Combining GHOST and Casper,”
arXiv:2003.03052 [cs], May 2020.

[27] L. T. Thibault, T. Sarry, and A. S. Hafid, “Blockchain Scaling using
Rollups: A Comprehensive Survey,” IEEE Access, pp. 1–1, 2022.

[28] C.-S. Barcelona, “Mencius: building efficient replicated state machines
for wans,” in 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 08), 2008.

[29] C. Stathakopoulou, T. David, and M. Vukolic, “Mir-bft: High-throughput
bft for blockchains,” arXiv preprint arXiv:1906.05552, 2019.

[30] S. Gupta, J. Hellings, and M. Sadoghi, “Rcc: Resilient concurrent
consensus for high-throughput secure transaction processing,” in 2021
IEEE 37th International Conference on Data Engineering (ICDE 21).
IEEE, 2021, pp. 1392–1403.

