
Department: SE4AI
Editor: Tim Menzies, timm@ieee.org

AI-driven Development Is
Here: Should You Worry?

Neil A. Ernst
University of Victoria

Gabriele Bavota
Università della Svizzera italiana

From the Editor:
The benefits, as well as the draw-backs, of new

AI technology needs to be carefully scrutinized.
For example, in this article, researchers review
the promise, and potential pitfalls, of AI tools that
help programmer co-write their code.

This “SE for AI” column publishes commen-
taries on the growing field of SE for AI. Submis-
sions are welcomed and encouraged (1,000–2,400
words, each figure and table counts as 250 words,
try to use fewer than 12 references, and keep the
discussion practitioner focused). Please submit
your ideas to me at timmieee.org.—Tim Menzies

AI-DRIVEN DEVELOPMENT ENVIRON-
MENTS (AIDES) integrate the power of
modern AI into IDEs like Visual Studio Code
and JetBrains IntelliJ. By leveraging massive
language models and the plethora of openly
available source code, AIDEs promise to
automate many of the obvious, routine tasks in
programming. At the same time, AIDEs come
with new challenges to think about, such as bias,
legal compliance, security vulnerabilities, and
their impact on learn programming.

Time was, programmers were laboriously en-
tering machine instructions on punch cards, to
be painstakingly offered up to the machine for
processing. Nowadays, of course, we type code
into editors, often hosted online, and get near-
instant feedback on the compilation/test outcomes
of our latest change. Let’s call this the Integrated
Development Environment (IDE) Revolution.

Another revolution is now underway, call
it the “AI-driven Development Environment”
(AIDE), one where a programmer can leverage
the hive-mind of the many many programmers
that came before them. Large language models
are now available to make suggestions based on
what hundreds of previous programmers typed in.

Software Published by the IEEE Computer Society © 2019 IEEE 1

ar
X

iv
:2

20
4.

07
56

0v
1

 [
cs

.S
E

]
 1

5
A

pr
 2

02
2

Department Head

Not only is the syntax of programming “nat-
ural”, but in fact a lot of programming follows
repetitive patterns. If you have used a form of
autocomplete in your IDE, you have seen a
very primitive version of this idea (autocomplete
seems to have been popularized with Microsoft’s
Visual-* tools in the 90s). Autocomplete at its
simplest looks for all valid completions, such as
possible library calls in List.. But things have
progressed very rapidly in this space. Think about
preparing some data analysis code:
import a file named "observations.csv"
and print the number of rows and columns
then use the data to create
a plot of the observations
import csv
import matplotlib.pyplot as plt
import numpy as np

data = []

with open('observations.csv') as csvfile:
reader = csv.reader(csvfile)
for row in reader:

data.append(float(row[0]))

print("Number of rows: ", len(data))
print("Number of columns: ", len(data[0]))

plt.plot(data)
plt.show()

Spoiler alert: we didn’t write a single line of
that code! Instead, we typed the four lines of
comments into Visual Studio Code, a lightweight
IDE, and had GitHub’s Copilot extension “write”
the actual Python.

Copilot, and its underlying AI engine, Ope-
nAI’s Codex, leverages the power of large lan-
guage models trained on billions of text data
online. Codex further tunes those language mod-
els with publicly available GitHub repositories.
In essence, since so many repositories contain
similar lines to the ones we wrote above, the
language model can associate those lines with the
comments we wrote, and something that might
seem like magic can appear.

This did not happen overnight, of course.
Codex is the product of:

• AI research into deep neural networks and
language models;

• Software repository mining for extracting data
from repositories;

• Investigations into the linguistic nature of
source code [Hindle et al., 2012];

• Massive amounts of compute and data storage.

Codex and Copilot are not alone: several
other AIDEs exist, including TabNine1 and Kite2.
Intelligent fill in spreadsheets is a close com-
panion, as is program repair such as Facebook’s
SapFix [Marginean et al., 2019].

Codex [Chen et al., 2021] is built on OpenAI’s
GPT-3 language model with 12B parameters, and
fine-tuned on 159 Gb of data from public GitHub
repositories. The nature of a language model is
that it builds deep associations between words in
a high-dimensional space, learning complex pat-
terns that produce code. They do not require ab-
stract representations of code like ASTs, working
on the token level directly. With suitable unit test
coverage, generating 100 possible completions
produced a solve rate (pass@100) of over 70%
on a benchmark of common completion tasks.

Codex promises to dramatically change the
way we write and build software systems. Like
all AI technology, it has great promise, but also
comes with several new challenges for research
and for practice.

Promises of AI-driven DEs
Automate the mundane Much of software

development is routine. Developers get a bug
report, track down the bug, and file a patch;
they wire library code together to leverage APIs;
they need to display database records on a web
page and handle any updates. Much of software
development is also staggeringly complex and
creative, too! Software is, as Grady Booch once
wrote, “the invisible thread ... on which we weave
the fabric of computing.” A key developer task
then is to carefully distinguish those tasks which
are complex, and those which are obvious or
complicated [Snowden et al., 2020]. AIDEs can
remove the accidental complexity from what are
obvious tasks, just like the code showed earlier.
An AIDE like Copilot is already capable of
automating these routine tasks, and other tech-
nologies, such as the automated program repair
work of Facebook’s SapFix tool [Marginean et al.,
2019], are tackling similar routine tasks.

Automate API interactions Much of pro-
gramming today is about framework and API-
driven development: connecting to a third party

1tabnine.com
2kite.com

2 Software

https://www.tabnine.com/
https://www.kite.com

service, processing the result, and sending the
result back to the user. Just as often we work
within an existing architectural framework, for
example for web or mobile applications, and our
programs are closely coupled with those library
calls. Many of these library calls are routine and
repetitive for each new variant of an app.

Teach Programming As programming lan-
guages and APIs proliferate, learning new ap-
proaches and syntax becomes more challenging.
Stack Overflow is invaluable for specific answers
to common, and not so common, programming
problems. For example, how does one configure a
particular plotting library such as R’s ggplot to
change the background colour? But Stack Over-
flow, while incredibly helpful (we certainly could
not program without it), requires one to leave the
IDE to ask questions or perform search. AIDE
promises the knowledge potential of Stack Over-
flow while avoiding continuous context switches
between the IDE and the browser. And this will
be useful for novices and experts alike. No more
‘yak shaving’3 trying to figure out the correct
series of syntax calls for a given problem.

Possible Challenges with AIDE
Like any software development, AIDE will

come with a host of challenges to be overcome,
challenges in traditional software concerns such
as defects and security vulnerabilities, but in new
areas as well.

Copyright and Licensing Codex is trained
on (54 million) public GitHub repositories, and
the creators of these GitHub repositories agreed
to Codex-like usage of their code. However, the
Codex context of use was something most of us
probably did not anticipate. Does Codex have the
right to all the code it was trained on? For output
the language model is a series of weights, so in
theory, code produced is an amalgamation of the
inputs. Accordingly to a recent study [Ziegler,
2021] Codex rarely quotes code verbatim from
the training set and when this happens it is usually
code largely reused across open source projects.
Does Codex-created code violate copyright? Is it
fair use? We don’t have an answer to this ques-
tion, and open source licenses might need to be

3Yak shaving refers to doing a series of trivial tasks which
distract you from the original, and important, goal. Compare with
bikeshedding.

revisited to explicitly regulate the usage of code
for training commercial code generation tools.
Also, currently Codex output is the intellectual
work product of the person who activated Codex,
but this is currently because Codex is a beta, and
these terms might change.

Learning to Program The nature of learn-
ing programming will change dramatically with
AIDEs. Whether these assistants will speed up
or slow down the learning process is currently
an open question. On the one hand, novice pro-
grammers can benefit from AIDEs by receiving
recommendations useful to deal with tasks they
struggle with. On the other hand, the risk of
not fully understanding the received recommen-
dations and just accept them is there. On top of
this, AIDEs do also pose challenges for instruc-
tors: Codex is already so good it might surpass
first year university students in introduction to
programming (CS1) courses. Some initial results
in our testing show it is relatively simple to get
Codex to generate reasonable (passing) solutions.
CS1 programming assignments must change to
handle those students who can merely pass the
entire assignment spec to Codex for a solution.

Dataset Quality Plenty of code freely avail-
able online has flaws. For example, much of
it features student submissions, one-off explo-
rations, or other low quality work [Kalliamvakou
et al., 2014]. Like any trained model, Codex and
other AIDEs are only as good as the training
data. And although Codex has done extensive
work filtering low-quality inputs, there remains
code that has bugs, that has technical debt, or
that uses outdated APIs. Subtle security holes can
easily persist even in high-quality, high-volume
repositories (consider the OpenSSH Heartbleed
incident), and recent work showed how deep
learning models can learn vulnerable code and
inject it during autocompletion [Schuster et al.,
2020]. AIDE demands that humans inspect its
outputs carefully, but if we use it to create code
for a problem we don’t fully understand, we
won’t be able to understand its outputs either.

More worrisome is that the language model
reflects the biases that we humans have. For
example, asking Copilot to generate a list of
names produces a list of predominantly En-
glish/American names (Fig. 1). Plotting sugges-
tions generate graphs that fail to accommodate

May/June 2019 3

Department Head

Figure 1. Copilot portends a new generation of AI-
based productivity. The benefits, as well as the draw-
backs, of this new approach need to be carefully
scrutinized. For example, asking Copilot to generate
a list of names produces the gray text; which is a list
of predominantly English/American names (indicating
an interesting, if not perhaps troubling, bias in its
training data.)

people with color-blindness. This is of course
both a challenge for us, as much as it is for AIDE.

Sociotechnical Questions The IDE revolution
produced a now well known paradigm in com-
puter programming, with continuous integration
workflows dominant. But AIDE will possibly
change that as more and more of the work is
routinized and automated. More programmer time
will be available for complex problem solving.
But that means our current knowledge of how
humans and machines interact will change. When
Facebook rolled out their automated bug repair
approach, one of the biggest challenges was not
the technical problem, but rather integrating the
repair bot into the humans that worked with
them [Harman and O'Hearn, 2018].

Context and Complexity Mechanization—
such as in steel-making or automotive—has
greatly improved productivity at the expense of
those humans doing the routine. AIDEs will likely
be no different. To what degree will an AIDE
be able to carefully contextualize the solution for
a specific problem? Where is the line between

the routine and simple, and the complex and
contextual? Will AI eventually design and write
complex software solutions? Currently being very
clear with AIDE is essential for it to understand
the context; but developing and communicating
a clear understanding of the problem is one
of the essentially complex problems in software
engineering.

What’s Next
The AIDE revolution has just begun, leaving

open questions on what to expect in future.
Language Models, Data, and Computa-

tional Power The rapid progress in the capabil-
ities of language models is difficult to quantify.
A simple proxy for it is the increasing number
of parameters in the language models presented
by OpenAI in the last few years. In 2018 GPT-
1 had 117M parameters. One year later GPT-
2 pushed the boundaries to 1.5B, and in 2020
GPT-3 reached 175B parameters. Rumors place
the next release (GPT-4) at an astonishing 100T
parameters (500 × GPT-3) [Romero, 2021]. Sim-
ilarly, the amount of training data available for
code-related tasks is increasing every day, as
are the computational capabilities of GPUs. Put
together, these advances are expected to substan-
tially improve the support AIDEs can provide
to developers. To what extent will these im-
provements be affordable (in money and climate
terms), and accessible (for those with no data
centres)?

Improving the Quality of Training Data As
previously discussed, one of the main challenges
when dealing with data-driven assistants lies in
the quality of the training data. Manually check-
ing all training instances is just not an option, but
can AI help AI? In other words, can we teach AI
what a high-quality training instance is? Whatever
the underlying technology will be, defining tech-
niques to automatically filter out noisy and flawed
training instances is a cornerstone for AIDEs, and
a focus for GitHub’s next iteration of Copilot.

Code is Not (Just) Text Language models
have been proposed in the context of natural
language processing, in which they are fed with a
stream of tokens representing the text to process.
However, code is not just text and there is active
research investigating what the best representa-
tion is when feeding code as input to language

4 Software

models. For example, structural information can
be extracted from the code Abstract Syntax Tree
(AST) and used to boost the model’s perfor-
mance.

Consumer-related Customization While
Copilot is able to provide code recommendations
that are tailored for the specific coding task
at hand, no customization is performed when
it comes to the developer receiving such
recommendation. However, two developers
having a different technical background, coding
history, and skills, may benefit from different
recommendations. For example, more expert
developers working on real-time software are
likely to appreciate multi-threading solutions to
a given task, while newcomers may be confused
by its usage. Customizing the recommendations
based on the target developer can substantially
increase the usefulness of AIDEs.

AIDE Learning Rate A last point worth
discussing is the learning rate we can expect
from AIDEs, namely the pace at which they’ll be
able to improve their capabilities. All the above-
discussed points can contribute to that, but it’s
unclear when the AI will be able to pass a pro-
grammer’s Turing Test, for example submitting
pull requests that reviewers cannot distinguish
from a human’s submission.

An important truism in software development
is Fred Brook’s maxim “there is no silver bullet”,
derived from his insight into essential (inherent)
complexity versus accidental (self-imposed) com-
plexity. Like any new approach to our challenging
field, AIDE is unlikely to become a panacea
for software development. But it does seem to
portend an important shift in how we develop
software, and just might remove some of the
accidental complexity in our projects.

REFERENCES
M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P.

de Oliveira Pinto, J. Kaplan, H. Edwards,
Y. Burda, N. Joseph, G. Brockman, A. Ray,
R. Puri, G. Krueger, M. Petrov, H. Khlaaf,
G. Sastry, P. Mishkin, B. Chan, S. Gray,
N. Ryder, M. Pavlov, A. Power, L. Kaiser,
M. Bavarian, C. Winter, P. Tillet, F. P.
Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang,

I. Babuschkin, S. Balaji, S. Jain, W. Saunders,
C. Hesse, A. N. Carr, J. Leike, J. Achiam,
V. Misra, E. Morikawa, A. Radford, M. Knight,
M. Brundage, M. Murati, K. Mayer, P. Welin-
der, B. McGrew, D. Amodei, S. McCandlish,
I. Sutskever, and W. Zaremba. Evaluating large
language models trained on code, 2021.

M. Harman and P. O'Hearn. From start-ups to
scale-ups: Opportunities and open problems for
static and dynamic program analysis. IEEE,
Sept. 2018. doi: 10.1109/scam.2018.00009.
URL https://doi.org/10.1109/scam.2018.00009.

A. Hindle, E. T. Barr, Z. Su, M. Gabel, and
P. Devanbu. On the naturalness of software. In
Proceedings of the 34th International Confer-
ence on Software Engineering, page 837–847.
IEEE Press, 2012. ISBN 9781467310673.

E. Kalliamvakou, G. Gousios, K. Blincoe,
L. Singer, D. M. German, and D. Damian.
The promises and perils of mining github. In
Proceedings of the 11th Working Conference
on Mining Software Repositories, page 92–101,
2014.

A. Marginean, J. Bader, S. Chandra, M. Harman,
Y. Jia, K. Mao, A. Mols, and A. Scott. SapFix:
Automated end-to-end repair at scale. IEEE,
May 2019. doi: 10.1109/icse-seip.2019.00039.

A. Romero. GPT-4 will have 100 trillion pa-
rameters — 500x the size of GPT-3. https:
//bit.ly/3uLakBC, 2021. Accessed: 2021-11-02.

R. Schuster, C. Song, E. Tromer, and
V. Shmatikov. You autocomplete me:
Poisoning vulnerabilities in neural
code completion. Technical Report
arXiv:2007.02220, 2020.

D. Snowden, Z. Goh, R. Greenberg, and
B. Bertsch. Cynefin: Weaving Sense-Making
into the Fabric of Our World. Cognitive Edge,
2020.

A. Ziegler. GitHub Copilot: Parrot or crow? a
first look at rote learning in GitHub Copilot
suggestions. https://docs.github.com/en/github/
copilot/research-recitation, 2021. Accessed:
2021-11-02.

Neil A Ernst is with University of Victoria, Canada.
He conducts research into software design and natu-
ral language understanding in software. Contact him
at nernst@uvic.ca.

May/June 2019 5

https://doi.org/10.1109/scam.2018.00009
https://bit.ly/3uLakBC
https://bit.ly/3uLakBC
https://docs.github.com/en/github/copilot/research-recitation
https://docs.github.com/en/github/copilot/research-recitation
nernst@uvic.ca

Department Head

Gabriele Bavota is with Università della Svizzera ital-
iana, Switzerland. He conducts research into mining
software repositories and recommender systems for
software developers. Contact him at gbavota@usi.ch.

6 Software

gbavota@usi.ch

	Promises of AI-driven DEs
	Possible Challenges with AIDE
	What's Next
	Biographies
	Neil A Ernst
	Gabriele Bavota

