
0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E MAY/JUNE 2015 | IEEE SOFTWARE 7

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmerman
University of Applied Sciences
of Eastern Switzerland, Rapperswil

ozimmerm@hsr.ch

DEPARTMENT

Lightweight and Flexible
Emerging Trends in Software
Architecture from the SATURN
Conferences

Michael Keeling

Software architecture is a rather young, fast-moving discipline. It’s
bene� cial to re� ect once a year about what has been achieved so far,
and the SATURN conference has become one of the premier places to do
so. Michael Keeling did an excellent job as the SATURN 2014 program
chair; in this article he distills four of the most important software
architecture trends that were highlighted during the conference:
architecting for DevOps, � exible designs, lightweight architecture design
methods, and renewed interest in software architecture fundamentals.
—Cesare Pautasso and Olaf Zimmermann, department editors.

RELIABLE CODE

OVER ITS 10- YEAR HISTORY, the an-
nual Software Engineering Institute
(SEI) Architecture Technology User Net-
work (SATURN) conference has become
a barometer for the ever- evolving soft-
ware architecture climate. SATURN is a
great conference, and it was my privilege
to be the SATURN 2014 technical chair.
Here, I summarize software architecture
trends I saw emerge during the confer-
ence and give a glimpse of the future
based on the current SATURN 2015
technical program. (For a brief rundown
of SATURN 2014, see the sidebar.)

Four Trends
If one idea stood out at SATURN 2014,
it was that promoting business agility
requires sound architecture design. Dis-
cussion in the hallways between sessions

wasn’t about whether architecture and
agile worked together but more about
how best to achieve agility through ar-
chitecture. With this as the main theme,
I noticed the following four supporting
ideas throughout the conference.

Architecting for DevOps
With nine sessions covering DevOps-
 related topics, DevOps secemed every-
where. DevOps is an emergent software
development approach that blends the
traditional roles of operations and soft-
ware development to increase an organi-
zation’s ability to deliver business value.
Groups practicing DevOps take direct re-
sponsibility for the whole user experience.
This includes everything from infrastruc-
ture and tools to development, testing,
and deployment, and much else besides.

INSIGHTS

INSIGHTS

8 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Many of the bene� ts promised by
DevOps can be achieved only when
the system’s architecture promotes
DevOps values and enables speci� c
practices. So, DevOps values must
be promoted in the architecture
similarly to any desirable quality
attribute. Much like security, avail-

ability, scalability, and other quality
attributes, DevOps can’t simply be
bolted on as an afterthought.

The importance of architecting
for DevOps was evident throughout
the conference, the most obvious be-
ing during Diane Marsh’s keynote
describing how Net� ix supports

continuous delivery. One way Net-
� ix achieves this is through an auto-
mated test suite affectionately called
the Simian Army. Tools such as
Chaos Monkey, a program that ran-
domly kills running application in-
stances in production, codify desired
quality attributes in a way that dia-
grams and prose can’t. For example,
Net� ix’s arsenal of automated tools
provides practical tests for evaluat-
ing how well the system achieves cer-
tain runtime quality attributes such
as availability and scalability.

In many ways, Chaos Monkey
and its companions provide a test-
driven- like approach for some qual-
ity attributes in the architecture.
Chaos Monkey clearly de� nes reli-
ability and availability in the form of
an executable test that continuously
runs during normal business hours.
A developer’s ability to progress
through the red–green–refactor cy-
cle at the architectural level is pow-
erful indeed.

Naturally, Net� ix didn’t arrive
at this design overnight. The highly
malleable and resilient Net� ix ar-
chitecture is the result of years of
evolution and hard- earned lessons.
If nothing else, the Net� ix design
serves as a shining example of what
might be achieved when the orga-
nization, culture, and technology
are aligned.

Flexible Designs
Net� ix’s experience is also a good
example of the importance of � ex-
ible designs, and there were many
other examples at SATURN. Flex-
ible designs enable organizational
agility. Here I discuss two of the
more exciting examples from the
conference.

Flexibility was essential to IBM’s
success in the 2011 Jeopardy! IBM
Challenge. During his keynote, Je-

SATURN 2014 BY THE NUMBERS

Hosted by the Software Engineering Institute (SEI) in collaboration with IEEE
Software, the 2014 SATURN (SEI Architecture Technology User Network) con-
ference ran from 5 to 9 May in Portland, Oregon. Here’s a brief summary of
what took place:

• 198 software architects, software developers, and thought leaders
attended.

• 27 countries were represented.
• 33 experience report presentations shared stories and lessons across

three broad themes: Technical, Methods and Tools, and Leadership and
Business.

• 12 tutorials and courses covered topics such as big data, software
architecture design analysis, architecture hoisting, DevOps, architecture
katas, and architecture-centric agile practices.

• 4 participatory sessions gave attendees the chance to immediately
practice new methods.

• 4 keynotes were delivered by Bill Opdyke (JPMorgan Chase), Joe Justice
(Scrum Inc. and Team WIKISPEED), Diane Marsh (Netflix), and Jerome
Pesenti (IBM).

• 1 panel explored the role of technical debt from the perspective of
architecture. The moderator was George Fairbanks (Google); the panel
comprised Jeromy Carrière (Google), Philippe Kruchten (University of Brit-
ish Columbia), Robert L. Nord (SEI), Michael Keeling (IBM), and Rebecca
Wirfs-Brock (Wirfs-Brock Associates).

• 1 Open Space event was facilitated by Diana Larsen (FutureWorks
Consulting), with numerous attendee-led sessions and serendipitous
encounters among “butterflies.”

Nearly all SATURN 2014 keynotes and experience reports are available on-
line as slides, video, or both.1,2

References
 1. SATURN 2014 Presentations, Software Eng. Inst., 2014; http://resources.sei.cmu.edu/library

/asset-view.cfm?assetID=89532.
 2. SATURN: A Software Architecture Community, Software Eng. Inst., 2014; http://bit.ly

/saturn2014-video.

INSIGHTS

MAY/JUNE 2015 | IEEE SOFTWARE 9

rome Pesenti shared the story of
IBM’s journey to create Watson,
a cognitive computing system that
defeated the best human Jeopardy!
contestants. Jeopardy! is an Ameri-
can television game show that pro-
vides trivia clues as statements, to
which contestants provide answers
in the form of a question. Watson’s
victory was an important milestone
in AI. However, Watson might
not have been possible without the
highly � exible, modular, and paral-
lelizable architecture the research
team adopted.

Early on, the Watson team real-
ized that no single algorithm would
provide question- answering accu-
racy suf� cient to beat the best Jeop-
ardy! contestants. The solution lay
in integrating multiple algorithms to
create compounding improvements
in answer accuracy. A highly modu-
lar architecture that promoted rapid
experimentation was critical to the
team’s success. By the time Watson
was ready to compete, the relatively
small 20- person team had conducted
more than 5,500 independent experi-
ments over three years, totaling more
than 11 million CPU hours.1 On the
basis of these experiments, the team
picked the best combination of algo-
rithms for the competition.

As Joe Justice’s keynote discussed,
� exibility was also essential to Team
WIKISPEED’s success in the Pro-
gressive Insurance X Prize compe-
tition. In less than three months,
a team of volunteers designed and
constructed a car that could achieve
over 100 miles per gallon. Justice at-
tributes his team’s success to its use
of agile methods and object- oriented
design. Neither practice is character-
istic of automotive manufacturing.

The WIKISPEED garage is built
around common agile practices
such as pairing, test- driven develop-

ment, the de� nition of “done,” and
Scrum. This lets new teammates
quickly pick up new knowledge, ap-
ply it, and contribute to vehicle con-
struction. Justice calls the method
Extreme Manufacturing, in hom-
age to the method’s inspiration, Ex-
treme Programming.

Likewise, WIKISPEED cars are
designed to be modular from the be-
ginning. As with the Watson team,
modular design lets Team WIKI-
SPEED quickly iterate designs. In
fact, WIKISPEED has developed a

product line of high- ef� ciency ve-
hicles, from trucks to sports cars,
based on the same modular frame-
work. It’s amazing how the � t and
function of agile and architecture
become plainly evident when the
same practices are applied in a set-
ting other than software.

Although Watson and WIKI-
SPEED might be extreme examples
of how agile design can achieve ex-
traordinary outcomes, the increas-
ing business demands and com-
plexity of many systems requires
that architects think about agility
� rst, regardless of the development
methodology.

Lightweight Architecture
Design Methods
Trimming the fat from software ar-
chitecture methods has been a trend-
ing theme at the past few SATURN
conferences. Topics such as archi-

tecturally evident coding styles,
lightweight representations, essen-
tial modeling skills, and lean design
methods have appeared regularly in
the SATURN technical program.
Many presentations covering these
topics have won the conference’s
IEEE Software SATURN Architec-
ture in Practice Presentation Award,
including at SATURN 2014. This
peer- voted award goes to the pre-
sentation that best describes lessons
learned while applying architecture-
centric practices.

The 2014 award went to Will
Chaparro’s and my talk, “Facili-
tating the Mini- Quality Attributes
Workshop.”2 I think our presen-
tation won because it provided
practical, actionable advice and
because the mini- QAW updates
the traditional Quality Attribute
Workshop3 to address modern agile
teams’ concerns.

At the heart of the mini- QAW
is a quality attribute taxonomy, a
set of common quality attributes
relevant to typical stakeholder
concerns, classi� ed for easier con-
sumption. Our experience was
based on using a taxonomy for en-
terprise search applications; some
generic taxonomies are available in
the technical report Quality Attri-
butes.4 By using a taxonomy to en-
rich facilitation options, we could
skip or reduce several steps in the
traditional QAW so that the time

Some say that a software architect’s
� rst job is to teach.

INSIGHTS

10 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

to complete a workshop decreases
from a few days to a few hours, de-
pending on the circumstances.

Mini- QAW facilitators can use
a taxonomy directly in many ways.
For working with experienced stake-
holders, the taxonomy aids struc-
tured brainstorming—for example,
placing sticky notes on a whiteboard
clustered around taxonomic terms
(see Figure 1). During a workshop,
the facilitator can also “walk the
web” with stakeholders by asking
questions from a taxonomy- based
questionnaire. In this way, the tax-
onomy provides a ready starting
point and a concrete guide for fa-
cilitating the workshop. Such a ques-
tionnaire is an excellent accompani-
ment for inexperienced facilitators
and stakeholders.

I think lightweight methods have
proved popular at SATURN because
they enable teams to learn fast, fail
fast, change fast, and communi-

cate effectively. These factors are
essential for self- organizing teams,
which in turn enable better designs
to emerge.

Renewed Interest in Software
Architecture Fundamentals
None of the many forward- looking
trends at SATURN 2014 would
have been possible without a strong
foundation in software architec-
ture. Teaching the next generation of
software architects seemed to be on
many speakers’ minds. Some of my
favorite talks involved either sharing
deep knowledge in software archi-
tecture or novel approaches to teach-
ing as a means of growing the next
generation of architects.

One highlight was Ted Neward’s
tutorial “Architectural Katas.” Dur-
ing an architectural kata, attend-
ees work in small groups to archi-
tect a system from scratch, with the
facilitator acting as the customer

stakeholder.5 Inspired by code ka-
tas (which were in turn inspired by
martial- arts katas),6 an architectural
kata creates a no- risk opportunity for
software developers and architects,
both experienced and novice, to prac-
tice software architecture design.

During our kata, teams explored
business and architectural drivers
and designed several views of a sys-
tem that showed how the most im-
portant quality attributes might be
achieved. As a conference organizer,
I found it particularly rewarding to
see participants applying ideas they
had learned at the conference.

New research addressing long-
standing ignorance was also great
to see. “Approaching Security from
an ‘Architecture First’ Perspective,”
by Rick Kazman, Jungwoo Ryoo,
and Humberto Cervantes,7 won the
IEEE Software SATURN New Di-
rections Presentation Award. This
peer- selected award goes to the
presentation best describing inno-
vative ideas that advance the state
of architecture- centric practice. I
think this presentation won not
because its revelations were neces-
sarily groundbreaking but because
Kazman and his colleagues directly
addressed longstanding software ar-
chitecture myths about promoting
security. Their research was solid
and presented in a way that was rel-
evant to practitioners.

Their most important finding
showed that the most effective way
to promote security in a system is
early adoption of a security frame-
work such as Apache Shiro or Spring
Security. In short, “delegating se-
curity issues to frameworks allows
developers to devote their energy to
application logic, increasing overall
productivity.”7

Effectively sharing what we know
about software architecture was the

FIGURE 1. A quality attribute taxonomy used as a facilitation aid during a mini- QAW

(Quality Attribute Workshop) with stakeholders. Sticky notes contain raw scenarios; dots

indicate priority determined by a dot- voting exercise.

INSIGHTS

 MAY/JUNE 2015 | IEEE SOFTWARE 11

focus of George Fairbanks’ talk,
“Teaching Architecture Metamodel-
First.”8 Fairbanks outlined five com-
mon obstacles to teaching software
architecture, and strategies for over-
coming them. For example, to re-
move abstraction as an obstacle,
lessons with new architects should
focus first on diagramming rather
than analysis and employ plenty of
hands- on exercises. Also, to over-
come burgeoning architects’ ten-
dency to focus on the wrong de-
tails, show them how to start with
a metamodel by creating the legend
for their diagrams first.

Some say that a software archi-
tect’s first job is to teach. Effectively
communicating decisions about a
software system’s architecture re-
quires that all stakeholders have a
firm grasp on software architecture
fundamentals. Knowing the fun-
damentals is important, and so is
knowing how to teach them to oth-
ers. It was great to see talks focused
on teaching the teacher, a role every
software architect inevitably fills at
least sometimes.

SATURN 2015 Highlights
The 11th SATURN conference will
be in Baltimore from 27 to 30 April
2015, with the return of both George
Fairbanks (the SATURN 2012 tech-
nical chair) and me as the technical
cochairs.

What trends will emerge from
SATURN 2015? Although I don’t
want to speculate too wildly on what
trends might emerge, some talks
have already been accepted and of-
fer a glimpse of what might come.
Scheduled topics include reducing
technical debt, cloud architectures,
and microservices. Design thinking
and similar reflective, adaptive de-
sign frameworks also appear to be
trending in the submitted proposals.

DevOps is still present but doesn’t
seem as prevalent as in 2014, but
we’ll know more as the conference
unfurls in April.

The SATURN 2015 keynotes
will be by Mary Shaw, a professor
of computer science at Carnegie
Mellon University and winner of the
US National Medal of Technology
and Innovation; Mark Schwartz,
Chief Information Officer for US
Citizenship and Immigration Ser-
vices; and Gregor Hohpe, Chief IT
Architect at Allianz.

Finally, a special track consist-
ing of sessions curated by invited
thought leaders will cover a variety
of emerging and classic topics. You’ll
likely recognize many of the speak-
ers’ names, including Simon Brown,
Ariadna Font, Len Bass, Rebecca
Wirfs- Brock, Jeff Patton, Joseph Yo-
der, and Jeromy Carrière.

For more information and ar-
chived presentations, visit www.sei
.cmu.edu/saturn/2015. On behalf
of the program committee, I look
forward to seeing you at SATURN
2015!

References
 1. D. Ferrucci et al., “Building Watson: An

Overview of the DeepQA Project,” AI
Magazine, vol. 31, no. 3, 2010, pp. 59–79.

 2. W. Chaparro and M. Keeling, “Facilitating
the Mini- Quality Attributes Workshop,”

presentation at the 10th SEI Architecture
Technology User Network (SATURN)
Conf., Software Eng. Inst., 2014; http://
resources.sei.cmu.edu/library/asset- view
.cfm?assetID=89553.

 3. M.R. Barbacci et al., Quality Attribute
Workshops (QAWs), Third Edition, tech.
report CMU/SEI- 2003- TR- 016, Software
Eng. Inst., 2003.

 4. M. Barbacci et al., Quality Attributes,
tech. report CMU/SEI- 95- TR- 021, Soft-
ware Eng. Inst., 1995.

 5. T. Neward, Architectural Katas, Neward
& Associates, 2012; https://archkatas
.herokuapp.com.

 6. D. Thomas, Code Kata, blog, 2013; http://
codekata.com.

 7. R. Kazman, J. Ryoo, and H. Cervantes,
“Approaching Security from an ‘Architec-
ture First’ Perspective,” presentation at the
10th SEI Architecture Technology User
Network (SATURN) Conf., Software Eng.
Inst., 2014; http://resources.sei.cmu.edu
/library/asset- view.cfm?assetID=89604.

 8. G. Fairbanks, “Teaching Architecture
Metamodel- First,” presentation at the
10th SEI Architecture Technology User
Network (SATURN) Conf., Software Eng.
Inst., 2014; http://resources.sei.cmu.edu
/library/asset- view.cfm?assetID=89518.

MICHAEL KEELING is a software engineer at
IBM and a member of the IBM Watson Explorer
team. His professional interests include software
architecture design, agile methods, and making
awesome software. Keeling received a master’s in
software engineering from Carnegie Mellon Univer-
sity. Contact him at mkeeling@neverletdown.net.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

So
ft

w
ar

e E
ngineering Radio

The podcast for professional developers
is looking for hosts to interview some of
the top minds in software engineering.

Contact bbrannon@computer.org
for more information.

Sponsored by

The podcast for professional developers
is looking for hosts to interview some of
the top minds in software engineering.

Contact bbrannon@computer.org
for more information.

Sponsored by

