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Abstract—Recent advancements in signal processing and ma-
chine learning coupled with developments of electronic medical
record keeping in hospitals and the availability of extensive
set of medical images through internal/external communication
systems, have resulted in a recent surge of significant interest
in “Radiomics”. Radiomics is an emerging and relatively new
research field, which refers to extracting semi-quantitative and/or
quantitative features from medical images with the goal of
developing predictive and/or prognostic models, and is expected
to become a critical component for integration of image-derived
information for personalized treatment in the near future.
The conventional Radiomics workflow is typically based on
extracting pre-designed features (also referred to as hand-crafted
or engineered features) from a segmented region of interest.
Nevertheless, recent advancements in deep learning have caused
trends towards deep learning-based Radiomics (also referred to
as discovery Radiomics). Considering the advantages of these two
approaches, there are also hybrid solutions developed to exploit
the potentials of multiple data sources. Considering the variety
of approaches to Radiomics, further improvements require a
comprehensive and integrated sketch, which is the goal of this
article. This manuscript provides a unique interdisciplinary
perspective on Radiomics by discussing state-of-the-art signal
processing solutions in the context of Radiomics.

Index Terms: Radiomics, Deep Learning, Hand-Crafted
Features, Medical Imaging.

I. INTRODUCTION

The volume, variety, and velocity of medical imaging data
generated for medical diagnosis are exploding. Generally
speaking, medical diagnosis refers to determining the source
and etiology of a medical condition. Diagnosis is typically
reached by means of several medical tests, among them biopsy
and diagnostic imaging, in case of suspected cancer. Although
biopsy can be very informative, it is invasive and by being
focal, may not represent the heterogeneity of the entire tumor,
which is crucial in cancer prognosis and treatment. In contrast
to biopsy, diagnostic imaging is not invasive and can provide
information on tumor’s overall shape, growth over time, and
heterogeneity, making it an attractive and favored alternative
to biopsy. Interpretation of such a large amount of diagnostic
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images, however, highly depends on the experience of the
radiologist and due to the increasing number of images per
study can be time-consuming.

Referred to as “Radiomics” [1]-[4], the ability to process
such large amounts of data promises to decipher the encoded
information within medical images; Develop predictive and
prognostic models to design personalized diagnosis; Allow
comprehensive study of tumor phenotype [5], and; Assess
tissue heterogeneity for diagnosis of different type of cancers.
More specifically, Radiomics refers to the process of extract-
ing and analyzing several semi-quantitative (e.g., attenuation,
shape, size, and location) and/or quantitative features (e.g.,
wavelet decomposition, histogram, and gray-level intensity)
from medical images with the ultimate goal of obtaining
predictive or prognostic models.

Although several challenges are in the way of bringing
Radiomics into daily clinical practice, it is expected that
Radiomics become a critical component for integration of
image-driven information for personalized treatment in the
near future.

It is worth mentioning that computer aided diagnosis (CAD)
is not a new concept, and researchers have developed auto-
matic systems to investigate the link between imaging-based
features and biological characteristics in the past. However,
this field is formalized as “Radiomics”, since 2010 [6], and it
has a few key differences with the traditional CAD systems.
First of all, CAD systems incorporate much fewer number
of features (typically, within 8 to 20 features), whereas in
Radiomics, hundreds to thousands of features are extracted.
Second, the application of the CAD systems is, typically,
limited to the diagnosis of the diseases, such as distinguishing
between benign and malignant masses. Nevertheless, Ra-
diomics is a much broader field, including both predictive and
prognostic applications [7]. The first comprehensive clinical
application of Radiomics was performed by Aerts et al. [5]
with involvement of 1019 lung cancer patients. More than
400 different intensity, shape, texture, and wavelet features
were extracted from Computed Tomography (CT) images and
used together with clinical information and gene expression
data to develop Radiomics heat map, which shows the associ-
ation between Radiomics and different clinical outcomes such
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Fig. 1: Increasing interest in Radiomics based on data from Google
Scholar (“Radiomics” is used as the keyword). It is observed that
there is an increasing interest in both types of the Radiomics.

as cancer stage. This clinical study has illustrated/validated
effectiveness of Radiomics for tumor related predictions and
showed that Radiomics has the capability to identify lung
and head-and-neck cancers from a single-time point CT scan.
Consequently, there has been a recent surge of interest [8]—
[12] on this multidisciplinary research area as Radiomics has
the potential to provide significant assistance for assessing
the risk of recurrence of cancer [13]; Evaluating the risk
of radiation-induced side-effects on non-cancer tissues [14],
and; Predicting the risk for cancer development in healthy
subjects [14]. In a very recent article by Vallieres et al. [16], it
is shown that the Radiomics features extracted in Reference [5]
have a noticeable dependency on the tumor volume, which
is a strong prognostic factor, and revised calculations are
proposed that are less correlated to the tumor volume. In other
words, more powerful Radiomics features and procedures are
being introduced, illustrating the ongoing research potentials
of Radiomics.

The key underlying hypothesis in the Radiomics is that
the constructed descriptive models (based on medical imaging
data, sometimes complemented by biological and/or medical
data) are capable of providing relevant and beneficial predic-
tive, prognostic, and/or diagnostic information. In this regard,
one can identify two main categories of Radiomics. Con-
ventional pipeline based on Hand-Crafted Radiomic features
(HCR) that consists of the following four main processing
tasks: (i) Image acquisition/reconstruction; (ii) Image segmen-
tation; (iii) Feature extraction and quantification, and; (iv)
Statistical analysis and model building. On the other hand, the
Deep Learning-based Radiomics (DLR) pipeline has recently
emerged which differs from the former category since deep
networks do not necessarily need the segmented Region Of
Interest (ROI), and their feature extraction and analysis parts
are partially or fully coupled. We will elaborate on these
properties in section IV.

More clinical studies are being approved and conducted
to further investigate and advance the unparalleled oppor-
tunities the Radiomics posed to offer for clinical applica-
tions. Information Post I provides an overview of different
screening technologies used within the Radiomics pipeline
along with supporting data sources and available datasets to
develop Radiomics-based predictive/prognostic models. While

Radiomics consists of a wide range of (partially intercon-
nected) research areas with each individual branch possibly
worth a complete exploration, the purpose of this article is
to provide an inclusive introduction to Radiomics for the
signal processing community, as such, we will focus on the
progression of signal processing algorithms within the context
of Radiomics. In brief, we aim to present an overview of the
current state, opportunities, and challenges of Radiomics from
signal processing perspective to facilitate further advancement
and innovation in this critical multidisciplinary research area.
As such, the article will cover the following four main areas:

(i) Hand-crafted Radiomics, where we introduce and in-
vestigate different feature extraction, feature reduction,
and classification approaches used within the context
of Radiomics. Most of the techniques utilized in any
of the aforementioned steps lie within the broad area
of “Machine Learning,” where the goal is to improve
the performance of different computational models using
past experiences (data) [17]. In other words, the underly-
ing models are capable of learning from past data, lead-
ing to the automatic process of prediction and diagno-
sis. Furthermore, since hundreds of Radiomics features
are extracted, an appropriate feature selection/extraction
strategy should be adopted to reduce the “curse of
dimensionality” and overfitting of the prediction models.
Most of these strategies, themselves, lie within the field
of “Machine Learning”, as they are aimed to learn the
best set of features, based on the available data.

(i) Deep learning-based Radiomics, where we provide an

overview of different deep architectures used in Ra-

diomics along with interpretability requirements.

Hybrid solutions developed to simultaneously benefit

from the advantages of each of the above two mentioned

categories.

Challenges, Open Problems, and Opportunities, where

we focus on the limitations of processing techniques

unique in nature to the Radiomics, and introduce open
problems and potential opportunities for signal process-
ing researchers.

(iii)

@iv)

Fig. 1 shows the increasing interest in Radiomics within the
research community. Although there have been few recent arti-
cles [3], [18] reviewing and introducing Radiomics, to the best
of our knowledge, most of them are from outside the signal
processing (SP) community. References within the SP society
such as the work by J. Edwards [19] have investigated recent
advancements in medical imaging devices and technologies
without reviewing the role of Radiomics in medical applica-
tions. Other existing papers outside SP community (e.g., [3])
have failed to clearly describe the underlying signal processing
technologies and have narrowed down their scope only to
hand-crafted Radiomics and its diagnosis capability. While
Reference [18] has briefly touched upon the deep learning
pipeline as an emerging technology that can extract Radiomics
features, it has not studied applicability of different deep
architectures [20] and left the interpretability topic untouched.
Furthermore, Reference [21] has mostly focused on the hand-
crafted Radiomics, while deep learning-based Radiomics is



explained briefly without addressing different architectures,
interpretability, and hybrid models. Although both types of
Radiomics are covered in Reference [22], combination of
hand-crafted and deep learning-based features are not con-
sidered. Besides, challenges associated with Radiomics and
the relation between Radiomics and gene-expression (Radio-
genomics) are also not discussed thoroughly. Finally, the scope
of Reference [23] is limited to deep learning-based Radiomics,
without addressing hand-crafted features, their stability, hybrid
Radiomics, and Radiogenomics. All these call for an urgent
and timely quest to introduce Radiomics to our community

especially since SP is one of the main building blocks of the
Radiomics.

The reminder of this article is organized as follows: first in
Section II, we will discuss several applications of Radiomics
in cancer-related fields, followed by Hand-Crafted solutions in
Section III. The Deep learning-based Radiomics is presented
in Section IV, where several aspects of DLR is investigated. In
Section V, we explain different hybrid solutions to Radiomics,
which aim to take advantage of both DLR and HCR. Finally in
Section VI various challenges and opportunities of Radiomics,
especially for SP community, are discussed. We conclude our
work is Section VII.



Information Post I: Radiomics Supporting Resources

Several potential medical resources provide information to the
Radiomics pipeline, some of which are directly used to extract
Radiomics features and some serve the decision making process,
as complementary information sets. Below we review the most
important data resources for Radiomics.

Screening Technologies: The Radiomics features can be ex-
tracted from several imaging modalities, among which the fol-
lowing are the most commonly used modalities:

o Computed Tomography (CT) Scans: The CT is the modal-
ity of choice for the diagnosis of many diseases in dif-
ferent parts of the body, and by providing high resolution
images [1] paves the path for extracting comparable Ra-
diomics features. Nonetheless, the CT imaging performance
depends on different components of the utilized protocol
including the following three main properties: (i) Slice
thickness, which is the distance in millimeter (mm) between
two consecutive slices; (ii) The capability for projecting
the density variations into image intensities, and; (iii) Re-
construction algorithm, which aims at converting tomo-
graphic measurements to cross-sectional images. Although
CT protocols for specific clinical indications are usually
similar across different institutions, Radiomics features can
even differ between different scanners with the same set-
tings [24]. Therefore, there is still a considerable need to
ensure consistency of Radiomics feature extraction amongst
different scanners and imaging protocols [2]. CT images
are typically divided into two categories [25]: screening
and diagnostic. While screening CT uses low dose images,
diagnostic CT utilizes high dose and is of higher quality
and contrast.

o Positron Emission Tomography (PET) Scans: The PET is
a nuclear imaging modality that evaluates body function and
metabolism [1], and since its performance depends on not
only the scanner properties, but also the doze calibration,
similar to the case with the CT scans, standardizing the
PET protocols across different institutions is challenging.
Furthermore, glucose level at the time of scanning can also
affect the properties of PET images [2].

TABLE I: Popular data sets for performing Radiomics.

o Magnetic Resonance Imaging (MRI): Unlike CT, proper-
ties of MRI images are not directly associated with tissue
density and specific methods are required to obtain the so-
called signal intensity. Besides, several imager and vendor-
dependant factors such as gradient and coil systems [26],
pulse sequence design, slice thickness, and other parameters
such as artifacts and magnetic field strength affect the prop-
erties of the MRI images [2], which should be consistent
across different institutions.

Complimentary Data Sources: In addition to imaging resources,
the following clinical data sources are typically combined with
Radiomics features:

o Gene expression: The process of converting DNA to func-
tional product to have a global insight of cellular function.

o Clinical characteristics: Patient’s characteristics such age,
gender, and past medical and family history [2].

o Blood Bio-markers: Measurable characteristics from the
patient’s blood such as glucose level, cholesterol level and
blood pressure.

o Prognostic Markers: Markers to evaluate the progress of
the disease, response to treatment or survival, such as size,
tumor stage, tumor recurrence, and metastasis.

Radiomics Image Databases: Large amount of data is typically
required to get reliable results about tissue heterogeneity based on
Radiomics [2]. Table I below introduces a few publicly available
imaging data source that can be used to develop and test new
Radiomics approaches:

Data Set Reference  Year Imaging Modality Type of the Tumor Number of Patients  Annotation Type
LIDC-IDRI [27] 2015 CT Lung Tumor 1010 Multiple experts
NSCLC-Radiomics [5] 2014 CT Lung Tumor 422 One expert
NSCLC-Radiomics-Genomics [5] 2014 CT Lung tumor 89 -
LGG-1p19gDeletion [28] 2017 MRI Brain Tumor 159 One expert
Head-Neck-PET-CT [29] 2017 PET, CT Head-and-Neck Cancer 298 -
BRATS2015 [30] 2015 MRI Brain Tumor 65 Multiple experts

II. APPLICATIONS

It is undeniable that automatic diagnosis systems are still
in their infancy, and there is a long way before they can be
reliably used in clinical applications. Having said that, several
recent studies have investigated automatic diagnosis systems
and compared them against human experts. For instance,
Esteva ef al. [31] have developed a deep CNN for skin cancer
classification, using a dataset of 129,450 clinical images.
The performance of this system is tested against 21 board-
certificated experts, and results show that the performance of
the system is on a par with human experts. This study suggests

that the automatic diagnosis systems have the potential to
achieve a human-level performance and can be utilized as one
of the two experts. Similar to other emerging technologies,
automatic diagnosis systems have different advantages and
disadvantages. For instance, these systems have the potential to
improve the quality of clinical care and decrease the number of
medical errors. These systems, however, are associated with
a major concern, i.e., the risk of violating patients’ privacy,
calling for strict regulations to ensure the privacy of the clinical
information [32].

In recent years, Radiomics has been applied to many health-



Reference
Zhang et al. [8]

Aerts et al. [5]

Griethuysen et al.

(9]

Oikonomou et al.

(4]

Kumar et al. [64]

Kumar et al. [41]

Huynh et al. [42]

Li et al. [43]

Sun et al. [10]

Jamaludin er al.
[44]

Liu et al. [48]

Oakden-Rayner

et al. [45]

Paul et al. [46]

Fu et al. [47]

Bickelhaupt et al.
[68]

Imaging
Modality
CT

CT

CT

CT, PET

CT

CT

Mammogram

MRI

CT

MRI

MRI

CT

CT

CT

Mammogram

TABLE II: Applications of Radiomics.

Information
Sources

Gene-expression
and Clinical data.

Standardized
uptake value
(ratio of image
and body
radioactivity
concentration).

Application
Domain

Prediction of lung
cancer recurrence
and death.

Lung, and head &
neck cancer sur-
vival prediction.

Lung cancer be-
nign and malig-

nant classification.

Lung cancer sur-
vival prediction.

Lung cancer be-
nign and malig-

nant classification.

Lung cancer be-
nign and malig-

nant classification.

Classification of
breast cancer: be-

nign or malignant.

IDH1
mutation
prediction.

enzyme

Lung cancer be-
nign and malig-

nant classification.

Disc abnormality
classification.

Prostate
diagnosis.

cancer

Longevity predic-
tion.

Lung cancer
short/long-term

survival prediction.

Lung tumor de-
tection.

Classification of
breast cancer: be-

nign or malignant.

Radiomics Number of
Method Patients
Hand-crafted 112
Radiomics
(HCR)
HCR 1019
HCR 302
HCR 150
Deep 1010
Learning-based
Radiomics
(DLR)
DLR 97
HCR, DLR, 219
Combination of
HCR and DLR
DLR 151
HCR, DLR 1018
DLR 2009
HCR, DLR 341
HCR, DLR 48
Combination of 81
HCR and DLR
Combination of 1010
HCR and DLR
HCR 50

Type of

Annotation
One expert

Multiple experts

Multiple experts

One expert

Multiple experts

Multiple experts

Semi-automatic

Automatic

Multiple experts

Not performed

Semi-automatic

Semi-automatic

Not performed

One expert



Reference
Lao et al. [49]

Antropova et al.

[52]

Wang et al. [15]

Shen et al. [55]

Emaminejad et
al. [65]

Sun et al. [12]

Kim et al. [57]

Shen et al. [58]

Ciompi et al. [59]

Afshar et al. [37]

Cha et al. [71]

Yu et al. [70]

Zhou et al. [69]

Imaging
Modality
MRI

Mammogram,

Ultrasound, MRI

CT, PET

CT

CT

CT

CT

CT

MRI

CT

CT

CT

Information
Sources

Clinical risk
factors.

Standardized
uptake value.

Genomics
bio-markers.

Gene expression.

Application
Domain

Brain cancer sur-
vival prediction.

Breast cancer
benign and
malignant
classification.

Lung cancer
benign and
malignant
classification.

Prediction of
lung tumor
malignancy
likelihood.

Lung cancer
recurrence  risk
prediction

Lung cancer
benign and
malignant
classification.

Lung cancer
benign and
malignant
classification.

Lung cancer ma-
lignancy proba-
bility estimation.

Lung tumor
classification

as solid and
non-solid.

Brain tumor type
classification.

Bladder
treatment
response
prediction.

cancer

Kidney
tumor type
classification.

Liver cancer re-
currence predic-
tion.

TABLE III: Applications of Radiomics (Continued).

Radiomics
Method

Combination of
HCR and DLR

Combination of
HCR and DLR

HCR, DLR

DLR

HCR

HCR, DLR

Combination of
HCR and DLR

DLR

DLR

DLR

DLR

HCR

HCR

Number of
Patients

112

2060

168

1010

79

1018

20

1010

1411

233

123

119

215

Type of

Annotation
Multiple experts

Semi-automatic

One expert

Not performed

Semi-automatic

One expert

One expert

Not performed

Not performed

One expert

Automatic

Multiple experts

One expert

care applications, including oncology, cardiology, and neurol-
ogy. In cardiology, for instance, Radiomics is used in different



investigations, such as identifying the coronary plaques [33].
In neurology, it is widely applicable for detecting Alzheimer’s
disease [34] and Parkinson’s disease [35]. However, among all
the applications of the Radiomics, cancer-related topics have
been the focus of interest. Below we briefly introduce and de-
fine different cancer-related applications in which Radiomics
has been shown to be successful.

1) Cancer diagnosis, which refers to confirming the pres-
ence or absence of the cancer, is one of the most critical
and sensitive decisions that has to be made as early
as possible. However, most of the times cancers are
diagnosed in late stages reducing the chance of receiving
effective treatment, as there are typically few clinical
symptoms in the early stages of cancer. Nevertheless,
Radiomics has the potential to improve the accuracy of
cancer early diagnosis.

2) Tumor detection refers to the identification of those
lesions that are malignant, which is very important in
order to guide targeted local treatment. For instance,
Radiotherapy, the process of killing cancerous cells
using ionizing radiation, can have much more efficient
results if it is focused on the more “aggressive” areas
of the tumor (usually the more heterogeneous areas are
the more aggressive ones. Drug delivery, i.e., having
an exact plan to deliver the drug to the target area, is
another problem that requires precise information about
the abnormality location.

3) Tumor classification and attribute scoring: Tumor clas-
sification refers to determining the type of the tumor.
Typically, cancer is classified into the following main
classes: (i) benign; (ii) primary malignant, and; (iii)
metastatic malignant. Besides, tumors are associated
with different attributes such as their border and spheric-
ity. Analyzing these attributes contribute to a better
understanding of the tumor’s shape and behavior.

4) Survival prediction: The knowledge of the expected
survival of a specific disease with or without a specific
treatment is critical both for treating physicians and the
patients. Physicians need to choose the best treatment
plan for their patients and patients need to know their
predicted survival time in order to make their own
choices for the quality of their life. Radiomics can add
significant information about patient’s survival based on
image properties and heterogeneity of the tumor and this
has attracted a lot of attention recently.

5) Malignancy prediction: Tumors can be either malignant
or benign based on several factors such as their abil-
ity to spread to other tissues. Benign tumors usually
do not spread to other organs but may need surgical
resection because occasionally they may grow in size.
Pre-invasive lesions may be indolent for years, however,
they may transform to aggressive malignant tumors
and therefore need to be monitored closely or even
be treated with lower dose of anti-cancer regimens.
Malignant tumors are life threatening and may spread
to distant organs, requiring more complicated treatments
such as Chemotherapy. Prediction of tumor malignancy

likelihood with noninvasive methods such as Radiomics
is, therefore, of paramount importance.

6) Recurrence prediction: Even the treated cancers have
the potential to grow and reappear, which is referred
to as “cancer recurrence”. As the cancerous region
is supposed to be removed or treated, there are not
strong landmarks or evidences helping with predicting
the recurrence. However, recently Radiomics is being
employed to assist with such issue and has shown
promising initial results.

7) Cancer staging: Cancers may be diagnosed in different
stages, e.g., they may be in an early stage meaning that
they are remaining in the tissue they have first appeared
in, or they can be in an advanced stage, meaning that
they are spread in other tissues. Knowing the stage of the
tumor has significant impact on the choice of required
treatment.

Based on the above categories, Tables II and III summarize
different application domains of Radiomics introduced in
various articles, along with their associated Radiomics method
(HCR, DLR, or the combination of both). These tables also
provide information on any complementary data source that
has been utilized in combination with Radiomics.

III. STATE-OF-THE-ART IN HAND-CRAFTED RADIOMICS

In clinical oncology, tissue biopsy, which refers to the
removal of a small focal part of the cancerous tissue (tumor), is
considered as the state-of-the-art approach for diagnosing can-
cer. Although tissue biopsy has several diagnostic properties
and is widely used for detecting and investigating cancerous
cells, its reliability is limited by the fact that tumors are
spatially and temporally heterogeneous, and as a result, biopsy
cannot capture all the available information that is necessary
for an inclusive decision. Besides, most of the biopsies are
invasive which restricts the number of times this procedure
can be performed, or sometimes biopsy is not an option due to
the high risk for complication that pertains to specific patients.

Although biopsy remains the gold standard for cancer
diagnosis, it can be combined with Radiomics, which is a
non-invasive technique and can capture intra-tumoral hetero-
geneity. The resulting imaging-guided biopsy is a much less
interventional procedure associated with fewer complications
compared to surgical biopsy. In other words Radiomics can
be used to facilitate biopsy by detecting more suspicious loca-
tions [3]. Furthermore, Radiomics can provide complementary
information for diagnosis, and in case of “negative result
of a biopsy” Radiomics prediction models may also provide
additional information to the clinicians on whether re-biopsy
is needed [78].

In this section, we focus on the state-of-the-art research
on hand-crafted Radiomics (HCR). Studies on hand-crafted
Radiomics features [1], [2], [4], typically, consist of the
following key steps:

1. Pre-processing, introduced to reduce noise and artifacts
from the original data and typically includes image
smoothing and image enhancement techniques.

2. Segmentation, which is a critical step within the HCR
workflow, as typically HCR features are extracted from



segmented sections and many tissues do not have distinct
boundaries [3]. Although manual delineation of the gross
tumor is the conventional (standard) clinical approach,
it is time consuming and extensively sensitive to inter-
observer variability [2], resulting in a quest to develop
advanced (semi) automated segmentation solutions of
high accuracy that can also generate reproducible bound-
aries.

Automatic and semi-automatic segmentation techniques
can be either conventional, meaning that pre-defined
features are used to classify image pixels/voxels as
tumorous or non-tumorous, or deep learning-based, re-
ferring to the use of a deep network to segment the im-
age. Conventional techniques can, themselves, lie within
three categories of intensity-based [82], model-based,
and machine learning methods. In the former category,
intensity is used as the main distinguishing feature of
the pixels, while in the model-based approaches, the
aim is to improve an initial contour, by optimizing an
energy function. In machine learning methods, however,
a set of features, including intensity and gradient, are
extracted from the pixels. These features are then used
as the inputs to a machine learning model, such as a
Support Vector Machine (SVM), to classify the pixels.
Nevertheless, conventional techniques are subject to
several shortcomings. For instance, the intensity of the
tumor can, sometimes, be similar to other tissues, and
therefore, intensity can not be a good discriminator.
Furthermore, the formulation of an energy function, in
a model-based segmentation, may involve large num-
ber of parameters [86], which makes optimization of
the energy function difficult and time-consuming. Deep
learning methods, on the other hand, are capable of
learning the features that can best distinguish tumor-
ous and non-tumorous pixels, and can be trained in
an end-to-end manner. Deep learning approaches, such
as different variations of the U-Net [67], “LungNet”
architecture [83], DenseNet [84], and hybrid dilated
convolutions (HDC) [85] are currently used more often
for medical image segmentation.

The most important metric for evaluating a segmentation
method is to calculate its accuracy according to a
ground truth. However, since ground truth is not always
available for medical images, reproducibility metrics are
often used to assess the performance of the segmentation
algorithm [2], [3]. For instance, reference [2] has used
a similarity metric based on the overlap of generated
segments resulting in a better average for automatic
methods compared with manual delineation.

. Feature extraction, which is the main step in Radiomics
workflow and will be discussed in details in Sub-
section III-A.

. Feature reduction, is another critical step in Radiomics
as although a large number of quantitative features can
be extracted from the available big image datasets, most
of the features are highly correlated, irrelevant to the task
at hand, and/or contribute to over-fitting of the model.
To address these issues, Radiomics feature reduction

techniques are discussed in Sub-section III-B.

5. Statistical analysis, which refers to utilizing the ex-
tracted Radiomics features in a specific application
as outlined in Section II. We will further elaborate
on such Radiomics-based statistical analysis in Sub-
section III-C.

In the reminder of this section, we focus on Steps 3-5 in Sub-
sections III-A-III-C, respectively, starting by reviewing the
key feature extraction methodologies recently used in HCR,
followed by a review of the main feature reduction techniques
and Radiomics-based statistical analytics.

A. Radiomics Feature Extraction

During the feature extraction step within Radiomics work-
flow, different types of features are extracted that can be
generally classified into three main categories: (1) First order
(intensity-based and shape-based features) [8]; (2) Second
order (texture-based features) [8], and; (3) Higher order fea-
tures [3]. Table IV provides a summary of different potential
features. It is worth mentioning that HCR features are not
limited to this list and can exceed hundreds of features (e.g., in
Reference [5] 400 HCR features are initially extracted before
going through a feature reduction process). Below, we further
investigate the most commonly used categories of hand-crafted
features:

1. Intensity-based Features: Intensity-based methods convert
the multi-dimensional ROI into a single histogram (describing
the distribution of pixel intensities), from which simple and
basic features (e.g., energy, entropy, kurtosis, and skewness)
are derived. Intensity features allow us to investigate properties
of the histogram of tumor intensities such as sharpness,
dispersion, and asymmetry. These features are, however, the
most sensitive ones to image acquisition parameters such as
slice thickness [25] (discussed in the Information Post I).
Therefore, designing intensity-based features need special
care and pre-processing. Among all intensity features, en-
tropy and uniformity are the most commonly used ones in
Radiomics [62]. Generally speaking, entropy measures the
degree of randomness within the pixel intensities, and takes
its maximum value when all the intensities occur with equal
probabilities (complete randomness). Uniformity, on the other
hand, estimates the consistency of pixel intensities, and takes
its maximum value when all the pixels are of the same value.

Although intensity-based features are simple to calculate
and have the potential to distinguish several tissues such as
benign and malignant tumors [62], they suffer from some
drawbacks. First, the selected number of bins can highly
influence such features, as too small or too large bins can
not resemble the underlying distribution correctly, and as
such these features are not always reliable representatives.
Besides, optimizing the number of histogram bins can also
be problematic, because it leads to different number of bins
for different ROIs, and makes it difficult to compare the results
of various studies.

2. Shape-based Features: Shape-based features describe the
geometry of the ROI and are useful in the sense that they



TABLE IV: Different categories of HCR features commonly used within the context of Radiomics.

Category
First Order Radiomics

e Shape Features

o Intensity Features

Second Order Radiomics (Texture Features)

e Gray Level Co-occurrence (GLCM)

e Gray Level Run-Length (GLRLM)

e Neighborhood Gray Tone Difference
Matrix (NGTDM)

e Grey-Level Zone Length Matrix (GL-
ZLM)

Higher Order Radiomics

Description
Concerned with the distribution of pixel
intensities and use of elementary metrics to
compute geometrical features.

Quantify the geometric shape of region or
volume of interest [2]

Derived from a single histogram generated
from the 2D region or the whole 3D vol-
ume [2].

Concerned with texture features and rela-
tions between pixels to model intra-tumor
heterogeneity. Texture features are gener-
ated from different descriptive matrices [2].

GLCM [25] is a matrix that presents the
number of times that two intensity levels
have occurred in two pixels with specific
distance.

GLRLM [62] is a matrix that presents the
length of consecutive pixels having the same
intensity.

NGTDM [25] is concerned with the inten-
sities of neighboring pixels instead of the
pixel itself.

GLZLM [9] considers the size of homoge-
neous zones in every dimension.

Use of filters to extract patterns from im-
ages.

Sub-category

Size of the Region of Interest (ROI);
Sphericity; Compactness; Total volume;
Surface area, Diameter, flatness and;
Surface-to-volume ratio [2], [25].

Intensity Mean; Intensity Standard Devi-
ation; Intensity Median; Minimum of In-
tensity; Maximum of Intensity; Mean of
Positive Intensities; Uniformity; Kurtosis;
Skewness; Entropy; Normalized Entropy;
Difference of Entropy; Sum of Entropy, and;
Range [2], [25].

Contrast; Energy; Correlation; Homogene-
ity;Variance; Inverse Difference Moment;
Sum of Average; Sum of Variance; Differ-
ence of Variance; Information Measure of
Correlation; Autocorrelation; Dissimilarity;
Cluster Shade; Cluster Prominence; Cluster
Tendency, and; Maximum Probability.

Short run emphasis; Long run emphasis;
Gray Level Non-Uniformity; Run length
non-uniformity; Run percentage; Low gray
level run emphasis, and; High gray level run
emphasis [2].

Coarseness; Contrast; Busyness; Complex-
ity Texture Strength.

Zone Percentage; Short-Zone Emphasis;
Long-Zone Emphasis; Gray-Level Non-
Uniformity for zone; Zone Length Non-
Uniformity.

Wavelets; Fourier features [25]; Minkowski
functionals; Fractal Analysis [3], and;
Laplacian of Gaussian (LoG) [9].

have high distinguishing ability for problems such as tumor
malignancy and treatment response prediction [25]. Although
radiologists commonly use shape features (also referred to as
“Semantic Features” or “Morphological features”), the aim of
Radiomics is to quantify them with computer assistance [3].
These features are extracted from either 2D or 3D structures
of the tumor region to investigate different shape and size
characteristics of the tumor.

Among different shape-based features, volume, surface,
sphericity, compactness, diameter, and flatness are more com-
monly used in Radiomics. For instance, sphericity measures
the degree of roundness of the volume or region of interest and
it is specially useful for the prediction of tumor malignancy,

as benign tumors are most of the times more sphere compared
to malignant ones. Compactness is itself defined based on
sphericity and as such, these two need not to be calculated
simultaneously, and one of them will be probably excluded
by the feature selection methods, which are targeting feature
redundancy.

3. Texture-based Features: Shape-based and intensity-based
features fail to provide useful information regarding corre-
lations between different pixels across a given image. In
this regard, texture-based features are the most informative
ones, specially for problems where tissue heterogeneity plays
an important role, because texture-based features can catch



the spatial relationships between neighboring pixels [25].
In Radiomics, typically, texture-based features are extracted
based on different descriptive matrices, among them gray
level co-occurrence matrix (GLCM), gray level run length
matrix (GLRLM), neighborhood gray tone difference matrix
(NGTDM), and gray level zone length matrix (GLZLM) are
the most commonly used ones [62], which are defined below:

e The GLCM, models the spatial distribution of pixels’
intensities and can be calculated by considering the fre-
quency of the occurrence of all pairs of intensity values.
Features extracted from GLCM are the most commonly
used textural features in Radiomics [62]. Each GLCM is
associated with two predefined parameters 6 and d, where
0 € {0°,45°,90°,135°}, and d is any integer distance
admissible within the image dimensions.

o« The GLRLM, defines the number of adjacent pixels
having the same intensity value, e.g., the (i,;) element
of the GLRL My, matrix determines the number of times
intensity value ¢ has occurred with run length j, in
direction 6.

e The NGTDM, which is based on visual characteristics
of the image, is a vector whose k™ element is defined
as the summation of differences between all pixels with
intensity value k£ and the average intensity of their neigh-
borhood (size of which is determined by the user).

¢ The GLZLM, which looks for zones in a matrix. A
zone can be defined as the set of connected pixels/voxels
sharing the same intensity. The (i,7)*" element of the
GLZLM corresponds to the number of zones with the
intensity ¢, and the size j.

4. Higher Order Radiomics Features: Higher order features
such as Wavelet and Fourier features capture imaging bio-
markers in various frequencies [25]. Wavelet features are
the mostly used higher order features in Radiomics. Wavelet
course and fine coefficients represent texture and gradient
features respectively, and is calculated by multiplying the
image by a matrix including complex linear or radial “wavelet
mother functions”. Fourier features can also capture gradient
information. Minkowski Functional (MF) is another common
higher order feature extractor considering the patterns of pixels
with intensities above a predefined threshold.

In brief, the MFs are computed by initially forming a binary
version of the ROI through utilization of several thresholds
within the minimum and maximum intensity limits. Although
the number of utilized thresholds is a free parameter, for
better results, it should be identified through a selection
mechanism (typically empirical tests are used). Based on the
binarized ROI, different MFs such as area and perimeter are
computable as follows

M Fiea
and ME, perimeter =

Ns, (1)
—4715 + 2”67 (2)
where ng and n, are the total number of white pixels (above

the threshold) and edges, respectively. This completes our
coverage of feature extraction methods used in Radiomics.

B. Radiomics Feature Reduction Techniques

Feature reduction is another critical step in Radiomics
as although a large number of quantitative features can be
extracted from the available image datasets, most of the
features are highly correlated, irrelevant to the task at hand,
and/or contribute to over-fitting of the model (making it
highly sensitive to noise). Feature reduction techniques that
are used in Radiomics can be classified into supervised and
unsupervised categories [8], as summarized in Table V. Su-
pervised approaches, such as filtering and wrapper methods,
take the discriminative ability of features into account and
favor features that can best distinguish data based on a pre-
defined class. Unsupervised methods, on the other hand, aim to
reduce feature redundancy and include Principle Component
Analysis (PCA), Independent Component Analysis (ICA) and
Zero Variance (ZV) [8].

In summery, various objectives can be defined when re-
ducing the feature space in Radiomics. The following key
characteristics can be defined for feature selection purposes
(2], [3]:

e Reproducibility: Reproducible features (also referred to
as “stable features”) are the ones that are more robust
to pre-processing and manual annotations. These features
will be discussed in Sub-section III-D.

o Informativeness and Relevancy, which can be defined
as features that are highly associated with the target
variable [25]. For instance a y2-test, calculates the chi-
squared statistic between features and the class variable,
and consequently features with low impact on the target
are discarded. Another selection approach is a Fisher
score test, where features with higher variance are treated
as the more informative ones.

e Redundancy: Non-redundant features are the ones with
small correlation with each other. Feature redundancy is
defined as the amount of redundancy present in a par-
ticular feature with respect to the set of already selected
features.

Below, supervised and unsupervised techniques commonly
used in Radiomics are further discussed.

1. Supervised Feature Selection Methodologies: Supervised
methods are generally divided into two categories as outlined
below:

e Filtering (Univariate) Methods: These methods consider
the relation between the features and the class label one
at a time without considering their redundancy. Among
all filtering approaches, Wilcoxon test based method
has been shown to be more stable, resulting in more
promising predictions in the field of Radiomics [62]. A
Wilcoxon test is a nonparametric statistical hypotheses
testing technique that is used to determine dependencies
of two different feature sets, i.e., whether or not they have
the same probability distribution.

o Wrapper (Multivariate) Methods: Filtering methods have
the drawback of ignoring relations between features
which has led to development of wrapper techniques. In
contrary to the filtering methods, wrapper methods inves-
tigate the combined predictive performance of a subset



TABLE V: Feature reduction techniques commonly used within the Radiomics literature.

Category
Supervised

e Filtering (Univariate)

Description
Considers the relation of features with the
class labels and features are selected mostly
based on their contribution to distinguish
classes.

Test the relation between the features and
the class label one by one.

Methods

Fisher score (FSCR); Wilcoxon rank sum
test; Gini index (GINI); Mutual information

e Wrapper (Multivariate)

Considers both relevancy and redundancy.

feature selection (MIFS); Minimum redun-
dancy maximum relevance (MRMR), and;
Student t-test [62].

Greedy forward selection, and Greedy back-
ward elimination.

Unsupervised Does not consider the class labels and its
objective is to remove redundant features.
e Linear Features have linear correlations.

e Nonlinear
linear space.

of features, and the scoring is a weighted sum of both
relevancy and redundancy [62]. However, computational
difficulties prevent such methods from testing all the
possible feature subsets.

Wrappers methods include greedy forward selection and
greedy backward elimination. In a forward feature re-
duction path, selection begins with an empty set and the
correlation with class label is calculated for all features
individually. Consequently, the most correlated feature
is selected and added to the set. In the next step, the
remaining features are added, one by one, to this set to
test the performance of the obtained set, and the process
continues until no further addition can increase the pre-
dictive performance of the set. A backward selection path
works in contrary to the forward one, beginning with a set
including all the available features, and gradually reduces
them until no further reduction improves the performance.

Since supervised methods are based on class labels, they are
subject to over-fitting and can not be easily applied to different
applications once trained based on a given feature set.

2. Unsupervised Feature Selection Methodologies: Unsuper-
vised approaches try to reduce the feature space dimensionality
by removing redundant features (those who are correlated
and do not provide any additional information). Although
these methods are not prone to over-fitting, they are not
guaranteed to result in the optimum feature space. Unsuper-
vised techniques can be divided into linear and non-linear
methods, where the former assumes that features lie on a linear
space. Because, in the field of Radiomics, commonly, very
simple and basic forms of unsupervised techniques, such as
PCA, are used, they are not covered in this article. However,
this presents an opportunistic venue for application of more
advanced statistical-based dimensionality reduction solutions
recently developed within signal processing literature.

Features are not assumed to be lied on a

Principle Component Analysis (PCA), and;
Multidimensional scaling (MDS)

Isometric mapping (Isomap), and; Locally
linear embedding (LLE).

C. Radiomics Statistical Analysis

Statistical analysis refers to utilizing the extracted Ra-
diomics features in a specific task such as cancer diagno-
sis, tumor stage classification, and survivability analysis, as
described in Section II. Although most statistical methods,
initially, treat all the features equally and use the same
weights over all predictors, in the area of Radiomics, the most
successful methods are the ones that use a prior assumption
(provided by experts) over the meaning of features [3]. One
basic approach to analyze the Radiomics features adopted
in [5], [9] is to cluster the extracted features and look for
associations among clusters and clinical outcomes. For in-
stance, patients belonging to one cluster may have similar
diagnosis or patterns. Observations show that image bio-
markers are associated with clinical outcomes such as tumor
malignancy. Hierarchical clustering is most commonly used
in Radiomics [2]. However, clustering techniques are not basi-
cally trained for target forecasting purposes, which necessitates
the use of prediction tools that are specially trained based
on a predefined class label. Prediction tools in Radiomics are
categorized as either:

() Classification and Regression Models that are mostly
similar to other multi-media domains, trying to foresee
a discrete or continues value. Random Forest (RF), Sup-
port Vector Machine (SVM) and Neural Network (NN)
are among the most common regression and classifi-
cation techniques used to make predictions based on
Radiomics [8].

(1) Survivability analysis: Also referred to as time-related
models, mostly try to predict the survival time associated
with patients. These models are also useful when testing
the effectiveness of a new treatment.

Table VI presents a summary of different Radiomics analysis
techniques. As predictors belonging to the former category



Purpose
Clustering

Classification

Description
Similar patients are grouped together based
on a distance metrics.

Models are trained to distinguish patients
based on their associated clinical outcome.

TABLE VI: Common analysis methods in Radiomics.

Methods
Hierarchical, Partitional

Random Forest (RF); Support Vector Ma-
chine (SVM); Neural Network (NN); Gen-

Time-related analysis

are also common in other multi-media applications, they are
not covered in this article. Survivability analysis (the latter
category), however, is more specific to Radiomics, and as
such, below, we discuss the three mostly used techniques from
this category, i.e., Kaplan-Meier Survival Curve (KMS), Cox
Proportional Hazards (regression) Model (PHM), and Log-
Rank Test.

1. Kaplan-Meier Survival Curve (KMS): The KMS curve [5],
[8] represents a trajectory for measuring the probability of
survival S(t) in given points of time ¢, i.e.,

S(t)

The KMS curve can be calculated for all Radiomics features
to assess the impact of different features on patients’ survival
as follows:

_ Number of patients survived until t

3)

~ Number of patients at the beginning

1) A desired feature, for which the KMS curve is supposed
to be calculated, is selected.

2) Based on the selected feature, one or more thresholds
are considered that can partition patients into, e.g., low
and high risk cancer subjects. Patients are then grouped
based on whether their associated feature lies above or
below the threshold.

3) The KMS curve is calculated for all the obtained groups,
and the result can be used to compare the survivability
among patients with, e.g., low and high risk cancer. For
instance, in Reference [5] high heterogeneity features
are associated with shorter survival time, while high
compactness features are associated with longer survival.

2. Cox Proportional Hazards (Regression) Model (PHM) [5],
is commonly used in medical areas to predict patient’s survival
time based on one or more predictors (referred to as covariates)
such as Radiomics features. The output of the PHM model
denoted by h(t) is the risk of dying at a particular time ¢,
which can be calculated as follows

h(t) = ho(t) x expzf\’:cl bix @

where x;, for (1 < i < N,.), are predictors (covariates); b;
represent the impacts of predictors, and hg(t) is called the
base-line hazard. The exponent term in Eq. (4) is referred to as

The survival time or the probability of sur-
vival is calculated based on the available set
of data from previous patients.

eralized linear model (GLM); Naive Bayes
(NB); k-nearest neighbor (KNN); Mixture
Discriminant Analysis (MDA); Partial Least
Squares GLM (PLS), and; Decision Tree
(D).

Kaplan-Meier survival analysis; Cox pro-
portional hazards regression model [4], and;
Log-Rank Test.

the “Risk” and is conventionally assumed to be a linear com-
bination of the features (covariates), i.e., Risk £ ZZV:CI bix;.
The Risk coefficients (b;, for (1 < ¢ < N,.)) are then computed
through a training process based on historical data. More
realistically, the risk can be modeled as a general non-linear
function, i.e., Risk £ f(x), with the non-linearity being
learned via deep learning architectures, which has not yet been
investigated within the Radiomics context.

3. Log-Rank Test [5], which is used for comparing the
survival of two samples specially when these two samples have
undergone different treatments. This test is a non-parametric
hypothesis test assessing whether two survival curves vary
significantly. One limitation associated with the Log-Rank
test is that the size of the groups can influence the results,
therefore, larger number of patients should be included to from
equal sized groups.

Evaluation of HCR: In summary, having a successful hand-
crafted Radiomics pipeline requires an accurate design to
choose the best combination of feature extraction, feature
reduction, and analysis methods. Several studies have tried
to find the most important factor leading to the performance
variation. For instance, the effects of these design choices are
recently investigated in [8] through an analysis of variance,
where it has been shown that, e.g., feature selection can
significantly influence the final accuracy. On the other hand,
References [17], [74] have concluded that the classification
method is the dominant source of performance variation for
head-and-neck and lung cancer classification tasks. The dif-
ference between the concluding remarks of Reference [8] and
References [17], [74] indicates that impact of design choices
may vary from one application to another, one dataset to
another, and from a set of features to another.

Finally, it should be noted that reporting accuracy is not as
informative measure in Radiomics as it is in other multi-media
domains. Because, in medical areas, making mistakes in, for
instance, classifying positive and negative samples are not
equal. Therefore, in Radiomics, measures which are capable of
distinguishing between False Positive (FP) and False Negative
(FN) errors are more favored. Such one measure is the area
under Receiver Operating Characteristic (ROC) curve, which
allows for investigating the impact of different decision thresh-



olds on FP and FN rates. Confusion matrix is another common
and useful technique to report the performance of a Radiomics
classifier in terms of its FP and FN rates. In practice, most of
the decisions in medical areas cannot be made with a complete
certainty, and physicians consider several factors such as harms
and benefits of a specific judgment, when forming thresholds
for their decisions. However, these factors are not quantified
and utilized in Radiomics, which calls for a broad investigation
into potential solutions to incorporate the factors commonly
used by physicians.

D. Radiomics Stability

An important aspect of Radiomics is the stability of the
extracted features, which quantifies the degree of dependency
between features and pre-processing steps. Stability in Ra-
diomics is generally evaluated based on either of the following
two techniques:

1) Test-Retest: In this approach, patients undergo an imag-
ing exam more than once and images are collected
separately. Radiomics features are then extracted from
all the obtained sets and analyzed. Here, being invariant
across different set of images illustrates stability of
Radiomics features.

2) Inter-observer reliability, which is referred to an ex-
periment where multiple observers are asked to delineate
the ROI from the same images, and Radiomics features
are extracted from all different delineations to test their
stability for variation in segmentation [9]. Here, being
invariant across different segmentations illustrates sta-
bility of Radiomics features.

Different stability Criteria are used to find robust features in
Radiomics as briefly outlined below:

1) Intra-class Correlation Coefficient (ICC): One ap-
proach to measure the stability of Radiomics features,
which is used for both the aforementioned categories
(i.e., test-retest and inter-observer setting) is referred to
as the intra-class correlation coefficient (ICC) [5]. The
ICC is defined as a metric of the reliability of features,
taking values between 0 and 1, where 0 means no
reliability and 1 indicates complete reliability. Defining
terms BMS and WMS as mean squares (measure
of variance) between and within subjects, which are
calculated based on a one-way Analysis of variance
(ANOVA), for a test-retest setting, the ICC can be
estimated as
BMS -WMS

BMS+ (N —-1)WMS’

where NN is the number of repeated examinations. By
defining EM S as residual mean squares from a two-
way ANOVA and M as the number of observers, for an
inter-observer setting, the ICC can be calculated as

BMS — EMS
BMS + (M —-1)EMS’
2) Friedman Test: The Friedman test, which is specially

useful for assessing the stability in an inter-observer

1 OCTest—Retesl = (5 )

1 C(C'Inter—Observer = (6)

setting, is a nonparametric repeated measurement that
estimates whether there is a significant difference be-
tween the distribution of multiple observations, and has
the advantage of not requiring a Gaussian population.
Based on this test, the most stable features are the ones
with a stability rank of 1 [5].

In [5], it is declared that Radiomics features with higher
stability have more prognostic performance, therefore, stability
analysis can be interpreted as a feature reduction technique.
According to Reference [9], Laplacian of Gaussian (LoG),
intensity-based, and texture features are more stable for lung
CT images, while wavelet and shape-based features are sensi-
tive to variation in segmentation. However, there are also other
sources of variation (other than the segmentation step), that
can influence the stability of the features, one of which is the
image intensity discretization strategy [72] that has a strong
impact on the texture features, in particular. There are two
main approaches to discretize the medical images. The first
one is to adopt a fixed bin size for all of the images, and the
second one is to use a fixed number of bins. While it is shown
that both approaches lead to texture features that depend on the
intensity resolution, the first method (fixed-sized bins) results
in more stable and comparable features. Nevertheless, texture
analysis requires standardized intensity discretization method,
to serve as a meaningful and reliable Radiomics technique.

Finally, it is worth mentioning that the Image Bio-marker
Standardization Initiative (IBSI) [73] is an international collab-
oration that seeks to provide unique definitions, guidelines, and
Radiomics steps, in response to the reproducibility challenge
of the Radiomics. The provided guideline covers several steps
within the Radiomics pipeline, from image acquisition, pre-
processing and segmentation, to feature calculation. To sum-
marize our finding on HCR and elaborate on its applications,
we have provided an example in Information Post III-E,
where the problem of Radiomics-based lung cancer analysis
is investigated.

E. Radiogenomics

Radiomics is typically combined with Genomic data, of-
ten referred to as Radiogenomics [3]. In other words, Ra-
diogenomics refers to the relationship between the imaging
characteristics of a disease and its gene expression patterns,
gene mutations and other genome-related characteristics. Po-
tential association between imaging outcome and molecular
diagnostic data can serve as a predictor of patient’s response
to the treatments and provide critical support for the decision
making tasks within the clinical care setting. In other words,
Radiogenomics has the potential to investigate the Genomics
of the cancer, without utilizing invasive procedures such as
biopsy. Various association mining and clustering methods are
used to identify the relationships between gene expressions
and Radiomics, e.g., in [3] it was found that just 28 Radiomics
features were able to reconstruct 78% of the global gene
expressions in human liver cancer cells.

To assess the association between gene expression and
discrete classes such as benign and malignant tumors, genes
should be first sorted based on their discriminative ability.



However, the goal of Radiogenomics is to find associations
between gene expression and Radiomics features, therefore,
discriminative ability is indefinable. Spearman’s Rank Cor-
relation Coefficient (SRC) [38] can be used to measure the
correlation between a specific Radiomics feature and gene
expression. Genes are then sorted based on their SRC coeffi-
cient instead of their discriminative ability. The ordered genes
are typically stored in a list L, and to extract meaning from
this list, the traditional approach is to focus on the top and
bottom genes in list L, representing genes with the strongest
positive and negative correlations, respectively. This approach,
however, is subject to several limitations, such as the difficulty
in biological interpretation, which has led to the introduction
of Gene-set Enrichment Analysis (GSEA) [39]. The GSEA
is one of the mostly used Radiogenomics approaches [5],
and is based on the definition of gene sets. Each gene set
S is a group of genes that are similar in terms of the
prior biological knowledge, such as involvement in common

biological pathways. The goal of the GSEA is to find out
whether the members of a given set S tend to occur in the
top or bottom of the list L. In this case, the expression of this
gene set is associated with the specific Radiomics feature. The
result of Radiogenomics analysis using GSEA is a heat map
representing the degree of association between all gene sets
and Radiomics features as shown in Fig. 2.

The main role of Radiogenomics is that it allows imperfect
data sets, where clinical outcomes are difficult to be collected
or require an extended period to be collected, to be leveraged
based on prior knowledge of the relationship between clinical
outcomes and genomics, in order to draw new conclusions. For
example in a research project there may have been imaging
data and genome-related data but no clinical outcomes. If there
is prior knowledge of the relationship of the genomics with
certain clinical outcomes, then by correlating the imaging data
with the genomics, new conclusion can be drawn about the
relationship of the imaging data with the clinical outcomes. In
this scenario genomics can fill the gaps in knowledge.



Information Post II: Radiomics for Lung Cancer Analysis
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Studies have shown that use of computer aided systems can
significantly help with the early diagnosis and detection of
lung cancer and consequently lead to dramatic decrease in lung
cancer-related mortality [64]. For these computer aided systems
to be successful in lung cancer early prognosis, distinguishing
Radiomics features have to be extracted from the CT images,
which are the main detectors of lung cancer. Radiomics can
help with different tasks related to lung cancer such as: (i) Lung
cancer patient survival prediction; (ii) Lung cancer malignancy
prediction; (iii) Forecasting the patient’s response to treatment;
and (iv) Prediction of the stage of the cancer.
As illustrated in the figure above, the first stage in lung cancer
Radiomics pipeline is commonly the segmentation of left and
right lungs, followed by the segmentation of the tumor which
can be performed automatically for tumors with high intensities
located in low intensity backgrounds. However, segmentation can
become problematic when lung tumors are attached to vessels
or walls which makes automatic segmentation fail to generate
reproducible and accurate outcomes. Due to this reason lung
tumor segmentation is still an open problem [2].
The next step after segmenting the tumor, is to extract Ra-
diomics features. Types of features to extract depend on the
problem at hand. For instance, according to [25], intensity
features are highly correlated to lung cancer patient survival,
while shape features are beneficial for lung cancer malignancy
prediction and also forecasting the patient’s response to treat-
ment. More importantly, texture features are reported to be the
most influential ones on lung cancer outcomes [3]. Selected
features will then go through a feature selection process, where
redundant and non-relevant features are excluded. Feature selec-
tion is followed by a statistical analysis step to perform the
aforementioned tasks.
To further elaborate on the use of Radiomics in lung cancer
analysis, we have implemented the Hand-Crafted pipeline on
157 patients, from NSCLC-Radiomics dataset [5]. We grouped
these patients into two categories: Long-term survival, referring
to patients who have survived more then 500 days, and Short
term survival, referring to those who have survived less than 500
days. The following techniques (from possible options described
in Section III) are employed in the proposed pipeline:

1) Segmentation: Manual annotations performed by an ex-

pert are utilized.
2) Radiomics Feature Extraction: 11 first-order (Number
of pixels, ROI size in mm?, Mean gray level, Stan-
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3)
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dard Deviation, Median gray level, Min ROI, Max ROI,
Mean Positive Values, Uniformity, Kurtosis, Skewness)
and 19 second-order Radiomics features (Contrast, Energy,
Correlation, Homogeneity, Entropy, Normalized Entropy,
Variance, Inverse Difference Moment, Sum of Average,
Sum of Variance, Sum of Entropy, Difference of Variance,
Difference of Entropy, Information Measure of Correla-
tion, Autocorrelation, Dissimilarity, Cluster Shade, Cluster
Prominence, Maximum Probability) are extracted from
lung tumors [8].

Feature Reduction: Based on a X2 feature selection test,
among all the extracted features, the surface area and
volume of the tumors are selected as the most correlated
ones to the survival outcome.

Analysis: Following figure illustrates the relation between
survival and the two aforementioned features. As it can
be inferred from this figure, although patients with short-
term survival can be associated with various tumor sizes,
those who have survived longer have smaller tumors in
terms of surface area and volume. In other words, being
small in size seems to be necessary for long-term survival,
however, as so many other factors influence survival, not
all small tumors lead to long survivals. For instance,
the location of the tumor can have noticeable impact
on survival, nevertheless, it can not be assessed based
on hand-crafted Radiomics features, as they are extracted
from the segmented ROI, without taking its location into
account.
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IV. STATE-OF-THE-ART IN DEEP LEARNING-BASED
RADIOMICS

Deep learning-based Radiomics (DLR), sometimes referred
to as “Discovery Radiomics” or “Radiomics Sequence Discov-
ery” with “Sequence” referring to features [66], is the process
of extracting deep features from medical images based on the
specifications of a pre-defined task including but not limited
to disease diagnostics; Cancer type prediction, and; Survival
Prediction. In brief, the DLR can be extracted via different
architectures (stack of linear and non-linear functions), e.g.,
Convolutional Neural Network (CNN) or an Auto-Encoder, to
find the most relevant features from the input [64]. Fig. 3 illus-
trates the schematic of extracting deep features. The extracted
features can then either go through the rest of the deep net for
analysis and making decisions or they may exit the network
and go through a different analyzer such as an SVM or a
Decision Tree (DT). Commonly used deep architectures for
Radiomics will be discussed in details later in Section I'V-C.
Benefits of DLR vs. HCR: An important advantage of DLR
over its hand-crafted counterpart is that the former does
not need any prior knowledge and features can be extracted
in a completely automatic fashion with high level features
extracted from low level ones [64]. Moreover, deep learning
networks can be trained in a simple end-to-end process, and
their performance can be improved systematically as they are
fed with more training samples [60]. Another key benefit of
using DLR instead of HCR is that the input to the deep
networks to extract Radiomics features, can be the raw image
without segmenting the region of interest, which serves the
process in two ways:

(1) Eliminating the segmentation step can significantly re-
duce the computational time and cost by taking the
burden of manual delineation off the experts and radiol-
ogists, besides, manual annotations are highly observer-
dependent, which makes them unreliable sources of
information, and;

Automatic segmentation methods are still highly error
prone and inaccurate to be used in a sensitive decision
making process.

(ii)

Furthermore, the input to a deep network can also be the
combination of the original and segmented image along with
any other pre-processed input such as the gradient image
(referred to as “multi-channel” input), all concatenated along
the third dimension [10]. The variety of input types can even
go further to include images from different angles such as
coronal and axial [59].

Generally speaking, studies on DLR can be categorized
from several aspects including:

(1) Input Hierarchy: The input to the deep net can be the
single slices, the whole volume, or even the whole
examinations associated with a specific patient. Each of
these cases require their own strategy, e.g., in case of
processing the whole volume simultaneously, one should
think of a way to deal with the inconsistent dimension
size, as patients are associated with different number of
slices. One common architecture that allows for utiliza-
tion of inputs with variable sizes, such as various number

of slices, is the Recurrent Neural Network (RNN), which
will be briefly discussed in Section IV-C;

Pre-trained and Raw Models: Depending on the size
of the available dataset and also the allocatable time,
pre-trained models can be fine-tuned or raw models can
be trained from scratch. This will be analyzed more
specifically in Section I'V-B, and;

Deep Learning Network Architectures: Choice of the
deep network is the most important decision one should
make to extract meaningful and practical DLR, which
will be discussed in Section IV-C.

(i)

(iii)

In the reminder of this section, we will review the state-of-
the-art in deep Radiomics from different perspectives such as
input hierarchy, pre-trained vs. raw models, and deep learning
network architectures. Fig. 4 illustrates a taxonomy of different
DLR approaches providing a guide to the rest of this section.

A. Input Hierarchy

As shown in Fig. 5, input images for DLR studies can
be divided into three main categories: Slice-level; Volume-
level, and; Patient-level. Slice-level classification refers to
analyzing and classifying image slices independent from each
other, however, this approach is not informative enough as
we typically need to make decisions based on the labels
assigned to the entire Volume of Interest (VOI). Shortcomings
of slice-level classification leads to another approach referred
to as volume-level classification, where either the slice-level
outputs are fused through a voting system, or the entire image
slices associated with a volume is used as the input to the
classifier. Finally, patient-level classification refers to assigning
a label to a patient based on a series of studies (such as CT
imaging follow-ups). For example, in Reference [58], patient-
level classification is explored with the goal of estimating the
probability of lung tumor malignancy based on a set of CT
studies. To achieve this goal, initially, a simple three layer
CNN is trained to extract DLR from tumor patches associated
with individual CT series (volume-level classification) with the
objective of minimizing the difference between the predicted
malignancy rate and the actual rate. Then, by adopting a
previously trained CNN, the malignancy rate is calculated for
all the series belonging to the patient and the final decision
is made by selecting the maximum malignancy rate. In other
words, a patient is diagnosed with malignant lung cancer if at
least one of the predicted rates is above a pre-determined rate
for malignancy.

B. Pre-trained or Raw Models

Similar to the other medical areas, the DLR can be extracted
based on either of the following two approaches:

Training from scratch: Training a deep network from scratch
for extracting DLR has the advantage of having a network
completely adjusted to the specific problem at hand. However,
performance of training from scratch could be limited due to
couple of key issues, i.e., over-fitting and class imbalance.
Adhering to patients’ privacy and need for experts to provide
ground truth typically limits the amount of medical datasets
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Fig. 3: Extracting deep Radiomics. The input to the network can be the original image, the segmented ROI, or the combination of both.
Extracted Radiomics features are either utilized through the rest of the network, or an external model is used to make the decision based on

Radiomics.

available for extracting DLR resulting in over-fitting of the
deep nets. The second issue is the problem of class imbalance,
i.e., unequal number of positive and negative classes. This
happens as number of patients diagnosed with abnormalities is
commonly less that the amount of data available from healthy
subjects. More specifically, class imbalance in medical areas is
due to the fact that typically number of positive labels is less

than the number of negative ones, making the classifier biased
toward the negative class, which is more harmful than the other
way around because, for instance, classifying a cancerous
patient (positive label) as healthy (negative label) has worse
consequences than classifying a healthy patient as cancerous
[11]. The following strategies can be adopted to address these
two issues:
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Fig. 4: Taxonomy of Deep Learning-based Radiomics (DLR).

Slice 2
Shice-level @
A,
1
Volume-level ‘ m o
Volume k

Patient-level Patient 1

Fig. 5: Input hierarchy for one patient. In the top row the slice-level input is shown where the patients went through K examination visits
during each of which N (i), for (1 < ¢ < K), number of slices is captured. The second row shows the volume-level where all slices associated
with one visit is provided simultaneously as the input to the network. Finally, the third row shows the Patient-level analysis, where a single
input consisting of all the volumes is provided.

(1) Data Augmentation, where different spatial deformations this approach is adopted in [44] for spinal abnormality

(such as rotation [41]) are applied to the existing data in
order to generate new samples for training purposes. Sub-
patch Expansion [10] is another form of augmentation
commonly adopted in Radiomics to handle the inadequate
data situation via extracting several random fixed-sized
sub-patches from the original images.

(iii) Multitask training is another method introduced to han-

dle class imbalance and inadequate data [20], which is
achieved by decreasing the number of free parameters
and consequently the risk of over-fitting. For instance,

classification based on MRIs through training a multitask
CNN. Multitask in this context refers to performing
different classification tasks simultaneously via the same
unified network (e.g., the network tries to classify disk
grading and disk narrowing at the same time). The loss
function is defined as the weighted summation of all
the losses associated with different tasks. One important
decision to make in multitask learning is the point that
branching begins, e.g., in Reference [44], a unified CNN
is trained, where all Convolutional layers are shared for



performing different tasks and tasks are separated from
the point that fully connected layers begin.

(iv) Loss function modification: Another common approach
specific to handling class imbalance for DLR extraction
is to modify the loss functions by giving more weight to
the minority class [44].

Transfer Learning via a Pre-trained Network: A different
solution to class imbalance and inadequate training data is
“transfer learning” followed by “fine tuning” [10], [20], [42].
The transfer learning phase refers to training the deep net using
a natural image data set, and then in the fine tuning phase, the
trained network will be re-trained using the desired medical
dataset. This strategy is adopted in Reference [42], where a
pre-trained CNN is used for breast cancer classification based
on mammographic images. The pre-trained CNN used is an
Alexnet which is too complicated and prone to over-fitting for
small datasets. Therefore, this network is first pre-trained using
ImageNet database which consists of more than one million
natural images. Pre-trained CNN based on ImageNet is also
adopted in [46] for lung cancer survival prediction.

C. Deep Learning Architectures in Radiomics

Radiomics features can be extracted through both discrimi-
native and/or generative deep learning networks. As is evident
from its name, discriminative deep models try to extract
features that make the classes (e.g., normal or cancerous)
distinguishable, and thus these models can directly classify
instances from the extracted features. On the other hand,
generative models are unsupervised, meaning that they are
trained without considering the class labels. Generally, the goal
of these models is to learn the data distribution in a way that
enables them to generate new data from the same distribution.
In other words, generative models can extract the natural and
representative features of the data, which can then be used as
inputs to a classifier. Furthermore, in the field of Radiomics, it
is common [60] to train a generative model and use the learned
weights as initial weights of a discriminative model. Below,
an introduction to widely used discriminative and generative
deep models in Radiomics is provided.

1. Discriminative Models: Deep discriminative models try
to extract features capable of distinguishing class labels, and
the objective is to minimize the prediction error. Below,
we will review the Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), which are the most
popular discriminative architectures in Radiomics. Later, we
will introduce a recently designed deep architecture referred
to as the Capsule network (CapsNet) [36] and explain how
this new architecture can contribute to the Radiomics.

1.1. Convolutional Neural Networks (CNNs): CNN is a stack
of layers performing Convolutional filtering combined with
nonlinear activation functions and pooling layers [20]. The
fact that CNNs have recently resulted in promising outcomes
have made them the mostly used architecture in medical areas
including Radiomics. CNNs are more practical in the sense
that shared weights are utilized over the entire input, which

reduces the number of trainable parameters. Unlike extracting
hand-crafted features, kernels used in Convolutional layers are
not pre-determined and are automatically learned through the
training process. This property makes CNNs suitable methods
for extracting DLR features as they are flexible and can be
applied without requiring a prior knowledge. In [55], it has
been shown that the DLR extracted from a CNN can visually
distinguish benign and malignant lung tumors when projected
into a 2D space, while the original pixel values completely
fail to provide such distinction.

When adopting CNNs in the field of Radiomics, output of
the fully connected layers is typically treated as DLR features.
These features are then either used within the original CNN
to provide the desired (classification and/or regression) output
such as cancer type, or exist the network to be provided as the
input to the rest of the Radiomics pipeline. As an example, in
Reference [46] DLR are extracted from the layer just before
the classification (SoftMax) layer of the CNN with the goal
of lung cancer survival prediction. These features are referred
to as the “preReLU” and “postReLU” features as they are
extracted both before and after applying the ReLU activation
function. The DLR features are then used as inputs to four
classifiers (i.e., Naive Bayes, Nearest Neighbor, Decision tree
and Random Forest) after going through a feature selection
algorithm.

The CNN architectures used in Radiomics can be divided
into three main categories: (i) Standard architectures; (ii)
Self-designed architectures, and; (iii) Multiple CNNs. Below,
we describe each of these categories with examples from
Radiomics:

1.1.1. Standard CNN Architectures: As the name suggests,
standard architectures are those that have been previously
designed to solve a specific problem, and due to their
success are now being adopted in the Radiomics. Two
of such architectures that have been used in Radiomics
are LeNet and AlexNet. The LeNet is one of the sim-
plest CNN architectures, having a total of 7 layers, that
has been used in Radiomics. However, researchers have
some times modified this network to achieve higher
performance, e.g., the CNN used in Reference [10] is
a LeNet architecture with a total of 9 layers including
3 Convolutional layers, 3 pooling layers and one fully
connected layer followed by the classification layer to
classify lung tumors as either benign or malignant.

Another commonly used standard architecture in Ra-
diomics is the 11 layers CNN called Alexnet, which has
been adopted in [42] to extract DLR features from breast
mammographic images. Features are extracted from all 11
layers and used as inputs to 11 support vector machine
(SVM) with the goal of classifying breast tumors as either
benign or malignant. Since it is not obvious which set
(output of which of the 11 underlying layers) of DLR
features are more practical, these SVMs are compared
and the one with the largest area under the curve is chosen
for predictive analysis of breast cancer. The results of [42]
concluded that the features extracted from the 9™ layer
(a fully connected layer before the last fully connected



layer and the classification layer) are the best predictors of
breast cancer and they are of lower dimension compared
to previous ones, which reduces the computational cost.
In other words and in contrary to [46], the output of the
last Convolutional layer, right before the fully connected
layer, is selected as the DLR features.

Although AlexNet is a powerful network, it has too many
parameters for small datasets and is, therefore, prone
to over-fitting. As a result, Reference [15] has used an
Alexnet with number of layers reduced to 5 in order to
avoid the over-fitting problem. The input to this network
is a combination of CT and PET images, each having
3 channels: One slice corresponding to the center of
the lung nodule, specified by an expert, and the two
immediate neighbors. The goal of this article is to classify
lung tumors as benign or malignant, and although it
has been shown that the adopted CNN does not result
in significantly higher accuracy than classical methods
(HCR), it is more convenient as it does not require the
segmented ROL

Inception network [75], [77] is another CNN adopted in
Radiomics. This network involves parallel convolutions
with different kernel sizes, and poolings within the same
layer, with the overall aim of allowing the network to
learn the best weights and select the most useful features.
The Inception CNN is used in [76], for the detection
of diabetic retinopathy. This paper is the first work on
deep learning-based detection of diabetic retinopathy that
has been approved by the Food and Drug Administration
(FDA).

. Self-designed CNNs: As opposed to researchers that have

used standard CNNs with or without modifications, some
have designed their own architectures based on the spec-
ification of the Radiomics problem at hand. For example,
Reference [41] has used a CNN with three Convolutional
layers to extract DLR features, and although the CNN
itself is trained to use these features for classifying benign
and malignant tumors, they are used as inputs to a binary
decision tree.

In a similar fashion, Reference [43] has used a CNN
with 6 Convolutional layers and one fully connected
layer for DLR extraction in the problem of brain tumor
classification. The designed network, however, is different
from previously mentioned articles as it is developed for
tumor segmentation, and features are extracted from the
last Convolutional layer since they are more robust to
shifting and scaling of the input. In other words, the
CNN was designed for segmentation and once trained, the
output of the last Convolutional layer is used as the DLR
features. The claim here is that the quality of extracted
features depends on the accuracy of segmentation, and
when segmentation is precise the quality of Radiomics
features is guaranteed. Due to the high importance of
the segmentation, more advanced and efficient CNN
architectures have been developed, one of which is the
Fully Convolutional Neural Network (FCNN) [23]. In
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an FCNN, fully connected layers are rewritten as con-
volutional layers, having the advantage of not requiring
fixed-sized inputs. This network is also extended to 3D
image segmentation, to segment multiple targets at once.
To decrease the false positive rate, FCNN is further
combined with graphical models such as Markov Random
Fields (MRFs) and Conditional Random Fields (CRFs).
Finally, to improve the resolution of the output, U-
Nets [67] are proposed, which include up-convolutions to
increase the image size, and skip-connections to recover
spatial information.

Lung cancer detection using CNNs is also investigated
in [47], with the difference that the input to the network is
not only the original image but also the nodule-enhanced
and vessel-enhanced images, stating that providing the
network with more information on tumor and vessels
reduces the risk of misplacing these two by the network.
The main focus here is to reduce the false positive rate
while keeping the sensitivity high, therefore, a significant
number of nodule candidates are selected at the begin-
ning. Use of CNNs is further investigated in [45], where
a 7 layer architecture is fed with down-sampled volu-
metric CT images along with their segmentation masks
for longevity prediction. In [48] an architecture called
XmasNet is provided that can maximize the accuracy
of prostate cancer diagnosis. This network consists of 4
Convolutional layers, 2 fully connected layers, 2 pooling
layers and one SoftMax layer for cancer prediction. The
inputs to this network are 3D MRI images.

In summary, self-designed CNNs are developed by vary-
ing the depth of the network (number of the Convolu-
tional and non-Convolutional layers); the order the layers
are cascaded one after another; the type of the input to the
network (e.g., single channel or different form of multi-
channel), and/or; the layer whose output is treated as the
DLR features.

1.1.3. Multiple CNNs: Beside using single standard or self-

designed CNNs, some researchers have proposed to use
multiple networks, which has the advantage of benefiting
from multiple inputs, having various modalities, scales
and angles as shown in Fig. 6, or different architectures
with different properties.

“Scale” is a significant factor to consider when designing
the input structure. For example to distinguish tumors
from vessels, a large enough region should be included
in the input patch, while to differentiate between solid
and non-slid tumors, the nodule region should be the
main core of the patch. Having this in mind, Refer-
ence [59] has designed a CNN architecture for lung tumor
classification, where inputs are patches not only from
different angles (sagittal, coronal, and axial) but also in
different scales. Following a similar path, Reference [50]
has also designed a multiple CNN architecture, where
each CNN takes a lung tumor patch at a specific scale
(illustrated in Fig. 6) as input and generates the associated
DLR features. Features extracted from all the CNNs are
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Fig. 6: Different angles of lung CT scan along with tumor crops in
three different scales.

then concatenated and used for lung tumor malignancy
prediction through a conventional classifier (SVM). The
idea here is that segmenting the tumor regions is not
always feasible. Furthermore using a tumor patch pro-
vides information on not only the tumor itself but also
the surrounding tissues, and since tumor sizes can vary
significantly among patients, using multi-scale patches
instead of the single ones will improve the overall per-
formance of the extracted DLR features. An interesting
property of such multiple CNN architecture is that since
the constituent CNNs share parameters, training can be
performed in a reasonable time. Another benefit of using
a multiple CNN architecture is that the network becomes
robust to addition of small noise to the input.

Similar to the work in [50], Reference [56] has designed
a CNN called “Multi-view CNN”, which uses 7 patches
at different scales as inputs, with the difference that these
patches are resized to have the same dimension, and
therefore, a single CNN can be used instead of multiple
CNNs. This work has also extended the binary lung
tumor classification to a ternary classification to classify
lung tumors as benign, primary malignant, and metastatic
malignant. Furthermore, this article has adopted another
validation approach called “separability” besides the com-
mon terms such as accuracy and AUC (area under curve).
Separability refers to the extend that different classes
are distinguishable based on the learned features, and
according to the aforementioned article, the proposed
multi-view CNN has a higher Separability compared to
a single scale CNN. In addition to that, as the layers go
deeper, features with higher separability are learned.

The idea of using multi-scale image patches is further ex-
panded in Reference [55] through designing a novel CNN
architecture called “Multi-crop CNN”, where instead of
taking inputs in various scales, multi-scale features are
extracted through parallel pooling layers, one of which
applies pooling to a cropped version of the input from
the previous layer. Features from multiple pooling layers
are then concatenated and fed to the next layer. 3D lung
CT images are inputs to this network, and since multiple
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CNNs are replaced with one single CNN, the training
can be performed in a more time effective manner. Beside
forecasting the lung tumor malignancy, this work has also
predicted other attributes associated with tumor such as
diameter, by replacing the final SoftMax layer with a
regression one. It is worth mentioning that this network
is not performing all the assigned tasks simultaneously.
Instead they are performed one after another, which
distinguishes this network from a multitask training one
discussed in section IV-B.

Radiomics through multiple CNNs is further explored
recently in [51] for Alzheimer’s disease diagnosis using
MRI, where in the first stage several landmarks are
detected based on the comparison between normal and
abnormal brains. These landmarks are then used to extract
patches (separately around each individual landmark),
and consequently each CNN is trained taking patches
corresponding to a specific landmark position as input.
Final decision is made based on a majority voting among
all the CNNs. Here, the idea behind using a multiple
architecture is the fact that detecting Alzheimer’s disease
requires the examination of different regions of the brain.

In summary, multiple CNNs methods developed for DLR
feature extraction are designed by either fusing the out-
puts of several CNNs which are trained based on a
specific input, or multi-path layers are embedded within a
single network to modify the output from previous layers
differently.

One challenge shared among all the aforementioned CNN
architectures is that they do not take the spatial information
between objects into account. As an example, they may fail
to consider the location of abnormality within the tissue as
an indicator of its type. The newly proposed deep architecture
called CapsNets, described next, is introduced to overcome
this drawback.

1.2. Capsule Networks: Although CNNs are the state of the
art in many medical and non-medical classification problems,
they are subjected to several drawbacks including their low
explainability and their negligence in preserving the spatial
relationships between elements of the image leading to miss-
classification. Besides, CNNs have low robustness to some
types of transformation. Loss of spatial relation information,
which is associated with the pooling layers, is resolved by the
newly proposed Capsule networks (CapsNets) [36] consisting
of both convolutional and capsule layers that can handle more
types of transformation. These deep architectures have the
ability to consider the relationships between the location of
objects and tolerate more types of transformation, through
their routing by agreement process, which dictates that an
object will not be classified as a specific category unless the
lower level elements of this object agree on the existence of
that category. Another important property of CapsNets is that
they can handle smaller datasets, which is typically the case
in most medical areas. Here we explain the architecture of
Capsule networks, as illustrated in Fig. 7, and their routing by
agreement process.
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Fig. 7: Capsule network architecture. A convolutional layer is used to form the primary capsules, and the decision is made based on the

agreement among these capsules.

Capsules are group of neurons whose activity vectors consist
of various instantiation parameters, and the length of the
activity vectors represent the probability of a specific instance
being present. Each Capsule in the primary capsules layer
tries to predict the outcome of all the capsules in the next
layer (parent capsules), however, these predictions are sent
to the next layer with different coefficients, which is based
on how much the actual output agrees with the prediction.
This process of looking for agreement between capsules before
coupling them is called routing by agreement and it is the most
important property of capsule networks, making them consider
spatial relations among objects, therefore, being robust to
several types of transformations such as affine transformation
and rotation. Defining u; as the output of capsule 7 in the
primary capsules layers, the prediction for capsule j, w;; is
calculated as follows, where W;; is the weight matrix to be
learned in back propagation

Consequently C};, the coupling coefficient of capsules i and
j, is calculated based on the degree of conformation between
these two capsules, based on the idea that if two vectors agree
they will have a bigger inner product, and the output of parent
capsule j, s;, is estimated as follows

S; = C’ijujh-. (8)

Finally, a non-linear function is applied to s; to always keep its
length equal or smaller than one as this length should represent
probability of an object being present.

Below we further investigate the initial utilization of Cap-
sNets in Radiomics [37], for the first time. In [37] we have
explored various CapsNet architectures to select the one that
maximizes the prediction accuracy resulting in a network that
has fewer convolutional filters (64 filters) compared to the
original Capsule network which has 256 filters. This archi-
tecture consisting of one convolutional, one primary capsule,
and a classification layer results in 86.56% accuracy.

Furthermore, separate networks are trained based on two
types of inputs: the original brain images and the segmented

tumor regions, observing that CapsNet performs better when
being fed with tumor masks, probably because the brain
images have miscellanies backgrounds, distracting the network
from extracting important distinguishing features. Neverthe-
less, Capsule network is of higher accuracy for both of the
input types compared to the CNN, which has 78% accuracy
for tumor images. Several factors may have enabled the
CapsNet to provide a better performance including its ability
to handle small datasets, and being robust to transformations
and rotations, resulted from the routing by agreement process.

1.3. Recurrent Neural Networks: Most of the deep network
architectures need fixed-sized inputs, which makes them inef-
fective for Radiomics analysis of volumetric images (volume-
level classification), i.e., when the whole volume is needed to
be processed at once (such as tumor classification based on
the 3D volume). In these scenarios, the RNNs can be adopted
as they are capable of processing sequential data such as CT
or MR slices, and they take both the present image slice and
result of processing the previous ones as inputs. RNNs are also
useful to monitor the medical images resulted from follow-up
examinations (patient-level classification).

Since RNNs are associated with the vanishing gradient
problem, a new type called long-short-term-memory (LSTM)
is proposed which has the ability to decide what to store
and what to forget. Although it seems that RNNs and LSTM
are computationally more expensive than other architectures,
their training time and cost is greatly reduced by using the
same weights over the whole network [20]. Use of LSTMs
is explored in Reference [61] for prostate cancer benign and
malignant classification based on sequences of ultrasound
images, where it has been shown that the predictive accuracy
of this sequential classification is higher than making decision
based on independent single images.

This completes the overview of deep discriminative models
with application to Radiomics. Next, we briefly review the
generative models.

2. Generative Models: The objective of most of the deep
generative models is to learn abstract yet rich features from
the data distribution in order to generate new samples from



the same distribution. What makes these models practical in
Radiomics is the fact that the learned features are probably the
best descriptors of the data, and thus have the potential to serve
as Radiomics features and contribute to a consequent tasks
such as tumor classification. Auto-encoder networks, deep
belief networks, and deep Boltzmann machines are among the
deep generative models that have been utilized in Radiomics
works as outlined below:

2.1. Auto-Encoder Networks: An auto-encoder network con-
sists of two main components: An encoder which takes
as input Vg medical images denoted by f @ for 1<i<
Ny), and converts each into a latent space ¢(Wf(7") +b),
i.e., Radiomics features. The second component, the
decoder, takes the latent space and tries to reconstruct
the input image with the objective of minimizing the dif-
ference between the original input and the reconstructed
one (WP (W f() 4 b) + c) [64] given by

Vglibnci o (W7o (Wr®D+b) +¢) = rOll, ©)
=1

where ¢(-) is the network’s activation function; W de-
notes the weight matrix of the network used by both the
encoder and the decoder; Term b denotes the encoder’s
bias vector; c is the decoder’s bias vector, and; superscript
T denotes the transpose operator. The reason that the
encoded variables can be treated as Radiomics features
is that they are the most important representatives of the
input image that can be used to reproduce it. Although an
auto-encoder can be trained completely in an end-to-end
manner, to begin training with good initial weights and
thus avoid the vanishing gradient problem, one can first
train layers one by one, and use the obtained weights
as the auto-encoder starting point [20]. Depending on
the application, Auto-encoders have several extensions
including:

2.1.1. Denoising Auto-Encoders (DAEs): To make auto-
encoders capture more robust features of the input,
one common strategy is to add some noise to the
input. This kind of auto-encoder is called a denois-
ing auto-encoder (DAE) [20]. Reference [57] has
adopted DAE for extracting Radiomics features that
are fed to an SVM to classify lung tumors as benign
or malignant. Reference [10] has also adopted a five
layer denoising auto-encoder which takes the cor-
rupted lung images as inputs and tries to recover the
original image. In particular, 400 Features extracted
by the encoder part of this network are treated as
Radiomics to train another neural network for lung
cancer classification (identify the type of the tumor
such as benign or malignant).

. Convolutional Auto-Encoders (CAEs): This type
of auto-encoders are specially useful for Radiomics
(image type inputs) as the spatial correlations are
taken into account. In these networks, nodes share
weights in a local neighborhood [20]. A CAE with
5 Convolutional layer is adopted in Reference [11]
for lung cancer diagnosis (identify the presence of
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cancer).

There are two common strategies to leverage Auto-
encoders in Radiomics:

— The first and most frequent approach is to directly
use the extracted features to train a classifier. For
instance, [64] has extracted Radiomics features using
a 5 layer auto-encoder, which receives the segmented
region of interest as the input. These features go
through a binary decision tree in the next step
to produce the output which is the classified lung
nodule in this case.

— Auto-encoders can also serve as a pre-training stage
to make the network extract representative features
before trying to perform the actual classification.
For instance, Reference [60] has first trained a DAE
based on resized (down-sampled images to facilitate
training) lung CT patches. In the next stage, a classi-
fication layer is added to the network and the whole
network is re-trained taking both resized images and
the resizing ratio as inputs.

2.2. Deep Belief Networks (DBNs): DBNs are stack of
Restricted Boltzmann Machines (RBMs) on top of each
other where the RBM is an unsupervised two layer
stochastic neural network that can model probabilistic
dependencies with the objective of minimizing the re-
construction error. More importantly RBM is a bipartite
graph allowing value propagation in both directions. Al-
though DBNs are composition of RBMs, only the top two
layers have undirected relations. DBNs are first trained
in a greedy fashion meaning that RBM sub-networks are
trained individually followed by a fine-tuning phase [20].
In Reference [10], a DBN consisting of 4 hidden layers is
designed with the goal of extracting the DLR from the top
layer which has 1600 nodes. This last layer is connected
to an external neural network to classify lung nodules.
Besides, to have multi-channel input (original image,
segmented tumor, and gradient image), these channels are
concatenated vector wise before being fed to the network.

2.3. Deep Boltzmann Machine (DBMs): DBMs are also
based on RBMs, but they differ from DBNs in the sense
that DBMs include undirected relations between all layers
which makes them computationally ineffective, though
they are trained in a layer wise manner [20]. Due to
the two-way relations, however, RBMs can capture com-
plicated patterns from the data [34]. DBMs are adopted
in [34] for Alzheimers disease diagnosis. In this work, a
classification layer is added to the last layer of the DBM
allowing to extract not only hierarchical (generative) but
also discriminative features.

This completes an overview of different deep discriminative

and generative models used within the Radiomics workflow.

Next, we consider a critical drawback of such architectures,

i.e., acting as a black-box.

D. Explainability of Deep Learning-based Radiomics

Explainability of deep networks refers to revealing an
insight of what has made the model to come into a specific



decision, helping with not only improving the model by know-
ing what exactly is going on in the network, but also detecting
the failure points of the model. No matter how powerful DLR
are, they will not be utilized by physicians, unless they can
be interpreted and related to the image landmarks used by
the experts. Besides, not even a single mistake is allowed in
medical decisions as it may lead to a irreparable loss or injury,
and having an explanation of the logic behind the outcome
of the deep net is the key to prevent such disasters. This
subsection will present an overview on recently developed
techniques to increase the explainability of deep Radiomics.

One simple approach to ensure the accuracy of the au-
tomatic prediction, is to double-check the results with an
expert. For instance, Reference [45], which has used a CNN
for longevity prediction using CT images, has reviewed the
outcomes with experts leading to the fact that people pre-
dicted with longer lives are indeed healthier. However, this
approach is time consuming and needs complete supervision
and investigation, which is in conflict with the concept of
automatizing and personalized treatment, which is the whole
point of Radiomics. Therefore, nowadays several criteria are
being presented to reduce the time and complexity of ex-
plaining deep Radiomics. One of these approaches is “feature
visualization” which tries to gain knowledge on the network
behavior by visualizing what kinds of features the network is
looking for. This technique can be applied to different layers
of the model. For example, to visualize the first layer features,
the associated filters are applied to the input and the resulting
feature maps are presented. However, as the last layer is the
most responsible one in the network’s output, paying attention
to the features learned in this layer is more informative. For
instance, Reference [10] has visualized the final weights of
a DBN, showing that the network is looking for meaningful
features such as curvity. Nevertheless, these features are not
as meaningful as they are for simple image recognition tasks
as clinicians themselves are sometimes unsure about the dis-
tinctive properties of the images.

One other method to provide the user with an explanation on
the decision made by a deep architecture is called “sensitivity
analysis” referring to generating a heat-map highlighting the
image regions responsible for the output [44]. In the heat-map,
the brighter areas are the ones that have influenced the predic-
tion. This can be achieved by determining and measuring the
effect of changing each individual input pixel on the output. In
a CNN this effect can be estimated by determining the weight
associated with each input pixel through back propagation.
This approach can discover the cause for the prediction [44],
however, the drawback of this approach is that not all the
detected pixels through the heat-map are necessarily the ones
leading to the specific decision, and besides, as the depth and
complexity of the deep net increases, it becomes more difficult
to measure the contribution of each individual pixel on the
output.

A third proposed approach to understand the learned fea-
tures is to project the high-dimensional feature space from the
deep network to a bi-dimensional plane. Reference [59] has
adopted this strategy by using t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) algorithm to visualize the features
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learned by a CNN for lung tumor classification. The resulted
plane presents clearly defined clusters of lung tumors, which
shows that the networks has successfully learned discriminat-
ing features. However, although this method can verify the
accuracy of the network, it does not provide information on
the exact reason behind making the decision.

The interpretability of meaningless weights is improved in
the newly proposed Capsule networks through reconstructing
the input image based on the features learned by the network.
CapsNet includes a set of fully connected layers that take the
final calculated features, based on which the final classification
is made, as inputs, and reproduce the original image with the
objective of minimizing the difference between the original
and the reconstructed image. This objective function is added
to the classification loss with a smaller weight not to distract
network from extracting discriminative features. If the trained
CapsNets is not only of high accuracy but also capable
of resembling the input image, it has been successful in
extracting representative features. Besides, visualizing these
features provides insight on the explainability of the model.
Interestingly, CapsNets are equipped with a powerful feature
visualization technique through their input reconstruction part,
which works as follows:

1. If CapsNet is in the training phase, the feature vector
associated with the true class label is selected, otherwise,
the one with the higher probability is used.

2. The selected feature vector is tweaked, meaning that
small numbers are added to or subtracted from the
feature values leading to a slightly changed new feature
vector.

3 The new feature vector is fed to the reconstruction
part and the input image is reproduced. However this
reconstructed image is not supposed to exactly resemble
the input image as it is generated using the tweaked
features not the actual ones learned by the network.

4. By repeating the process of tweaking and reconstruct-
ing process over and over again, one can understand
what features are learned by observing the influence of
changing them on the generated images.

This strategy is adopted for explaining the output of a CapsNet
trained to classify brain tumors, where it is shown that the
network is probably making the decision based on features
such as size and deformation. Fig. 8 shows the reconstructed
brain tumor images based on tweaked feature vectors helping
to gain insight on the nature of features.

This completes our discussion on deep learning-based Ra-
diomics. Next, we consider hybrid solutions in which hand-
crafted and deep Radiomics are jointly used.

V. HYBRID SOLUTIONS TO RADIOMICS

To summarize our findings on HCR and DLR features,
tables VII(a) and (b) provide different comparisons between
these two categories from various perspectives. Fig. 9 shows
the number of publications in four distinct applications of
Radiomics, based on either hand-crafted or deep learning
techniques. As it can be inferred from this figure, although
deep learning techniques are much newer methods, compared
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Fig. 8: Effect of tweaking the final feature vector on the reconstructed brain tumor image. Each row corresponds to a single feature which

is tweaked 11 times.

TABLE VII: A Comparison between hand-Crafted and Deep Radiomics.

Hand-Crafted Radiomics (HCR)
Needs a prior knowledge on types of features to extract.

Features are typically extracted from the segmented ROI.
It is generally followed by a feature selection algorithm.

As features are defined independent from the data, does not require
big datasets.

Processing time is not normally significant.

Since features are pre-designed, they are tangible.
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Fig. 9: Differences between the popularity of Hand-crafted and Deep
learning-based Radiomics in four distinct applications, based on data
from Google Scholar.

to hand-crafted ones, these two techniques are on a par with
each other, in tumor classification and detection. However, the
number of publications on deep learning methods is relatively
less than the number of publications on hand-crafted methods,
in survival and recurrence prediction, possibly because the
domain knowledge, which is not accessible in deep learning-
based Radiomics, is more important in survival and recurrence
prediction. This calls for techniques that can utilize both
the advantages of deep learning (not requiring segmentation,
feature selection, and human intervention), and the domain
knowledge available in hand-crafted approaches. Furthermore,
in scenarios where neither of the above two mentioned cate-
gories are capable of providing informative Radiomics features

Deep Radiomics (DLR)
Can learn features on its own and without human intervention.

does not necessarily require a segmented input.
Feature selection is rarely performed.

Requires huge datasets, since it has to learn features from the data.

Can have high computational cost depending on the architecture
and size of the dataset.

The logic behind the features and decisions is still a black box.

with high predictive capacity, one can resort to hybrid strate-
gies. Here, potential hybrid solutions to Radiomics [65] are
reviewed from different points of view including combination
of Radiomics with other data sources and combination of HCR
and DLR features.

A. Combination of Radiomics and Other Data Sources

Physicians, normally, do not rely on a single input for their
diagnosis of diseases and disorders. To come into a conclusive
decision, inputs from different sources are compared and com-
bined including Radiomics (image bio-markers from different
imaging modalities); Blood bio-markers; Clinical outcomes;
Pathology, and; Genomics results [1]. In Information Post I,
we have provided an overview of various Radiomics’ imaging
modalities and data sources which are typically combined with
Radiomics features. Below, we discuss two different ways
to fuse/combine Radiomics with other available resources of
information along with the rationales and potentials behind
such combinations:

i. Extracting Radiomics from Different Imaging Modal-
ities: As stated previously, Radiomics can be extracted
from different imaging modalities each of which can only
capture/provide particular information on tissues’ proper-
ties. For instance, although the CT scan is among the most
common and informative imaging modalities allowing to
observe the body internal organs, the CT can not provide
information on body function and metabolism. This type
of information is available through PET scan, which calls
for studying the effect of combining Radiomics extracted
from different modalities. For example, in [4] Radiomics
features are extracted from both CT and PET images,



and the concatenated feature vector is fed to a classifier
for lung cancer survival prediction, resulting in a higher
accuracy compared to each modality separately.

Combining different imaging modalities is also tested on
brain tumor classification in [43]. Since MRI can output
different images varying mostly in terms of their contrast
and relaxation parameters, these images can be fused
to provide complementary information. Based on [43],
extracting Radiomics from this combination of MRIs
outperforms the single modal classifier for brain tumor
classification.

ii. Integration of Extracted Radiomics with Other Data

Sources: Radiomics features are combined with other
resources only after the extraction process. The best
descriptive or predictive models in the field of Radiomics
are the ones that utilize not only imaging bio-markers,
but also other information such as Genomics patterns and
tumor histology [3]. In [5], it is reported that combining
Radiomics features with lung cancer staging information,
which is obtained based on the tumor location and dis-
persion, can improve the prognostic performance of Ra-
diomics alone or staging alone. In other words, Radiomics
can provide a complementary information for lung cancer
prognosis [2]. It is also shown that combining Radiomics
with other prognostic markers in head-and-neck cancer
leads to a more inclusive decision. Combining Radiomics
with clinical data is further investigated in [49] for brain
cancer survival prediction. The interesting output of this
work is a nomogram based on both Radiomics and
clinical risk factors such as age that can be used to
visually calculate survival probability. Developing such a
nomogram is further investigated in references [40] and
[63] for prediction of Hepatitis B virus and lymph node
metastasis, respectively.
In brief, the first step to build a Radiomics-based nomo-
gram, is calculating a linear combination of selected
Radiomics features based on a logistic regression, which
results in a Radiomics score to exploit further for the
desired prediction task. Consequently, by training a mul-
tivariate logistic regression, Radiomics score is fused
with other influential factors to make the final predic-
tion. Fig. 10 presents the nomogram introduced in [63]
along with an example illustrating how the lymph node
metastasis prediction is made.

Reference [65] has adopted a fusion approach based on
both Radiomics and Genomics bio-markers for predicting
the recurrence risk of lung cancer. In this study, 35
hand-crafted features are extracted from segmented lung
CT images and reduced to 8 after a feature selection
phase. These features are then used to train a Naive
Bayesian network. The same classifier is also trained
using two Genomics bio-markers, and the outputs of two
classifiers are fused through a simple averaging strategy.
Results demonstrate that the combination of classifiers
not only leads to higher prediction accuracy compared
to individual ones, but also resembles the Kaplan-Meier
plot of survival more precisely.
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B. Fusion of HCR with DLR (i.e., Engineered Features Cou-
pled with Deep Features)

As mentioned in Table VII, engineered (hand-crafted) and
deep Radiomics both have their own advantages and disadvan-
tages. As a result, combining these features has the promise
of benefiting from both domains and incorporating different
types of features [47] potentially results in significantly im-
proved performance. As shown in Fig. 11, the following two
categories of data fusion have been used in Radiomics most
recently:

1. Decision-level Fusion: One common approach to combine
HCR with DLR is to first use them separately to train separate
classifiers and then adopt a kind of voting between the outputs
to make the final decision. The voting or fusion approaches in
Radiomics include:

(i) Soft Voting, which is combining the probability outputs,
for instance, through a simple averaging. Soft voting
is adopted in [42], where two individual SVMs are
trained on hand-crafted and deep Radiomics features
(extracted using a pre-trained CNN), and consequently
breast cancer prediction is performed based on aver-
aging the output probabilities. Results of this article
shows that the combined features are associated with
higher prediction accuracy. Fusion of separately trained
classifiers through soft-voting based on deep and hand-
crafted Radiomics is also examined in [52] for breast
cancer classification, where it has been shown that the
combined SVM model outperforms individual classifiers
in term of accuracy for mammogram, ultrasound, and
MRI images.

(i) Hard Voting, which is combining outputs, for example,
through a majority vote.

(iii) Adaptive Voting, where a weight of importance for each
model (HCR and DLR) is learned for example using a
separate neural network. In Reference [53], a different
kind of voting is adopted for lung cancer classification.
This voting is based on the idea that not all the classifiers
contribute equally to the final decision, and contribution
weights are parameters that should be optimized through
a learning process. The aforementioned article has first
trained a CNN and several traditional classifiers such
as SVM and logistic regression to independently predict
the type (benign or malignant) of lung cancer. Predic-
tions are consequently utilized to train a second-stage
classifier to generate the final outcome. Any classifier
such as SVM and NN can be used as the second-stage
classifier.

2. Feature-level Fusion: Second widely used approach to
combine deep and hand-crafted Radiomics is to first concate-
nate the feature vectors and then feed them to a classifier,
referred to as feature-level fusion [57]. Reference [46] has
shown that this combination lead to the highest performance
in lung cancer survival prediction using Random Forest and
Naive Bayes classifiers. The efficiency of this approach is also
verified in [47] for lung tumor detection. Although mixing
deep and hand-crafted Radiomics has several advantages such
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Fig. 10: Radiomics-based nomogram to predict lymph node metastasis. Tumor position is considered as extra information to assist with
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Fig. 11: Combining deep and hand-crafted Radiomics through feature-level or decision-level fusion.

as ensuring the heterogeneity of the features, it may cause
over-fitting as the number of training data is relatively less
than the number of features. Therefore, Reference [49] has
examined this large set of features in terms of stability, infor-
mativeness, and redundancy leading to a dramatic dimension
reduction and increase in the accuracy of brain cancer survival
prediction. To further reduce the number of features, a Cox
regression is adopted that can determine the impact of features
on survival, and as a result, those with small weights can be
removed as effectless.

Reference [54] has leveraged the idea of concatenating
deep and hand-crafted features for lung tumor attributes (such
as spiculation, sphericity and malignancy) scoring through a
multi-task learning framework. For extracting deep features, 9
CNNs corresponding to each of the 9 task at hand, and a 3
layer DAE are trained, where each CNN generates 192 Ra-

diomics features extracted from the last fully connected layer
before the SoftMax layer, and DAE results in 100 features.
Deep features are further combined with hand-crafted features
consisting of Haar and Histogram of oriented gradients (HoG)
features, and the resulting vector is used as input to a multi-
task linear regression model, which can consider the inter-
task relations, in order to calculate the score of each of the 9
lung cancer attributes. This completes our discussion on hybrid
Radiomics.

VI. CHALLENGES, OPEN PROBLEMS, AND
OPPORTUNITIES

In this section, we will focus on the limitations of process-
ing techniques unique in nature to the Radiomics, and then
introduce open problems and signal processing opportunities
as outlined in the following subsections.



A. Challenges of Hand-Crafted Radiomics

Extraction of hand-crafted features in Radiomics is more
problematic in comparison to multimedia domains as, typi-
cally, very limited distinct visual variation exists to differenti-
ate, for example, cancerous tissues. To address this issue, the
common approach in Radiomics is to first extract hundreds
and hundreds of different low level and high level features
without devising a systematic mechanism and taking into
account the end goal. Then, to resolve the resulting curse of
dimensionality, simple and basic reduction techniques (e.g.,
basic principal component analysis (PCA)) are used. Another
major issue with existing hand-crafted features in Radiomics
(opportunity for signal processing researchers) is that they are
extracted without using the information that can be obtained
from other sources of data such as gene expressions and
clinical data, which further limits their discriminative abilities
for cancer prediction.

More importantly, most of the hand-crafted Radiomics
require the segmented ROI. Providing annotations might not
be a significant problem in other multi-media domains, as
this project can be easily crowd sourced. However, when it
comes to Radiomics, only experts have the ability to provide
segmentations, which is both time and cost ineffective.

B. Challenges of Deep Radiomics

Although deep Radiomics has several advantages including
its generalization capability and its independence from the
supervision of experts, it is also associated with some dis-
advantages such as its need for huge data sets, and its lack of
robustness to some Kinds of transformation. Besides, another
important challenge with deep learning-based Radiomics is
that there is still no strategy to choose the optimum architec-
ture.

Establishing the requirements of an appropriate deep ar-
chitecture for Radiomics is a main challenge in development
of DLR and another venue for future works. In particular,
performing sensitivity analysis is a critical step to explain the
connection between the designed choices and the achieved
results. It is essential to identify different conditions under
which the results are obtained. In short, what is happening
when a specific architecture is used? For example, consider
the simple issue of choosing the size of the input image. The
question here is if one should provide the original image size
or downsize the image and why? One simple answer could be
that downsizing is applied for computational savings. Another
intuitive answer could be that down sampling makes the data
invariant to translation and rotation, i.e., when the image is
down sampled, we take averages and as such the model will be
less prone to outliers. The latter intuition could be a reasonable
idea for natural images but is this the case for Radiomics-based
features obtained from medical images?

Intuitively speaking, a fundamental challenge and an open
problem for development of DLR is that the models and
solutions developed for natural images should be modified
before being applied to medical images as the nature of these
images are totally different (e.g., consider MRI images). As
the nature of the input signal is different, parts of the model
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has to change but this issue has not yet been investigated
systematically and thoroughly.

It is worth mentioning that while hand-crafted Radiomics
normally need less amount of data, the number of images
required for effective training of deep architectures, such as the
CNNs, depends on the complexity of the underlying model.
In other words, the amount of required training data increases
when the number of trainable parameters increase. In the
case of lung cancer diagnosis, e.g., the LIDC Dataset [27]
is widely used, which consists of 244,527 CT images of
1010 patients. Normally, training complex deep models based
on such dataset cannot be performed in a timely fashion
using common processors and one needs to resort to one or
more GPU processors. One common approach to reduce the
computational cost in deep learning methods is to crop the
input image to include just the object of interest. Although
this approach does not cause any information loss in non-
medical areas, it is harmful for classifying medical images
as size is an important discriminator feature of, for instance,
normal and abnormal tissues. This problem is investigated in
[12], where it is shown that the miss-classified lung tumors
based on features extracted from a DBN are 4% larger than
correctly classified ones, possibly because the cropped images
do not contain size information.

On the other hand, although limited access to training data
is a common problem in other multimedia domains, it becomes
significantly more critical in Radiomics as typically access to
patients data is subject to several ethical regulations making
it hard to collect the required amount of data for training
purposes.

Finally, interpretability of deep Radiomics is of paramount
importance as human lives are at stake, and without providing
appropriate explainability, utilization of deep-Radiomics in
clinical practice will remain limited. The relation between deep
features and genetic patterns is also not established yet and
requires further studies.

C. Open Problems and Signal Processing Opportunities

Despite recent advancements in the field of Radiomics and
increase of its potential clinical applications, there are still
several open problems which require extensive investigations
including:

1. Most Radiomics models need rich amounts of training
images, however, due to strict privacy policies, medical
images are usually hard to collect.

2. Even without considering the privacy issues, it is difficult
to find the required amount of data with similar clinical
characteristics (e.g., corresponding to the same cancer
stage).

3. Radiomics analysis need ground truth which is scarce
as labels can only be provided by clinical experts (this
is in contrary to other multimedia domains). This calls
for development of weakly or semi-supervised solutions
taking into account the specifics of the Radiomics do-
main.

4. Properties of medical images such as their contrast
and resolution varies significantly from one institute to



another (from one dataset to another), because each
institute may use different types of scanners and/or use
different technical parameters. Development of novel
and innovative information fusion methodologies to-
gether with construction of unifying schemes are crit-
ical to compensate for lack of standardization in this
field and produce a common theme for comparing the
Radiomics results. Furthermore ground truth and annota-
tions provided by different experts can vary significantly
as experts, depending on their area of specialty (such
as oncology and surgery), may consider and look for
different details and landmarks in the image.

. Unbalanced data refers to a problem where classes are
not equal in a classification problem rendering the classi-
fier biased toward the majority class. This is almost all of
the time the case for Radiomics analysis as the number
of positive classes (existence of disease) is typically
smaller than the negative ones. Therefore, proper care
is needed when working with medical data. Although
several solutions, such as modifying the metric function
to give more weight to minority class, are provided to
deal with the aforementioned issue, it is still an unsolved
problem that needs further investigations.

. Dealing with image noise is another challenging prob-
lem, which is common in all multi-media domains,
but it is more severe in Radiomics as there may be
more unpredictable sources of variation in medical
imaging. As an example, patient’s breathing in the CT
scanner can cause change of lung tumor location in
consecutive slices bringing about difficulty in extracting
stable Radiomics features. Therefore to achieve reliable
personalized diagnosis and treatment, careful strategies
should be developed to address the effects of these kinds
of variations.

Furthermore, there are several factors, such as imaging
environments, capabilities of the scanners [79] and other
shortcomings of radiological images (e.g., radiations
during acquisition, noisy acquisitions), that limit the
resolution of the obtained medical images. For instance,
the range of the captured frequencies is limited by the
maximum sampling rate of the scanner, and increasing
the rate, will increase the resolution, at the cost of an
increased noise [80]. Since access to high-quality images
is necessary to achieve an early and accurate diagno-
sis/detection, there is an ongoing research on improving
the quality of the medical images via development of
advanced computational models to overcome the afore-
mentioned shortcomings. One of such computational
techniques is known as “Super-Resolution [81]”, aiming
at reconstructing a high-resolution image, using several
low-resolution instances. Deep learning networks, and
CNNSs in particular, are widely used in super-resolution
problems, and so far have shown promising results [81].
. The biggest challenge in combining various data sources
(such as imaging and clinical) is that not all data is
provided for all the patients. In other words, Radiomics
analysis model should be equipped with the ability to
work with sparse data [3]. Besides, The currently used
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fusion strategies within the Radiomics are still in their
infancy and development of more rigorous fusion rules
is necessary. For instance, feature-level fusion results in
a vector and how to sort/combine the localized feature
vectors is an open challenge. Giving the superiority of
the initial results obtained from hybrid Radiomics, this
issue becomes an urgent matter calling for advanced
multiple-model solutions.

VII. CONCLUSION

During the past decades, medical imaging made significant
advancements leading to the emergence of automatic tech-
niques to extract information that are hidden to human eye.
Nowadays, the extraction of quantitative or semi-quantitative
features from medical images, referred to as Radiomics, can
provide assistance in clinical care especially for cancer diag-
nosis/prognosis. There are several approaches to Radiomics
including extracting hand-crafted features, deep features, and
hybrid schemes. In this article, we have presented an integrated
sketch on Radiomics by introducing practical application
examples; Basic processing modules of the Radiomics, and;
Supporting resources (e.g., image, clinical, and genomic data
sources) utilized within the Radiomics pipeline, with the hope
to facilitate further investigations and advancements in this
field within signal processing community.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

REFERENCES

P. Lambin, E. Rios-velazquez, et al., ‘“Radiomics: Extracting more
Information from Medical Images using Advanced Feature Analysis,”
European Journal of Cancer, vol. 48, no. 4, pp. 441-446, 2012.

V. Kumar, Y. Gu, et al., “Radiomics: The Process and the Challenges,”
Magnetic Resonance Imaging, vol. 30, no. 9, pp. 1234-1248, 2012.

R. Gillies, P. Kinahan, et al., “Radiomics: Images Are More than
Pictures, They Are Data.,” Radiology, vol. 278, No. 2, pp. 563-577,
2016.

A. Oikonomou, F. Khalvati, et al., “Radiomics Analysis at PET/CT
Contributes to Prognosis of Recurrence and Survival in Lung Cancer
Treated with Stereotactic Body Radiotherapy,” Scientific Reports, vol.
8, no. 1, 2018.

H.J. Aerts, E.R. Velazquez, et al., “Decoding Tumour Phenotype by
Noninvasive Imaging using a Quantitative Radiomics Approach,” Nature
Communications, vol. 5, 2014.

R.J. Gillies, A.R. Anderson, et al., “The Biology Underlying Molecular
Imaging in Oncology: from Genome to Anatome and Back Again,”
Clinical Radiology, vol. 65, no. 7, pp. 517-521, 2010.

M. Avanzo, J. Stancanello, I. El Naqa, “Beyond imaging: The promise
of radiomics,” Physica Medica, vol. 38, pp. 122-139, 2017.
“Decoding Tumour Phenotype by Noninvasive Imaging Using a Quan-
titative Radiomics Approach,” Nature Communications, vol. 5, 2014.
Y. Zhang, A. Oikonomou, et al., “Radiomics-based Prognosis Analysis
for Non-small Cell Lung Cancer,” Scientific Reports, vol. 7, 2017.

J. Griethuysen, A. Fedorov, et al. “Computational Radiomics System
to Decode the Radiographic Phenotype,” Cancer Research, vol. 77, no.
21, pp. 104-107, 2017.

W. Sun, B. Zheng, et al., “Automatic Feature Learning using Multichan-
nel ROI based on Deep Structured Algorithms for Computerized Lung
Cancer Diagnosis,” Computers in Biology and Medicine, vol. 89, no. 1,
pp. 530-539, 2017.

O. Echaniz, and M. Grana, et al., “Ongoing Work on Deep Learning
for Lung Cancer Prediction,” Biomedical Applications Based on Natural
and Artificial Computing, vol. 10338, pp. 42-48, 2017.

W. Sun, B. Zheng, et al., “Computer Aided Lung Cancer Diagnosis
with Deep Learning Algorithms,” Proc.SPIE, vol. 9785, 2016.

H. Li, Y. Zhu, et al., “MR Imaging Radiomics Signatures for Predicting
the Risk of Breast Cancer Recurrence as Given by Research Versions
of MammaPrint, Oncotype DX, and PAMS50 Gene Assays.,” Radiology,
vol. 281, no. 2, pp. 382-391, 2016.



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

A. Cunliffe, S. G.Armato III, et al., “Lung Texture in Serial Thoracic
Computed Tomography Scans: Correlation of Radiomics-based Features
With Radiation Therapy Dose and Radiation Pneumonitis Development,”
International Journal of Radiation Oncology*Biology*Physics, vol. 91,
no. 5, pp. 1048-1056, 2015.

H. Wang, Z. Zhou, et al., “ Comparison of Machine Learning Methods
for Classifying Mediastinal Lymph Node Metastasis of Non-Small Cell
Lung Cancer from 18F-FDG PET/CT Images,” EJNMMI Research, vol.
7, no. 1, 2017.

M. Vallieres, D. Visvikis, M. Hatt, “Dependency of a Validated
Radiomics Signature on Tumor Volume and Potential Corrections,” The
Jjournal of nuclear medicine (JNM), vol. 59 (supplement 1), 2018.

C. Parmar, P. Grossmann, et al., “Machine Learning Methods for
Quantitative Radiomic Biomarkers,” Scientific reports, vol. 5, 2015.

J. Tian, D. Dong, et al., “Radiomics in Medical Imaging-Detection,
Extraction and Segmentation,” Artificial Intelligence in Decision Support
Systems for Diagnosis in Medical Imaging, vol. 140, pp 267-333, 2018.
J. Edwards, “Medical Optical Imaging: Signal Processing Leads to New
Methods of Detecting Life-Threatening Situations [Special Reports],”
IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 17-20, 2017.

D. Ravi, C. Wong, et al., “Deep Learning for Health Informatics,” IEEE
Journal of Biomedical and Health Informatics, vol. 21, no. 1, pp. 4-21,
2017.

J. Constanzo, L. Wei, et al., “Radiomics in Precision Medicine for Lung
Cancer,” Translational lung cancer research, vol. 6, no. 6, pp. 635-647,
2017.

C. Parmar, J.D. Barry, et al., “Data Analysis Strategies in Medical
Imaging,” Clinical cancer research, vol. 24, no. 15, pp. 3492-3499,
2018.

G. Litjens, T. Kooi, et al., “A Survey on Deep Learning in Medical
Image Analysis,” Medical Image Analysis, vol. 42, pp. 60-88, 2017.
R. Berenguer, M.D.R. Pastor-Juan, et al., “Radiomics of CT Features
May Be Nonreproducible and Redundant: Influence of CT Acquisition
Parameters,” Radiology, vol. 288, no. 2, pp. 407-415, 2018.

R. Thawani, M. McLane, et al., “Radiomics and Radiogenomics in Lung
Cancer: A Review for the Clinician ,” Lung cancer, vol. 115, pp. 34-41,
2017.

M. Sasaki, K. Yamada, et al., “Variability in Absolute Apparent Diffu-
sion Coefficient Values Across Different Platforms may be Substantial:
A Multivendor, Multi-institutional Comparison Study,” Radiology, vol.
249, no. 2, pp. 624-630, 2008.

S. Armato, G. McLennan, et al., “Data From LIDC-IDRI. The Cancer
Imaging Archive”.

Z. Akkus, I. Ali, et al, * Predicting Deletion of Chromosomal
Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine
Intelligence,” Journal of Digital Imaging, vol. 30, no. 4, pp. 469-476,
2017.

M. Vallieres, E. Kay-Rivest, ef al., * Radiomics Strategies for Risk
Assessment of Tumour Failure in Head-and-Neck Cancer,” Scientific
Reports, vol. 7, no. 1, 2017.

B. Menze, A. Jakab, et al., “The Multimodal Brain Tumor Image
Segmentation Benchmark (BRATS),” [EEE Transaction on Medical
Imaging, vol. 34, no. 10, 2015.

A. Esteva, B. Kuprel, et al., “Dermatologist-Level Classification of Skin
Cancer with Deep Neural Networks,” Nature, vol. 542, pp. 115-118,
2017.

N. Menachemi, T.H. Collum, “Benefits and Drawbacks of Electronic
Health Record Systems,” Risk Management and Healthcare Policy, vol.
4, pp. 47-55, 2011.

M. Kolossvary, J. Karady, et al., “Radiomic Features Are Superior to
Conventional Quantitative Computed Tomographic Metrics to Identify
Coronary Plaques With Napkin-Ring Sign,” Circulation: Cardiovascular
Imaging, vol. 10, no. 12, 2017.

H. Suk, S. Lee, et al. * Hierarchical Feature Representation and Multi-
modal Fusion with Deep Learning for AD/MCI Diagnosis,” Neuroimage,
vol. 101, 2014.

A. Rahmim, P. Huang, et al., “Improved Prediction of Outcome in
Parkinson’s Disease using Radiomics Analysis of Longitudinal DAT
SPECT Images,” Neurolmage: Clinical, vol. 16, pp. 539-544, 2017.

S. Sabour, N. Frosst, G.E. Hinton, “Dynamic Routing Between Cap-
sules,” Conference on Neural Information Processing Systems (NIPS),
pp- 3859-3869, 2017.

P. Afshar, A. Mohammadi, K.N. Plataniotis, “Brain Tumor Type
Classification via Capsule Networks,” IEEE International Conference
on Image Processing (ICIP), 2018.

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

(54

[55]

[56]

(571

[58]

[59]

[60]

30

C. Parmar, “ Machine Learning Applications for Radiomics: Towards
robust non-invasive predictors in clinical oncology ,”  Maastricht
University, 2017.

A. Subramanian, P. Tamayo, et al., *“ Gene Set Enrichment Analysis: A
knowledge-based Approach for Interpreting Genome-Wide Expression
Profiles,” Proceedings of the National Academy of Sciences, vol. 102,
no. 43, pp. 15545-15550, 2005.

J. Peng, J. Zhang, et al., *“ A Radiomics Nomogram for Preoperative
Prediction of Microvascular Invasion Risk in Hepatitis B Virus-Related
Hepatocellular Carcinoma,” Diagnostic and Interventional Radiology,
vol. 24, no. 3, pp. 121-127, 2018.

D. Kumar, A. Chung, et al., *“ Discovery Radiomics for Pathologically-
Proven Computed Tomography Lung Cancer Prediction,” Image Anal-
ysis and Recognition, pp. 54-62, 2017.

B. Huynh, H. Li, et al., * Digital Mammographic Tumor Classification
Using Transfer Learning from Deep Vonvolutional Neural Networks,”
Journal of Medical Imaging, vol. 3, no. 3, 2016.

Z. Li, Y. Wang, et al., “ Deep Learning Based Radiomics (DLR) and
Its Usage in Noninvasive IDHI Prediction for Low Grade Glioma,”
Scientific Reports, vol. 7, no. 1, 2017.

A. Jamaludin, T. Kadir, e al., “ SpineNet: Automatically Pinpointing
Classification Evidence in Spinal MRIs,” International Conference on
Medical Image Computing and Computer-Assisted Intervention, vol.
9901, pp. 166-175, 2016.

L. Oakden-Rayner, G. Carneiro, et al., “ Precision Radiology: Predicting
Longevity Using Feature Engineering and Deep Learning Methods in a
Radiomics Framework,” Scientific Reports, vol. 7, no. 1, 2017.

R. Paul, S. Hawkins, et al., “ Deep Feature Transfer Learning in
Combination with Traditional Features Predicts Survival Among Patients
with Lung Adenocarcinoma,” Tomography: a journal for imaging
research, vol. 2, no. 4, pp. 388-395, 2016.

L. Fu, J. Ma, et al., * Automatic Detection of Lung Nodules:
False Positive Reduction Using Convolutional Neural Networks and
Handcrafted Features,” Proc.SPIE, vol. 10134, 2017.

S. Liu, H. Zhengr, et al., * Prostate Cancer Diagnosis Using Deep
Learning with 3D Multiparametric MRI,” Proc.SPIE, vol. 10134, 2017.
J. Lao, Y. Chen, et al., “ A Deep Learning-Based Radiomics Model for
Prediction of Survival in Glioblastoma Multiforme,” Scientific Reports,
vol. 7, no. 1, 2017.

W. Shen, M. Zhou, et al., *“ Multi-scale Convolutional Neural Networks
for Lung Nodule Classification,” International Conference on Informa-
tion Processing in Medical Imaging, 588-599, 2015.

M. Liu, J. Zhang , et al., *“ Anatomical Landmark based Deep Feature
Representation for MR Images in Brain Disease Diagnosis,” [EEE
Journal of Biomedical and Health Informatics, 2018.

N. Antropova, B. Huynh, et al., *“ A Deep Feature Fusion Methodology
for Breast Cancer Diagnosis Demonstrated on Three Imaging Modality
Datasets,” The International Journal of Medical Physics Research and
Practice, vol. 44, no. 10, pp. 5162-5171, 2017.

S. Liu, Y. Xie, et al., “ Pulmonary Nodule Classification in Lung Cancer
Screening with Three-Dimensional Convolutional Neural Networks,”
Journal of Medical Imaging, vol. 4, no. 4, 2017.

S. Chen, J. Qin, et al., “ Automatic Scoring of Multiple Semantic
Attributes With Multi-Task Feature Leverage: A Study on Pulmonary
Nodules in CT Images,” IEEE Transactions on medical imaging, vol.
36, no. 3, pp. 802-814, 2017.

W. Shen, M. Zhou, et al., *“ Multi-crop Convolutional Neural Networks
for Lung Nodule Malignancy Suspiciousness Classification,” Pattern
Recognition, vol. 61, pp. 663-673, 2017.

K. Liu, G. Kang, *“ Multiview Convolutional Neural Networks for Lung
Nodule Classification,” International journal of imaging systems and
technology, vol. 27, no. 1, pp. 12-22, 2017.

B. Kim, Y. Sung, et al., *“ Deep Feature Learning for Pulmonary Nodule
Classification in a Lung CT,” 2016 4th International Winter Conference
on Brain-Computer Interface (BCI), 2016.

W. Shen, M. Zhou, et al., * Learning from Experts: Developing
Transferable Deep Features for Patient-Level Lung Cancer Prediction,”
International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp, 124-131, 2016.

F. Ciompi, K. Chung, et al., *“ Towards Automatic Pulmonary Nodule
Management in Lung Cancer Screening with Deep Learning,” Scientific
Reports, vol. 7, 2017.

J. Cheng, D. Ni, et al., *“ Computer-Aided Diagnosis with Deep
Learning Architecture: Applications to Breast Lesions in US Images
and Pulmonary Nodules in CT Scans,” Scientific Reports, vol. 6, 2016.



[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

S. Azizi, S.Bayat, et al., “Deep Recurrent Neural Networks for Prostate
Cancer Detection: Analysis of Temporal Enhanced Ultrasound,” [EEE
Transactions on Medical Imaging, 2018.

V. Parekh, M. Jacobs, “Radiomics: A New Application from Established
Techniques,” Expert Review of Precision Medicine and Drug Develop-
ment, vol. 1, no. 2, pp. 207-226, 2016.

C. Shen, Z. Liuet al., “Building CT Radiomics Based Nomogram
for Preoperative Esophageal Cancer Patients Lymph Node Metastasis
Prediction,” Translational Oncology, vol. 11, no. 3, pp. 815-824, 2018.
D. Kumar, A. Wong, et al., “Lung Nodule Classification Using Deep
Features in CT Images,” International Conference on Computer and
Robot Vision, 2015.

N. Emaminejad, W. Qian, et al. “Fusion of Quantitative Image and
Genomic Biomarkers to Improve Prognosis Assessment of Early Stage
Lung Cancer Patients,” IEEE Transactions on Biomedical Engineering,
vol. 63, no. 5, pp. 1034-1043, 2016.

M.J. Shafiee, A.G. Chung, et al., “Discovery Radiomics via Evolutionary
Deep Radiomic Sequencer Discovery for Pathologically Proven Lung
Cancer Detection,” Journal of medical imaging, vol. 4, no. 4, 2017.
O. Ronneberger, Ph. Fischer, T. Brox, “U-Net: Convolutional Networks
for Biomedical Image Segmentation,” Medical Image Computing and
Computer-Assisted Intervention (MICCAI), pp. 234-241, 2015.

S. Bickelhaupt, D. Paech, et al., “Prediction of Malignancy by a
Radiomic Signature from Contrast Agentfree Diffusion MRI in Sus-

picious Breast Lesions found on Screening Mammography,” Journal of

Magnetic Resonance Imaging, vol. 46, no. 2, pp. 604-616, 2017.

Y. Zhou, L. He, et al., “CT-based Radiomics Signature: a Potential
Biomarker for Preoperative Prediction of Early Recurrence in hepato-
cellular carcinoma,” Abdominal Radiology, vol. 42, no. 6, pp. 16951704,
2017.

H. Yu, J. Scalera, et al., “Texture Analysis as a Radiomic Marker for
Differentiating Renal Tumors,” Abdominal Radiology, vol. 42, no. 10,
pp. 24702478, 2017.

K.H. Cha, L. Hadjiiski, et al., “Bladder Cancer Treatment Response
Assessment in CT using Radiomics with Deep-Learning,” Scientific
reports, vol. 7, no. 1, 2017.

R.T.H. Leijenaar, G. Nalbantov, et al., “The Effect of SUV Discretiza-
tion in Quantitative FDG-PET Radiomics: The Need for Standardized
Methodology in Tumor Texture Analysis,” Scientific reports, vol. 5,
2015.

A. Zwanenburg, S. Leger, et al., “Image Biomarker Standardisation
Initiative,” arXiv preprint arXiv:1612.07003, 2018.

C. Parmar, P. Grossmann, et al., “Radiomic Machine-Learning Classi-
fiers for Prognostic Biomarkers of Head and Neck Cancer,” Frontiers
in oncology, vol. 5, no. 272, 2015.

C. Szegedy, V. Vanhoucke, et al., “Rethinking the Inception Architecture
for Computer Vision,” arXiv preprint arXiv:1512.00567v3, 2015.

V. Gulshan, L. Peng, et al., “Development and Validation of a Deep
Learning Algorithm for Detection of Diabetic Retinopathy in Retinal
Fundus Photographs,” Journal of the American Medical Association
(JAMA), vol. 16, no. 22, pp. 2402-2410, 2016.

C. Szegedy, W. Liu, et al., “Going Deeper with Convolutions,”
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
Y. Liu, J. Kim, et al., “Radiomic Features are Associated with EGFR
Mutation Status in Lung Adenocarcinomas,” Clinical lung cancer, vol.
17, no. 5, pp. 441-448, 2016.

D. Trinh, M. Luong, et al., “Novel Example-Based Method for Super-
Resolution and Denoising of Medical Images,” IEEE Transactions on
Image Processing, vol. 23, no. 4, pp. 1882-1895, 2014.

H. Greenspan, “Super-Resolution in Medical Imaging,” The Computer
Journal, vol. 52, no. 1, pp. 43-63, 2009.

C. Dong, C. Change Loy, et al., “Learning a Deep Convolutional Net-
work for Image Super-Resolution,” European Conference on Computer
Vision (ECCV), pp. 184-199, 2014.

J. Dehmeshki, H. Amin, et al., “Segmentation of Pulmonary Nodules in
Thoracic CT Scans: A Region Growing Approach” IEEE transactions
on medical imaging, vol. 27, no. 4, pp. 467-480, 2008.

M. Anthimopoulos, S. Christodoulidis, L. Ebner, T. Geiser, A. Christe,
S. Mougiakakou, “Semantic Segmentation of Pathological Lung Tissue
with Dilated Fully Convolutional Networks” arXiv, preprint arXiv:
1803.06167, 2018.

G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger, ‘“Densely
Connected Convolutional Networks” IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, G. Cottrell,
‘Understanding Convolution for Semantic Segmentation” arXiv, preprint
arXiv: 1702.08502, 2018.

31

[86] A. A. Farag, H. E. Abd El Munim, et al., “A Novel Approach for
Lung Nodules Segmentation in Chest CT Using Level Sets” [EEE
Transactions on Image Processing, vol. 22, no. 12, pp. 5202-5213, 2013.

Parnian Afshar (p_afs@encs.concordia.ca) is a Ph.D. candidate at
Concordia Institute for Information System Engineering (CIISE). Her
research interests include signal processing, biometrics, image and
video processing, pattern recognition, and machine learning. She has
extensive research/publication record in medical image processing
related areas.

Arash Mohammadi (arash.mohammadi@concordia.ca) is an As-
sistant Professor with Concordia Institute for Information System
Engineering (CIISE), at Concordia University. He is the Director-
Membership Services of IEEE Signal Processing Society (SPS),
and was General co-chair of the Symposium on Advanced Bio-
Signal Processing and Machine Learning for Medical Cyber-Physical
Systems, under IEEE GlobalSIP 2018, and the lead Organizer of
the 2018 IEEE SPS Video and Image Processing (VIP) Cup. He
also was the General Co-Chair of 2016 IEEE SPS Winter School
on Distributed Signal Processing for Secure Cyber Physical Systems.
His research interests include statistical signal processing, biomedical
signal processing, image/video processing, and machine learning.

Konstantinos N. Plataniotis (kostas@ece.utoronto.ca) Bell Canada
Chair in Multimedia, is a Professor with the ECE Department at
the University of Toronto. He is a registered professional engineer
in Ontario, Fellow of the IEEE and Fellow of the Engineering
Institute of Canada. Dr. Plataniotis was the IEEE Signal Processing
Society inaugural Vice President for Membership (2014-2016) and
the General Co-Chair for the IEEE GlobalSIP 2017. He co-chaired
the 2018 IEEE International Conference on Image Processing (ICIP
2018), October 7-10, 2018, Athens Greece, and co-chairs 2021 IEEE
International Conference in Acoustics, Speech & Signal Processing
(ICASSP 2021), Toronto, Canada.

Anastasia Oikonomou (anastasia.oikonomou@sunnybrook.ca), is
the head of the Cardiothoracic Imaging Division at Sunnybrook
Health Science Centre; Site Director of the Cardiothoracic Imaging
Fellowship program at University of Toronto, and an Assistant
Professor with the Department of Medical Imaging at the University
of Toronto. Her research interests include imaging of pulmonary
malignancies and interstitial lung diseases, Radiomics and machine
learning methods in imaging of pulmonary disease.

Habib Benali (habib.benali@concordia.ca) is a Canada Research
Chair in “Biomedical Imaging and Healthy Aging,” is the Interim
Scientific Director of the PERFORM Centre, and a Professor with the
ECE Department at Concordia University. Dr. Benali was the director
of Unit 678, Laboratory of Functional Imaging of the French National
Institute of Health and Medical Research (INSERM) and Paris 6
University (UPMC). He was also the director of the International Lab-
oratory of Neuroimaging and Modelisation of the INSERM-UPMC
and Montreal University. His research interests include biological
signal processing, neurology and radiology, biomedical imaging,
biostatistics, and bioinformatics.



