
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

miTLS: Verifying Protocol Implementations against Real-World
Attacks

Citation for published version:
Bhargavan, K, Fournet, C & Kohlweiss, M 2016, 'miTLS: Verifying Protocol Implementations against Real-
World Attacks', IEEE Security and Privacy, vol. 14, no. 6, pp. 18-25. https://doi.org/10.1109/MSP.2016.123

Digital Object Identifier (DOI):
10.1109/MSP.2016.123

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Security and Privacy

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Nov. 2024

https://doi.org/10.1109/MSP.2016.123
https://doi.org/10.1109/MSP.2016.123
https://www.research.ed.ac.uk/en/publications/1abd3eac-a0b6-48f7-8e29-7cfa91a13a29


miTLS: Verifying Protocol Im-

plementations Against Real-

World Attacks 
Karthikeyan Bhargavan karthikeyan.bhargavan@inria.fr , Cédric Fournet fournet@microsoft.com,   

Markulf Kohlweiss markulf@microsoft.com   

The TLS Internet Standard, previously known as SSL, is the 

default protocol for encrypting communications between 

clients and servers on the Web. Hence, TLS routinely pro-

tects our sensitive emails, health records, and payment in-

formation against network-based eavesdropping and 

tampering. For the last 20 years, the security of TLS has 

been analyzed in a variety of cryptographic and program-

ming models, in order to establish strong formal guaran-

tees for various configurations of the protocol. Yet, TLS 

deployments are still often found to be vulnerable to at-

tacks, and still rely on security experts to fix the protocol 

implementations. 

The miTLS project intends to solve this apparent contra-

diction between published proofs and real-world attacks, 

which reveals a gap between the theory and practice of 

TLS.  To this end, we jointly develop a verified reference 

implementation and a cryptographic security proof that 

account for the low-level details of the protocol.  The re-

sulting formal development sheds light on recent attacks, 

yields security guarantees for typical usages of TLS, and 

informs the design of the next version of the protocol. 

D.4.6.c Cryptographic controls < D.4.6 Security and Pri-

vacy Protection < D.4 Operating Systems < D Soft-

ware/Software Engineering,  

D.2.4.d Formal methods < D.2.4 Software/Program Veri-

fication < D.2 Software Engineering < D Software/Soft-

ware Engineering 

Both the Internet and cryptography took roots in military 

technology.  One of the first uses of computers, pio-

neered by Alan Turing, was to decrypt German war-time 

communications; and the precursor of the Internet, the 

Arpanet, was designed for resilience in case of nuclear 

war. It was the invention of public-key cryptography by 

Diffie and Hellman that created the impetus for open ac-

ademic research into cryptography, and eventually led to 

the ubiquitous use of encryption on the Internet. 

The Secure Socket Layer (SSL) protocol, one of the first 

real-world deployments of public-key cryptography, was 

originally developed by Netscape, an early Internet 

browser vendor, to provide secure channels for elec-

tronic commerce. One of its main designers was Elgamal, 

a student of Hellman.  As SSL took over the Web, it was 

renamed Transport Layer Security (TLS) and documented 

as an open standard by the Internet Engineering Task 

Force (IETF). Over time, it has undergone major changes; 

its implementations currently feature five versions—

SSL2, SSL3, TLS 1.0, TLS 1.1, and TLS 1.2—while the next 

version of the protocol is actively being discussed at the 

IETF. 

TLS implements a network socket API on top of a reliable 

but insecure network. It consists of two main protocols: a 

handshake that establishes sessions between clients and 

servers, relying on public-key cryptography to compute 

shared session keys; and a record layer that uses those 

keys to encrypt and authenticate their communications. 

SSL2 initially supported a single handshake scheme, 

based on RSA encryption, and a few record encryption al-

gorithms, such as RC2 and DES.  SSL3 added Diffie-Hell-

man schemes to the handshake, and further encryption 

algorithms, such as RC4 and 3DES. Over time, many of 

these cryptographic constructions came under attack, 

and were supplemented with stronger alternatives.  

Since the client and the server may support different sets 

of cryptographic algorithms, the handshake lets them ne-

gotiate a combination of algorithms, called a ciphersuite.  

Hence, any TLS client and server can inter-operate as long 

as they have at least one ciphersuite in common. Over 

time, the number of ciphersuites supported by TLS imple-

mentations has grown steadily.  For example, the popular 

OpenSSL library now supports over a hundred cipher-

suites.  

Not all ciphersuites are equally strong.  Like most com-

mercial software during the cold war, SSL was subject to 

US export regulations that classified cryptography as a 

weapon.  To comply with these regulations, all protocol 

versions up to TLS 1.0 included deliberately weakened 

encryption algorithms for use in US software, such as web 

browsers, exported to foreign countries.  Cryptographers 

and security practitioners started a rebellion, dubbed the 

Crypto Wars1, against this weakening of their work, and 

mailto:karthikeyan.bhargavan@inria.fr
mailto:fournet@microsoft.com
mailto:markulf@microsoft.com


eventually prevailed, but SSL and TLS implementations 

were still forced to support export-grade ciphersuites for 

interoperability. 

Many of the challenges in designing and deploying TLS se-

curely were already apparent in the early days of the pro-

tocol. In particular, Bleichenbacher demonstrated a side-

channel attack against the way RSA encryption was used 

in the SSL handshake, and Vaudenay discovered another 

side-channel attack on the way application data was en-

crypted in the record protocol.2  Later versions of TLS con-

tinued to support those weak constructions, but man-

dated that implementations employ adequate counter-

measures, triggering a series of increasingly sophisticated 

attacks and defences. 

Besides cryptographic weaknesses, the SSL handshake 

protocol itself was shown to be vulnerable to logical 

flaws. The negotiation between strong and weak encryp-

tion had a protocol-level flaw in SSL2: a ciphersuite roll-

back (or downgrade) identified by Abadi3, enabling a net-

work attacker to force a client and a server to use a weak 

export ciphersuite even though they both preferred a 

stronger ciphersuite. This flaw was fixed in SSL3, but a 

subsequent analysis revealed a more advanced down-

grade attack4, enabling a network attacker to first force 

SSL3 clients and servers to use SSL2, and then exploit its 

known weaknesses. This was fixed by modifying the use 

of RSA encryption, which in turn enabled an improved 

Bleichenbacher-style side channel attack. 

Hence, by the early 2000s, TLS was already caught in a 

cycle of attacks and fixes that continues to the current 

day.  Formal foundations, to validate the protocol design 

and prevent any such attacks, became very attractive, 

and researchers from both the cryptographic and formal 

methods communities started applying various verifica-

tion techniques to communications protocols. 

Since the 1980s, cryptographers had been working on 

turning cryptography from an art into a science. The re-

sulting theory is nowadays referred to as provable secu-

rity. Conceived at the Theory of Computation group at 

MIT, it is concerned with reducing the difficulty of break-

ing cryptographic protocols to problems in complexity 

theory and mathematics. This approach resulted in 

ground-breaking works like those by the Turing award 

winners Shafi Goldwasser and Silvio Micali on probabilis-

tic encryption and zero-knowledge proofs. 

From the cryptographer’s point of view, the TLS protocol 

is a combination of standard cryptographic constructions.  

Using compositional provable security techniques, one 

should be able to prove the security of each construction, 

and then put these proofs together to obtain a security 

theorem for TLS.  In reality, composing proofs of various 

ad hoc parts of the protocol turned out to be hard, but 

over the last decade, cryptographers have successfully 

analyzed the security of many popular TLS ciphersuites. 

Their theorems confirm that, under some well-defined 

implementation and mathematical assumptions, the 

cryptographic core of TLS is not vulnerable to attack. 

From the programmer’s point of view, protocols like TLS 

can be viewed as distributed processes that communi-

cate across public channels and use cryptographic primi-

tives as black boxes to protect their messages.  The key 

analysis question is then whether the protocol, seen as a 

program, has logical flaws in its use of communications 

and cryptography, even if one assumes that the crypto-

graphic building blocks are perfectly secure. For example, 

one may ask whether TLS admits ciphersuite or version 

downgrade attacks in the presence of an active network 

adversary. 

The verification of concurrent and distributed processes 

has been investigated in a long line of research on pro-

gramming language semantics, pioneered by other Tu-

ring award winners, Robin Milner and Tony Hoare.  Their 

rigorous mathematical study of the meaning of programs 

allows us to formalize what it means for a program to 

keep a value secret, or for two programs to be equivalent. 

For simple cryptographic primitives, modelled as abstract 

mathematical functions, a message may hide a secret if it 

does not visibly depend on it; and two processes may be 

equivalent if they exchange similar-looking messages.  

Most cryptographic algorithms hide secrets only compu-

tationally, meaning that given sufficient computational 

resources the secret can eventually be recovered. Their 

precise modelling requires complicated probabilistic def-

initions against restricted classes of adversaries. Instead, 

the semantics community proposed simpler symbolic ap-

proximations of cryptography to capture logical flaws, 

and developed tools to prove security (or find attacks) in 

their models.  These techniques were used in a series of 

automated analyses of TLS, showing that the protocol is 

not vulnerable to logical attack, as long as the attacker is 

unable to break the cryptographic primitives. 

Both the provable security and the symbolic verification 

of protocols were successful in their respective academic 

communities. As the former is more precise and the latter 

easier to automate, they are in principle complementary. 

However, the technical differences outlined above led to 

largely separate developments. As we will argue, this lim-

ited the impact that either of them had on the real-world 

security of TLS. 

Theory vs Practice 
Despite these theoretical successes, recent TLS versions 

have still been found vulnerable to practical attacks that 

rely on a combination of implementation bugs, crypto-

graphic weaknesses, and protocol flaws. These attacks 

make it evident that the most advanced models of the 

provable security and verification communities still ig-

nored many important implementation details. Such de-

tails include, for example, message formats, support for 

multiple protocol modes and algorithms for backward 



compatibility, error handling exploitable as side channels, 

and signalling between the protocol and the application. 

Since these details affect the practical security of TLS, 

their omission limits the scope of theoretical statements. 

It is worth reflecting on the cultural reasons for this gap 

between theory and practice. In their 2011 article on 

provable security, Degabriele, Paterson and Watson5 ex-

plain that a focus on principles can lead to simplistic or 

artificial models, and a neglect of implementation details. 

Interestingly, they notice a similar divide in the practical 

security community between specification writers and 

implementers. The former build in flexibility in specifica-

tions to allow for the competing interests of parties con-

tributing to the development process. For example, spec-

ifications often avoid defining an API, and encourage im-

plementations to accept a broad range of behaviours to 

support interoperability and backward compatibility. This 

flexibility can tempt cryptographers to interpret specifi-

cations in an overly abstract way that facilitates security 

analysis but misses real-world attacks that rely on imple-

mentation details. 

Instead, we follow a model-attack-remodel cycle, in-

formed by a dialog between practitioners and theoreti-

cians. Concrete attack scenarios are invaluable for prac-

tice-oriented provable security: if they fall outside the se-

curity model, they encourage researchers to refine their 

model to better account for realistic threats. Conversely, 

model features that do not reflect any such scenario may 

point out simplifications.  

Let us also mention a class of attacks often missed by 

practitioners and theoreticians alike. These attacks target 

the protocol design and evaluation process itself, some-

times directly, through the insertion of backdoors, or, 

more subtly, through influence on the culture in which 

designers operate. Juniper's VPN security hole  is a recent 

example in this class. Besides awareness of the interests 

that some organizations may have in subverting Internet 

security, we believe that formal, open, practice-oriented 

protocol verification helps prevent such attacks.  

A more technical challenge that prevents cryptographic 

analysis techniques to be applied to TLS deployments is 

that the protocol and its implementations have simply 

grown too complicated to be analysed by humans. Unsur-

prisingly, the highly-optimized C code of TLS implementa-

tions such as OpenSSL is amenable neither to crypto-

graphic proofs nor to formal verification.  

Cryptographic and symbolic models of TLS alike could not 

keep up with implementations and did not account for 

the details of the protocol as specified in the standard. 

Consequently, proofs of these models were likely to miss 

practical attacks on the protocol. Of course, they also 

missed attacks that exploited basic implementation 

flaws, such as incorrect certificate validation (GotoFail) or 

buffer overflows (HeartBleed). 

In summary, we argue that the co-existence of proofs and 

attacks can be attributed to multiple gaps between veri-

fied models and real-world protocols: 

I. gaps between cryptographic models and standards;  

II. gaps between standards and implementations; 

III. gaps between individually secure ciphersuites and 

their insecure composition; and  

IV. gaps between APIs and application-level security. 

In the rest of this article, we describe these gaps in more 

detail, and explain how we try to bridge them in the miTLS 

project.  

miTLS: a verified reference  

implementation of TLS 
By 2008, the theory and practice of TLS had largely di-

verged.  To relate high-level specifications and low-level 

implementations (gaps I and II above), a group of re-

searchers at the Microsoft Research-INRIA joint centre in 

Paris (including two authors of this paper) decided to 

build a reference implementation of the TLS 1.0 standard 

(RFC2246) in a style that enabled them to extract a formal 

model of the protocol directly from the code.6 By this ap-

proach, they ensured that the formal model was faithful 

to the standard and captured its low-level details.  The 

model was then analyzed with a state-of-the-art protocol 

verifier, called ProVerif, to find both logical flaws in the 

protocol standard and implementation bugs in their 

code. Inasmuch as ProVerif did not find any flaws, they 

obtained high assurance in the security of their code 

against a large class of attacks. 

This reference implementation, later dubbed miTLS (for 

Microsoft-INRIA TLS), was written in about 4000 lines of 

F# and the extracted symbolic models were among the 

largest to be automatically analyzed at the time, at the 

limits of verification technology. Symbolic tools like 

ProVerif are effective in automatically finding flaws with-

out the need for any user intervention, but they do not 

necessarily scale well to large models.  Verifying their TLS 

implementation for one protocol version and one cipher-

suite took 3.5 hours and 4.5 GB of memory.  Modelling 

other protocol modes was out of reach. Consequently, 

although they were able to find known attacks on early 

versions of SSL, they missed TLS renegotiation or Triple 

handshake attacks that were discovered later, because 

their models did not fully account for renegotiation. 

As discussed above, a limitation of symbolic approaches 

is that they assume that the underlying cryptographic 

building blocks are perfect, and hence miss attacks. Some 

semi-automated tools, such as CryptoVerif, can analyze 

protocols in a more precise computational model of cryp-

tography, but similarly do not scale up to large models. 

They applied CryptoVerif to core fragments of their TLS 

implementation, but were not able to analyze the full 

protocol using this tool. For example, they did not model 



features like compression or the details of Cipher Block 

Chaining, and hence they missed subsequent vulnerabili-

ties like BEAST and CRIME. 

For the next version of miTLS7, we wanted to use a proof 

technique that could handle multiple versions and fea-

tures of the protocol at the same time, and would rely on 

standard computational assumptions for the underlying 

cryptographic constructions. To this end, we switched to 

a verification method based on refinement types (to be 

explained shortly), originally designed for symbolic proto-

col analysis by Bhargavan, Fournet and Gordon,8 and then 

extended to modular computational proofs by Fournet, 

Kohlweiss, and Strub.9 

 

 

Figure 1: miTLS verification architecture 

Refinement types allow programmers to annotate each 

function with logical formulas. These annotations can 

capture program invariants, cryptographic assumptions, 

protocol events, and many security guarantees. To verify 

that a program meets its type annotations, the developer 

runs a type-checker that automatically verifies the pro-

gram with the aid of an external SMT solver to discharge 

logical proof obligations. Crucially, type-checking is com-

positional, in the sense that each function can be inde-

pendently verified, assuming that all previous functions 

also meet their type annotations. Consequently, the time 

for type-checking a large program is more-or-less linear 

in its size, and can be controlled by writing additional in-

termediate annotations.  

The miTLS implementation currently supports TLS 1.0, 

1.1, and 1.2, with multiple handshake and record modes. 

It also fully supports session resumption and renegotia-

tion. The code is written in about 5000 lines of code, and 

is split into a sequence of modules, each of which 

equipped with a refinement-type interface. The verifica-

tion approach is depicted in Figure 1. For modules con-

taining protocol code, the interface represents the target 

security goals we wish to verify. For modules implement-

ing cryptographic primitives, the interface represents the 

idealized functionality of the primitive, according to some 

standard cryptographic security assumption. 

The top-level security guarantees for miTLS are stated in 

terms of a secure channel interface presented by TLS to 

the application.  This interface guarantees that applica-

tion data sent on a connection between a miTLS client 

and a miTLS server is kept confidential, as long as the con-

nection uses strong cryptographic algorithms and the 

long-term private keys of the two peers are unknown to 

the attacker. Moreover, the interface guarantees that the 

stream of application data received at one end is a prefix 

of the stream sent by the other. The security proof relies 

on type-checking each module, after applying a series of 

game-based transformations on the core cryptographic 

modules to replace the concrete algorithms by their ideal 

functionality. By this approach, we are able to verify the 

full miTLS implementation, module by module, under 

precise computational security assumptions.  The total 

time for verification is under 20 minutes. 

While it is valuable to have a security theorem for a ref-

erence implementation of TLS 1.2, the impact of miTLS is 

perhaps better evaluated in terms of the parts of the pro-

tocol design we were unable to prove, or where we had 

to make special cryptographic assumptions. These corner 

cases resulted in the discovery of weaknesses in the pro-

tocol and attacks on its real-world usage, discussed next. 

Application Interface (API) and 

its Security Goals 
Many problems stem from a mismatch between the se-

curity properties expected by applications using TLS and 

the actual guarantees provided by TLS (gap IV).  The TLS 

standard does not specify an application interface (API) 

and so each implementation is free to implement its own.  

Application developers are expected to understand these 

APIs in detail and to use them in the right way to achieve 

their security goals.  For example, some TLS libraries ex-

pect applications to validate the certificate presented by 

the server, and thus developers who wrongly assume that 

the library will do it for them become vulnerable to 

server-impersonation attacks. More generally, many at-

tacks appear when building application-level authentica-

tion on top of TLS. 

Consider an application that uses TLS to establish a secure 

channel where the client is initially unauthenticated. The 

application then runs an authentication protocol on top 

of TLS that allows the user to present a credential to the 

server. In this setting, the client expects that its use of TLS 

guarantees that the credential will only be presented at 

the target server; and a server that receives the creden-

tial over TLS may expect that the user intended to au-

thenticate to it. However, as demonstrated by the attack 

outlined in Figure 2, these expectations are ill placed. We 

follow cryptographic tradition and refer to the client as 

Alice, the server as Bob, and the attacker as Eve. If Alice 

is willing to use the same credential (say, an X.509 certif-

icate) with both Bob and Eve, then Eve can impersonate 

Alice at Bob, by forwarding Alice's credential (say, her sig-

nature over some authentication message) over his own 



channel with Bob. Even if Alice is careful and uses her cre-

dential only with Bob, a sophisticated attacker may im-

personate Bob to mount a Man-in-the-Middle attack 

(MitM), by operating a phishing web-site, obtaining mis-

issued certificates, or compromising the server key.  Such 

credential forwarding attacks can only be prevented if Al-

ice not only authenticates herself, but also her channel, 

e.g., by signing a unique identifier extracted from the TLS 

connection. Then, if Bob compares these channel identi-

fiers he can detect the attack. 

Credential forwarding attacks and their countermeasures 

have appeared multiple times in TLS applications. They 

were first discussed in the context of tunnelled com-

pound authentication protocols for network access. They 

then reappeared in the context of user-authenticated TLS 

renegotiation as commonly used on the web. In response 

to these attacks, a variety of channel identifiers were de-

fined for TLS and exposed within the APIs of various im-

plementations. Compound authentication protocols used 

the TLS session key (called master secret) as an identifier 

for binding application-level credentials. TLS renegotia-

tion used the protocol transcript of the previous hand-

shake as a connection identifier.  

We implemented these countermeasures in miTLS and 

tried to prove that applications using miTLS are not vul-

nerable to credential forwarding, but we failed. Instead, 

we discovered several counterexamples. A malicious 

server is able to synchronize the TLS session keys on two 

different connections, one from Alice and one to Bob, so 

that the channel identifiers on both connections are the 

same, hence defeating the compound authentication 

countermeasure. Then by running a second TLS connec-

tion that uses session resumption, the server can also 

synchronize the protocol transcripts on these connec-

tions, hence defeating the TLS renegotiation counter-

measure. In fact, such channel synchronization attacks 

break all known credential forwarding protections over 

TLS by exploiting a misunderstanding of the TLS API; the 

protocol does not guarantee unique channel identifiers. 

This class of channel syn-

chronization attacks was 

called the Triple Hand-

shake10, since it requires a 

sequence of up to three 

runs of TLS before the at-

tack succeeds against TLS 

client authentication. Alt-

hough it has been present 

in the TLS protocol since 

SSL3, it escaped previous 

analyses because they did 

not consider sequences of 

TLS connections, and they 

did not model credential 

forwarding as a threat. In 

response to these attacks, 

we helped the TLS working 

group to standardize a new protocol-level fix called the 

extended master secret that systematically protects all 

compound authentication protocols.  

 

Implementing Negotiation 
In addition to designing an API, a second major challenge 

for a TLS implementation is that it needs to handle a vari-

ety of protocol versions, extensions, authentication 

modes, and ciphersuites at the same time. While the TLS 

standard describes each mode in isolation, it does not al-

ways specify how an implementation should compose 

them (gap III). In particular, the protocol state machine is 

left unspecified and each implementation can design its 

own. In miTLS, we define and verify our own state ma-

chine. Our type-based proofs rely on careful invariants 

that require that the current protocol state is consistent 

with the desired protocol mode, and that the transcripts 

and signature formats for different modes are disjoint. 

Considering the effort that was required to prove our 

own state machine correct, we then tested other imple-

mentations to see if they implemented the TLS standard 

correctly, and to our surprise, many of them failed this 

test, resulting in subtle attacks.11 

Some implementations failed to correctly implement the 

composition of the handshake and record protocols and 

allowed application data to be sent unencrypted, before 

the handshake was complete. Other implementations 

failed to correctly compose regular RSA ciphersuites with 

export RSA ciphersuites, allowing a downgrade attack, 

called FREAK, whereby a MitM attacker could fool a TLS 

client into accepting export-grade 512-bit RSA keys even 

though it wanted to use regular RSA. In all, by testing 

other open-source TLS libraries against miTLS, we found 

dozens of state machine bugs across all major TLS imple-

mentations, including four that could be exploited for 

real-world attacks. 

 

Figure 2: A compound authentication protocol over TLS. Alice inadvertently establishes a 
secure channel with Eve. If Alice authenticates within the channel a), Eve can forward au-
thentication messages within its own channel with Bob and impersonate Alice. Eve acts as 
a (wo)man in the middle (MiTM) and observes communication Bob deems private. The at-
tack can be prevented if Alice attaches her unique channel identifiers FXRCRLX to the au-
thentication. Bob compares identifiers, detects the MiTM and aborts.     

 



Another attack on TLS negotiation, found by a large group 

of researchers including one of the current authors, relies 

on a protocol flaw rather than an implementation bug.12  

In Logjam, the server supports both regular Diffie-Hell-

man (DH) groups as well as export-grade 512-bit DH 

groups. The client does not support export-grade DH, but 

it allows the server to pick the group. As depicted in Fig-

ure 3, this situation leads to an MitM attack. The attacker 

tampers with the protocol messages to fool the server 

into thinking that the client only supports export-grade 

DH. So, the server sends the export-grade group to the 

client who thinks this is the server's regular group and ac-

cepts it. This kind of attacks is sometimes called a cross-

protocol attack since it involves confusions between two 

different protocols (DH and export DH). It is enabled by a 

protocol flaw in TLS: the server's signature format for ex-

port DH ciphersuites is indistinguishable from its signa-

ture for regular DH. Hence, the attacker can successfully 

downgrade the connection to use export DH even though 

the client does not realize it. To complete the attack, the 

attacker still needs to solve the discrete log problem for 

the export DH group, which is well within reach of mod-

ern processing power. 

Towards TLS 1.3 
At the time when SSL was first designed, there was a real 

enthusiasm and sense of purpose to deploy practical 

cryptographic protocols. Often one and the same person 

worked on and understood both the 

cryptography and the implementa-

tion—to the extent possible at the time. 

Since then, advances in cryptographic 

theory and analysis have greatly im-

proved our understanding of when pro-

tocols achieve their security goals and 

when they fail to do so. However, typi-

cally this analysis is performed either on 

toy protocols, or in retrospect on partial 

aspects of a protocol specification. Im-

plementers still primarily follow a fix-at-

tack-fix cycle. This cycle, however, only 

gets worse as protocols grow in com-

plexity. We believe that the only way 

forward is through an active collaboration between the-

oreticians and practitioners. 

A promising development in this direction is the stand-

ardization effort behind the upcoming TLS 1.3 protocol, 

which fixes many weaknesses in TLS 1.2 and, at the same 

time, promises improved performance. From the early 

stages of its design, the TLS working group has invited and 

encouraged the participation of academic researchers, 

who have responded with significant numbers. Not only 

was the design of the cryptographic core of TLS 1.3 

strongly influenced by the OPTLS protocol by Krawczyk 

and Wee13, but we now have multiple published security 

proofs for different draft versions of the protocol even 

before it has been standardized. Such careful crypto-

graphic analysis for a new standard is unprecedented at 

the IETF.  As a result of this process, many attacks and 

weaknesses were detected and removed from early 

drafts, resulting in a simpler and more secure protocol. 

Our main contribution to the standardization effort is a 

new version of miTLS that implements TLS 1.3, but also 

supports older versions for backwards compatibility. 

Since mainstream TLS implementations will continue to 

support such older versions for the foreseeable future, 

we were especially concerned with the potential for ver-

sion downgrade attacks that might nullify the security ad-

vantages of TLS 1.3.  

TLS 1.3 signs all exchanged messages to 

prevent MitM attacks like Logjam that 

rely on tampering with handshake mes-

sages for downgrade attacks. However, 

we discovered that by downgrading the 

protocol version to TLS 1.2. the attacker 

can force the server to use the weaker 

TLS 1.2 signature that does not cover all 

messages, hence re-enabling such tam-

pering attacks. The problem is that, in 

older versions of TLS, clients cannot ver-

ify the maximum supported server ver-

sion until the end of the protocol, by 

when it is too late.  

 

Figure 3: The Logjam attack. Alice wants to communicate with Bob. Eve tricks 
Bob into starting a DH export protocol. Eve forwards the signature of Bob to 
Alice to get her to use a small prime. Then Eve computes the discrete logarithm 
𝑦 to compute 𝑔𝑥𝑦. Using this secret, she can compute the channel keys to de-
crypt Alice’s messages. 

 

 

Figure 4: The version downgrade countermeasure. Alice tries to establish a 
TLS 1.3 connection with Bob, but Eve changes the maximum client version to 
TLS 1.2 to attempt a version downgrade. The attack can be prevented if Bob 
signs his maximum version. Alice compares Bob’s maximum version with its 
chosen version to detect Eve’s tampering and aborts. 

 



That this downgrade attack went unnoticed until Draft 10 

of TLS 1.3 is an example for the many intricacies and pit-

falls of practical protocol security. Once detected and 

brought to the attention of the IETF, we helped develop 

a verified countermeasure depicted in Figure 4,14 that is 

peculiar but simple: shorten the server nonce, which is 

signed in TLS 1.2, and use some of its bytes to encode the 

server’s highest supported version number.  

The future of verified  

implementations 
The miTLS approach necessarily involves multi-discipli-

nary teams of cryptography, programming semantics, 

tooling and verification experts, as well as generalists 

knowledgeable of real-world security concerns and sys-

tem performance. We require implementations to be 

written in a programming language with a well-define for-

mal semantics so that protocol properties devised by the-

orists can be verified using sound automated tools on 

code co-developed with practitioners. 

Even verified implementations have to rely on crypto-

graphic assumptions, the accuracy of the security model, 

and the correctness of proofs and verification tools. To 

ensure that our modelling assumptions do not miss con-

crete attacks, we advocate a comprehensive penetration 

testing regime that uses the miTLS codebase to find and 

implement attacks on miTLS and other TLS implementa-

tions. Such attacks can be on cryptographic primitives, on 

the TLS protocol level, but also on the HTTPS ecosystem 

and even against the soundness of our verification tools. 

Our goal is to use a combination of verification and test-

ing to span and evaluate all four of these levels in order 

to reduce the trusted computing base for TLS applica-

tions.  

Verification alone is not enough to ensure that a TLS im-

plementation will be widely used. Real-world implemen-

tations have to be performant. A key challenge for future 

work on miTLS is to extend our verification techniques so 

that they can handle the programming idioms used in 

high-performance code. As our tools improve, we antici-

pate that the feature and performance gap between ver-

ified and unverified protocol implementations will vanish.  

Karthikeyan Bhargavan karthikeyan.bhargavan@inria.fr,  

1 https://en.wikipedia.org/wiki/Crypto_Wars 

2. Serge Vaudenay. 2002. Security Flaws Induced by CBC 

Padding - Applications to SSL, IPSEC, WTLS .... (Serge Vau-

denay), In EUROCRYPT 2002 

3 Prudent Engineering Practice for Cryptographic Proto-

cols (M. Abadi and R. Needham), In IEEE Transactions on 

Software Engineering, 22(1):2–15, January 1996. 

Karthikeyan Bhargavan is a researcher at INRIA, the 

French national lab for computer science. He is based in 

Paris where he leads a team called Prosecco (“program-

ming securely with cryptography”) and is the principal in-

vestigator of an ERC consolidator grant CIRCUS on prova-

bly secure implementations of cryptographic web appli-

cations. Karthik was trained at IIT New Delhi and the Uni-

versity of Pennsylvania. Before coming to Paris in 2009, 

he worked as a researcher at Microsoft Research lab in 

Cambridge, England. His publications and CV are available 

from http://prosecco.inria.fr/personal/karthik 

Cédric Fournet fournet@microsoft.com,   

Cédric Fournet leads the Constructive Security group at 

the Microsoft Research lab in Cambridge, UK. He is inter-

ested in security, privacy, cryptography, programming 

languages, and formal verification. He is currently work-

ing on a verified TLS/HTTPS protocol stack and techniques 

for outsourcing computations with strong security and 

privacy guarantees. Cédric graduated from Ecole Poly-

technique and Ecole Nationale des Ponts et Chaussées, 

and completed a PhD at INRIA in France. See also 

https://www.microsoft.com/en-us/research/peo-

ple/fournet. 

Markulf Kohlweiss markulf@microsoft.com     

Markulf Kohlweiss is a researcher at Microsoft Research 

Cambridge in the Programming Principles and Tools 

group. He did his PhD at the COSIC (Computer Security 

and Industrial Cryptography) group at the K.U. Leuven, 

and his master thesis at IBM Research Zurich. Dr. Kohl-

weiss' research focus is on privacy-enhancing cryptog-

raphy and formal reasoning about cryptographic proto-

cols. See also https://www.microsoft.com/en-us/re-

search/people/markulf. 

 

 

 

 

  

 

 

4 Analysis of the SSL 3.0 protocol (David Wagner and 

Bruce Schneier). In USENIX Workshop on Electronic Com-

merce Proceedings, 1996: 29-40 

5 J. P. Degabriele, K. Paterson and G. Watson, "Provable 

Security in the Real World," in IEEE Security & Privacy, vol. 

9, no. 3, pp. 33-41, May-June 2011. 

6 Cryptographically verified implementations for TLS 

(Karthikeyan Bhargavan, Cédric Fournet, Ricardo Corin, 

                                                           

https://en.wikipedia.org/wiki/Crypto_Wars
http://prosecco.inria.fr/personal/karthik
https://www.microsoft.com/en-us/research/people/fournet
https://www.microsoft.com/en-us/research/people/fournet
https://www.microsoft.com/en-us/research/people/markulf
https://www.microsoft.com/en-us/research/people/markulf


                                                                                    
Eugen Zalinescu), In ACM Conference on Computer and 

Communications Security, 2008 

7 Implementing TLS with Verified Cryptographic Security 

(Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohl-

weiss, Alfredo Pironti, Pierre-Yves Strub), In IEEE Sympo-

sium on Security & Privacy (Oakland), 2013. 

8 Modular verification of security protocol code by typing 

(Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gor-

don). POPL 2010: 445-456 

9 Modular code-based cryptographic verification (Cédric 

Fournet, Markulf Kohlweiss, Pierre-Yves Strub), In ACM 

Conference on Computer and Communications Security 

2011: 341-350 

10 Triple Handshakes and Cookie Cutters: Breaking and 

Fixing Authentication over TLS (Karthikeyan Bhargavan, 

Antoine Delignat-Lavaud, Cédric Fournet, Alfredo Pironti, 

and Pierre-Yves Strub). In IEEE Symposium on Security 

and Privacy (Oakland), 2014 

11 A Messy State of the Union: Taming the Composite 

State Machines of TLS (Benjamin Beurdouche, 

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric 

Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves 

Strub, Jean Karim Zinzindohoue), In IEEE Symposium on 

Security & Privacy 2015 (Oakland), 2015 

12 Imperfect Forward Secrecy: How Diffie-Hellman Fails 

in Practice (David Adrian, Karthikeyan Bhargavan, Zakir 

Durumeric, Pierrick Gaudry, Matthew Green, J. Alex Hal-

derman, Nadia Heninger, Drew Springall, Emmanuel 

Thomé, Luke Valenta, Benjamin VanderSloot, Eric 

Wustrow, Santiago Zanella-Béguelin, and Paul Zimmer-

mann), In ACM Conference on Computer and Communi-

cations Security (CCS'15), 2015 

13 The OPTLS Protocol and TLS 1.3, Hugo Krawczyk Hoe-

teck Wee, October 9, 2015, Cryptology ePrint Archive, 

eprint.iacr.org/2015/978.pdf 

14 Downgrade Resilience in Key-Exchange Protocols 

(Karthikeyan Bhargavan, Christina Brzuska, Cédric Four-

net, Matthew Green, and Markulf Kohlweiss and Santiago 

Zanella-Béguelin) In IEEE Symposium on Security and Pri-

vacy 2016 (Oakland), 2016. 


