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ChatEDA: A Large Language Model Powered
Autonomous Agent for EDA

Haoyuan Wu†, Zhuolun He†, Xinyun Zhang, Xufeng Yao, Su Zheng, Haisheng Zheng, Bei Yu

Abstract—The integration of a complex set of Electronic De-
sign Automation (EDA) tools to enhance interoperability is a
critical concern for circuit designers. Recent advancements in
large language models (LLMs) have showcased their exceptional
capabilities in natural language processing and comprehension,
offering a novel approach to interfacing with EDA tools. This
research paper introduces ChatEDA, an autonomous agent for
EDA empowered by an LLM, AutoMage, complemented by
EDA tools serving as executors. ChatEDA streamlines the design
flow from the Register-Transfer Level (RTL) to the Graphic
Data System Version II (GDSII) by effectively managing task
decomposition, script generation, and task execution. Through
comprehensive experimental evaluations, ChatEDA has demon-
strated its proficiency in handling diverse requirements, and our
fine-tuned AutoMage model has exhibited superior performance
compared to GPT-4 and other similar LLMs.

Index Terms—Electronic design automation, large language
models, machine learning algorithms.

I. INTRODUCTION

ELECTRONIC Design Automation (EDA) encompasses a
crucial set of software tools utilized for circuit design,

analysis, and verification. These tools are organized within a
complex design flow, featuring intricate programming inter-
faces. Notably, advanced RTL-to-GDSII design platforms like
OpenROAD [1] and iEDA [2] consist of numerous procedures
and adjustable parameters. Commercial tools, with their exten-
sive functionalities and options, offer even more comprehen-
sive capabilities. Circuit design engineers employ these tools
iteratively to achieve their design objectives, often resorting to
custom scripts for specific operations. Conventionally, scripting
languages such as TCL have been the de facto means of
interacting with EDA tools [3], which is tedious and prone
to errors. Experienced design teams often adopt tools from
different vendors, greatly increasing the difficulty in creating
and maintaining such scripts.

Recently, the field of natural language processing (NLP) has
undergone a revolutionary transformation with the emergence
of large language models (LLMs) such as GPT-3 [4], GPT-4
[5], Claude2 [6], and Llama [7], [8]. Extensive training on large
corpora enables large language models to acquire emergent
abilities [9] by learning intricate patterns and relationships in
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Fig. 1 Overview of AutoMage powered ChatEDA. With Au-
toMage as the controller and EDA tools as the executors, the
workflow consists of three stages: 1) Task Decomposition; 2)
Script Generation; 3) Task Execution.

language. This allows these models to demonstrate remarkable
accuracy and fluency in a variety of NLP tasks, such as
natural language understanding and generation. To leverage
their potential in specialized domains [10]–[12], instruction
tuning [13] fine-tunes LLMs with domain-specific corpora,
resulting in remarkable performance on these specialized do-
mains. Specifically, Vicuna [14], Guanaco [15], and Orca [16],
have applied instruction tuning to train LLMs, making use
of the outputs produced by the GPT, and thereby achieving
significant outcomes

Furthermore, scholars have initiated exploration into the
incorporation of tools or models into LLMs. Toolformer [17], a
groundbreaking methodology, integrates external API tags into
text sequences, thus facilitating LLMs to connect with external
tools. This tool utilization, coupled with the capacity for logical
reasoning, broadens the LLM’s potential as a robust general
problem solver. Several proof-of-concept demonstrations, in-
cluding AutoGPT [18] and BabyAGI [19] serve as motivational
illustrations. The current implementation of LLMs in toolchain
automation predominantly relies on generic LLMs without spe-
cific fine-tuning. However, such LLMs, lacking bespoke fine-
tuning, are unable to consistently meet performance standards
tailored to users’ specific requirements [20]. Particularly in
the EDA domain, LLMs exhibit limited familiarity with EDA
toolchains, leading to frequent errors during the tool usage
process. In this paper, we introduce the expert EDA LLMs, the
AutoMage series, which have been optimized for proficiency
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with EDA tools, thereby enhancing the stability and reliability
of the automation of EDA workflows.

In this work, we propose ChatEDA, an expert LLM system
designed to generate code for manipulating EDA tools based on
natural language instructions. To be more specific, as illustrated
in Fig. 1, ChatEDA is an LLM-driven autonomous agent system
for EDA, functioning as the agent’s intellectual hub, responding
to human instructions and manipulating the EDA tools via
APIs to deliver autonomous Register-Transfer Level (RTL) to
Graphic Data System Version II (GDSII) capabilities without
necessitating any code writing. To guarantee the performance,
we utilize the AutoMage series (AutoMage and AutoMage2) as
the control unit of the ChatEDA. AutoMage is an expert LLM
that specializes in the utilization of EDA tools, which is barely
learned in open-source LLMs. To further enhance AutoMage’s
abilities in real-world environments, we propose the upgraded
version of AutoMage, AutoMage2. Our contributions are listed
as follows:

• ChatEDA, the first LLM-powered EDA interfacing frame-
work and methodology;

• AutoMage series (AutoMage and AutoMage2) are fined-
tuned based LLMs and purpose-built to enhance the capa-
bilities of ChatEDA; and

• Comprehensive evaluations using ChatEDA-Bench to
show the superior performance of AutoMage series, sur-
passing GPT-4 and other well-known LLMs in various
tasks.

The remainder of this article is organized as follows. Sec-
tion II discusses the preliminaries, including a brief illustration
of the generative pre-trained language model, low-rank adapta-
tion of LLMs, in-context learning ability of LLMs, and block-
wise k-bit quantization technique for efficient training. Our
proposed LLM-powered framework for EDA will be explained
in Section III. AutoMage and its upgraded version AutoMage2
will be elaborated in Section IV and Section V separately.
Section VI demonstrates our experiment setup, evaluation of
our methods, quantitative comparisons, and some case studies,
followed by a discussion about limitations and future work in
Section VII and a conclusion in Section VIII.

II. PRELIMINARIES

A. Generative Pre-Trained Language Model
Generative pre-trained language models (GPLMs) stand at the
pinnacle of natural language processing advancements. Unlike
conventional models such as BERT [21] and XLNet [22],
which utilize an encoder-decoder architecture, GPLMs [4]–
[8] employ a neural network structure exclusively comprising
decoder blocks based on the transformer architecture. This
exclusive decoder-only design offers several advantages over
traditional encoder-decoder architectures [23]. By eschewing
the encoder’s compression of input into a singular vector,
GPLMs adeptly capture long-range language dependencies,
leading to the synthesis of more coherent prose. The auto-
regressive decoder forecasts each token considering its entire
antecedent context, ensuring fluid and logical text generation.

GPLMs are trained through self-supervised learning on ex-
pansive corpora, cultivating broad language representations.

In this phase, model parameters are refined to augment the
likelihood of predicting ensuing tokens in sequences [24]. Such
a strategy equips these models with a deep comprehension of
linguistic intricacies. As training data swells, the proficiency of
these models in text generation augments [4].

Significantly, while these models are not engineered for
distinct downstream tasks, their broad knowledge garnered
during pretraining paves the way for stellar performance across
diverse tasks. This is achieved with minimal fine-tuning on
scantily labeled datasets [4]. Their pre-trained representations
coupled with the decoder-centric design empower them to craft
coherent, sensible, and fluid prose infused with reasoning. The
blend of generative prowess and pre-acquired knowledge paves
the path for imaginative text generation.

Prominent LLMs, including GPT-4 [5], PaLM [25], [26],
and LLaMA [7], [8], epitomize GPLMs. They display unparal-
leled generalization and few-shot learning prowess, endorsing
a plethora of text generation applications. In the context of
this paper, AutoMage is fine-tuned based on GPLMs (Llama2),
underlining the adaptability and potency to automate the RTL-
GDSII flow in real-world scenarios.

B. Low-Rank Adaptation of LLMs
LLMs are characterized by their vast number of parameters,
making full fine-tuning of these parameters during training
impractical. An efficient alternative is low-rank adaptation
(LoRA) [27], a technique that involves preserving the pretrained
model weights while introducing trainable low-rank decompo-
sition matrices into each layer of the Transformer architecture.
This method substantially decreases the number of trainable
parameters for subsequent tasks.

The Transformer architecture comprises numerous fully con-
nected layers that conduct matrix multiplications with full-rank
weight matrices. Despite the complexity, pre-trained language
models demonstrate a low intrinsic dimension, allowing them
to learn efficiently even after random projection into a smaller
subspace [28]. Consequently, for a pre-trained weight matrix
represented as W ∈ Rh×d, it can be updated using a low-rank
decomposition W +∆W = W + L1L2, where L1 ∈ Rh×r,
L2 ∈ Rr×d, and the rank r ≪ min(h, d).

During the training process, W remains fixed and does not
receive gradient updates, whereas the matrices L1 and L2 are
endowed with trainable parameters. For the equation y = Wx,
the modified forward pass is expressed as:

y = Wx+∆Wx = Wx+L1L2x. (1)

Initially, L2 is initialized with a random Gaussian distribution,
and L1 is set to zero, ensuring that ∆W = L1L2 is zero at
the outset.

During production deployment, W = W +L1L2 is explic-
itly computed and stored for regular inference. Importantly, this
method incurs no additional latency when compared to a fully
fine-tuned model, making it an efficient choice for practical
applications.

In the context of this study, LoRA is applied to streamline the
fine-tuning process for Llama2. By preserving the pre-trained
weights and solely updating the low-rank matrices, the number
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of trainable parameters is significantly reduced, enhancing the
model’s efficiency and applicability in real-world scenarios.

C. In-Context Learning

The concept of in-context learning (ICL) [29] exemplifies
the remarkable ability of LLMs to execute downstream tasks
effectively by conditioning on the in-context prompt containing
a limited number of input-output examples, all without explicit
fine-tuning. For instance, when presented with a task like
predicting nationalities, a prompt featuring sample input names
and their respective nationalities, such as “Albert Einstein was
German. Mahatma Gandhi was Indian. Marie Curie was ”,
allows LLMs to correctly fill in the blank with the appropriate
nationality.

The phenomenon of ICL arises from the presence of long-
range coherence in pre-training documents. During the pre-
training phase, LLMs are compelled to deduce the latent
concept denoted by θ across multiple sentences, ensuring coher-
ent continuations. When provided with the in-context prompt,
denoted as xic, ICL manifests when LLMs deduce shared
concepts within xic to make predictions denoted as xo.

Assuming that LLMs precisely capture the pre-train distribu-
tion p with adequate data and expressivity [30], ICL involves
characterizing the conditional distribution of completions given
in-context prompt, denoted as p(xo|xic), under p. This is the
posterior predictive distribution, which marginalizes out latent
concepts as follows:

p(xo|xic) =

∫
θ

p(xo|θ, xic)p(θ|xic)d(θ). (2)

In scenarios where p(θ|xic) focuses on the concepts within
xic with more input-output examples, LLMs learn through
marginalization by effectively “selecting” the concept of input-
output examples from xic.

ICL [31] presents an efficient and adaptable method to
leverage the knowledge and capabilities embedded within ex-
tensively pre-trained language models. It stands as a promising
paradigm enabling LLMs to learn from a minimal set of
examples during inference. In our research, we employ ICL
for self instruction and the collection of instruction datasets to
fine-tune Llama2.

D. Block-wise k-bit Quantization

Quantization [32], a process of discretizing input from a high-
information representation to a lower-information one, involves
converting data types with more bits into those with fewer bits,
such as transitioning from 32-bit floats to 8-bit integers. Block-
wise k-bit quantization ensures optimal utilization of the low-
bit data type’s entire range. This approach normalizes the input
data type within the target data type’s range using the absolute
maximum of the input elements, typically organized as a tensor.
For instance, quantizing a 32-bit Floating Point (FP32) tensor
into an Int8 tensor within the range of [−127, 127] can be
expressed as:

X Int8 = round
(

127

absmax(XFP32)
XFP32

)
= round(cFP32 ·XFP32),

(3)

where c represents the quantization constant. The inverse oper-
ation dequantization is defined as:

dequant
(
cFP32, X Int8) = X Int8

cFP32 = XFP32. (4)

The input tensor X ∈ Rb×h is divided into n contiguous
blocks of size B by flattening the tensor and segmenting the
linear structure into n = (b × h)/B blocks. These blocks
are independently quantized using Equation (3), creating a
quantized tensor and n quantization constants ci.

In the context of efficient fine-tuning of quantized LLMs,
a strategy involving block-wise k-bit quantization is applied.
To be more specific, the pretrained LLM is stored in a 4-bit
datatype using Equation (3), and then dequantized from 4-bit
to 16-bit datatype for forward and backward pass computations
using Equation (4).

III. CHATEDA: LLM-POWERED FRAMEWORK FOR EDA

ChatEDA, an LLM powered agent, is specifically designed
for RTL-to-GDSII flow automation. The main objective of
ChatEDA is to understand and respond to user requirements in
natural language. In order to achieve this, ChatEDA is capable
of breaking down complex user requirements into smaller, more
manageable sub-tasks and subsequently utilizing appropriate
EDA tools to address them.

As illustrated in Fig. 1, AutoMage, an LLM fine-tuned with
EDA expert knowledge, serves as the central processing unit
of ChatEDA. After receiving a natural language requirement
from the user, AutoMage first interprets the requirement and
decomposes it into a set of sub-tasks, known as task de-
composition. Then, based on the decomposed smaller tasks
and the specifications for the external tools, e.g., OpenROAD,
AutoMage generates Python scripts for accomplishing these
tasks. Ultimately, ChatEDA executes the generated script to
get the final output for the user requirement. We will detail the
workflow and the training process of AutoMage in the following
sections.

A. Task Decomposition

In the realm of automating the RTL-to-GDSII flow through
EDA tools, numerous user requests often entail intricate inten-
tions. A fundamental requirement lies in the agent’s ability to
comprehend these complex human natural language requests.
Thanks to the robust capabilities of AutoMage, ChatEDA
adeptly interprets these tasks based on human-defined speci-
fications.

Considering the intricate nature of automating the RTL-to-
GDSII flow, it becomes imperative to break down the overar-
ching task into a series of manageable sub-tasks to achieve the
desired outcome. Therefore, we introduce task decomposition
as the primary stage of ChatEDA. In this phase, AutoMage
assesses user requirements and dissects them into a sequence
of structured tasks. Fig. 2 illustrates the task decomposition
process. For instance, when faced with a convoluted and lengthy
natural language request, ChatEDA employs AutoMage to
break it down into a series of specific sub-tasks. These tasks,
encompassing aspects like logic synthesis, floorplan, placement,
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#3: Script Generation

For the design named "aes" on the platform "asap7", please perform synthesis with a clock period of 5, followed 
by floorplan with a core utilization of 70%. Then, execute placement with a density of 0.8. Next, proceed CTS to fix 
40% of violating paths. Finally, evaluate the performance after routing using "power" metric.

#2: Task Decomposition

task4: perform placement
func: placement()
args: 
   density: 0.8 

task1: set up the EDA tool
func: set_up()
args: 
   design_name: "aes"
   platform: "asap7"

task2: perform synthesis
func: run_synthesis()
args: 
   clock_period: 5

task3: execute floorplan
func: floorplan()
args: 
   core_utilization: 70

task5: perform CTS
func: cts()
args: 
   tns_end_percent: 40

task6: perform routing
func: global_route()
         detail_route()

task7: evaluation
func: get_metric()
args: 
   stage: "route"
   metrics: ["power"]

#1: User Requirement

# Initialize
eda = chateda()

# Set up the EDA tool
eda.setup(design_name="aes", platform="asap7")

# Perform synthesis
eda.run_synthesis(clock_period=5)

# Execute floorplan
eda.floorplan(core_utilization=70)

# Perform placement
eda.placement(density=0.8)

# Perform CTS
eda.cts(tns_end_percent=40)

# Perform routing
eda.global_route()
eda.detail_route()

# Evaluate the performance after routing
Performance = eda.get_metric(“route”, ["power"])

Fig. 2 Language functions as a conduit enabling ChatEDA to integrate EDA tools for resolving complex EDA tasks. Within the
framework, ChatEDA acts as the controller that harmonizes and orchestrates the collaboration among various tools. ChatEDA first
formulates a task list derived from user requirements, subsequently generating scripts corresponding to these decomposed tasks.

and others, can then be efficiently handled through various EDA
tools.

B. Script Generation
Upon the completion of the task decomposition phase, manage-
able sub-tasks are defined, facilitating the streamlined orchestra-
tion of the complex task. Each sub-task is executable through
corresponding APIs within the EDA tools. Consequently, the
need arises to craft a script that invokes these APIs for task
execution. During the script generation phase, depicted in
Fig. 2, a structured text incorporating API specifications, user
requirements, and the decomposed sub-tasks serves as input
for AutoMage. Subsequently, AutoMage generates a Python
script, ready for direct execution. This script enables the RTL-
to-GDSII flow, promoting efficient architectural exploration,
design space evaluation, early Quality of Results (QoR) es-
timation, and detailed physical design implementation.

C. Task Execution
Following script generation, ChatEDA executes the script using
the Python interpreter, and the sub-tasks are then performed uti-
lizing EDA tools. According to the setup procedures, ChatEDA
sets environment variables accordingly. Then, it launches a
subprocess that runs the tool (i.e., OpenROAD in our im-
plementation) script executor. Internally, the Python wrapper
implements different functionalities by specifying relevant Tcl
scripts or commands and running them by the tool script

executor. With its proven efficacy in both script generation and
task execution, ChatEDA stands as a pivotal system in ensuring
reliable automation of the RTL-to-GDSII flow.

IV. AUTOMAGE: LLM-BASED CONTROLLER OF CHATEDA
A. Base Model Selection
The AutoMage model is a fine-tuned version of Llama2 [8],
which is designed based on the standard Transformer model
architecture in a decoder-only setup, meaning each timestep can
only attend to itself and past timesteps. It is worth noting that
CodeLlama [33] models achieve strong performance in coding
ability, which are incrementally pretrained on code resources
based on Llama2 models. However, during the process of
incremental pretraining on code resources, it will lose a lot of
general knowledge including EDA knowledge. To understand
user requirements on EDA tool usage, ChatEDA needs to have
basic EDA knowledge. As a result, we utilize Llama2 models
for this research.

B. Instruction Tuning for AutoMage.
To guarantee the reliability of ChatEDA, knowing when and
how to use the tools, which is determined by the LLM’s
capability, is of vital importance. AutoMage is an expert LLM
specializing in utilizing EDA tools, which are barely learned in
open-source LLMs. To integrate expert knowledge into LLMs,
instruction tuning is an effective approach that enables LLMs
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Fig. 3 Overview of Instruction Tuning. During the instruction
tuning process, we use the self instruction paradigm to construct
our instruction pool via GPT models. Then we apply the
QLoRA technique for efficient instruction fine-tuning.

to benefit from the pairing of domain-specific natural language
descriptions and their corresponding responses. Therefore, we
incorporate instruction tuning to train AutoMage, the core con-
troller of ChatEDA, based on the open-source LLMs (Llama2
[8]). As shown in Fig. 3, the process of instruction tuning
mainly includes three parts, self instruction, instruction collec-
tion, and instruction fine-tuning, which are detailed as follows.

Self Instruction. To enhance instruction tuning, it is imperative
to gather high-quality instructions that can effectively educate
Large Language Models (LLMs) on the utilization of EDA
tools through APIs. Given the costliness of obtaining high-
quality instructions, the self-instruction paradigm has gained
significant traction in recent research endeavors [34]. This
paradigm revolves around the utilization of diverse in-context
prompts, tailored to specific instances, to query GPT-3.5/4 and
automatically generate additional instances from them.

The self-instruction paradigm is meticulously crafted, draw-
ing inspiration from the ICL [31] capability of GPT-3.5/4. In
this methodology, we provide explicit guidance to the model
through APIs, incorporating necessary restrictions within the
self-instruction prompts. Subsequently, we employ instances
structured in the format <requirement, decomposition, script>
as in-context prompts, enabling precise alignment with GPT-
3.5/4. According to the formulation outlined in Equation (2),
GPT-3.5/4 generates instances that directly reference the in-
stances provided within the in-context prompts. This approach
not only refines the understanding of the given instructions
but also enhances the model’s ability to generate contextually
relevant responses.

Herein lies the template for the self-instruction prompt,
meticulously designed to maximize the efficiency of instructing
LLMs in utilizing EDA tools via APIs. The template, marked by
careful structuring and explicit directives, plays a pivotal role in
shaping the in-context learning process of GPT-3.5/4, ensuring
the acquisition of high-quality instructions and fostering the
model’s adeptness in the EDA domain.

SELF-INSTRUCTION PROMPT

You are an expert who can automate the RTL to GDSII
flow by using a fully autonomous toolchain. You are
invited to teach us how to create chips by using a
fully autonomous toolchain for digital layout
generation across die sizes, process nodes, and
foundry options.

↪→
↪→
↪→
↪→
↪→
As a result, you are now required to generate instances

for EDA user requirements and the corresponding
script generation by given APIs. I will provide you
with the template of the instance, available Python
APIs, and some instance examples to describe how to
use APIs to generate scripts.

↪→
↪→
↪→
↪→
↪→
I need to learn how to use these APIs according to your

generated instances.↪→

The instance template is as follows:
<Requirement>:

This part is the requirement.
You should try to make it diverse as if they are

written by different people.↪→
Try to customize needs to cover APIs as much as

possible.↪→
<Analysis>:

This part is the analysis.
According to the provided APIs, you are required to

provide an analysis to illustrate how to
fulfill user requirements.

↪→
↪→

<Script>
This part is the script.
You should only contain Python code with correct

API calls.↪→
</Script>

Here are the provided APIs of class 'chateda':
<<<API documents>>>

Here are some restrictions:
1. The instances should be in English.
2. Try not to repeat the verb or noun for each

requirement and explanation to maximize diversity.↪→
3. The requirements can be either an imperative

sentence or a question. For example, you can
combine questions with imperative requirements.

↪→
↪→
4. Your requirements and relative analyses should be

professional and logical.↪→
5. The analyses should be as detailed as possible. For

example, you can think it step by step.↪→
6. The requirements are required to be able to be

completed using the provided APIs.↪→
7. In the script, you are required to use named

arguments in the Python code to allow passing
arguments by specifying their names, independent of
their positions.

↪→
↪→
↪→
8. The Python code in the scripts can be executed

directly.↪→
9. You can't skip any steps that need to be executed.

The usual flow of chip designing goes like this in
sequence (Note that each step follows can't be
executed unless the previous step has been
executed.): a. Setup; b. Synthesis; c.
Floorplanning; d. Placement; e. Clock Tree
Synthesis (CTS); f. Global Routing; g. Detailed
Routing; h. Density Fill; i. Final Report;

↪→
↪→
↪→
↪→
↪→
↪→
↪→
10. Noted that if you are required to get a metric, You

have to execute that process first.↪→

Now I need you to teach me how to master these APIs
according to the provided instances. Please
generate more different instances according to the
provided instance examples under the provided
restrictions.

↪→
↪→
↪→
↪→

Here are some instance examples:
<<<in-context instances>>>

Instruction Collection. In adherence to the self-instruction
paradigm, a meticulously crafted dataset of approximately
1500 instances was formulated for the explicit purpose of
instruction tuning. It is crucial to note that both GPT-3.5
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<<<Response>>>
To optimize the power performance of the "sensor_interface" module on the "nangate45" 
platform, we need to adjust the clock period during synthesis, the core utilization during 
floorplanning, and the placement density. By tuning these parameters, we can find the optimal 
configuration that maximizes power efficiency after placement. Here"s a step-by-step guide to 
fulfill these requirements:
1. Set up the EDA tool for the "sensor_interface" module on the "nangate45" platform.
2. Run synthesis with different clock periods and evaluate the power performance.
3. Perform floorplanning with varying core utilization values to analyze the impact on power 
consumption.
4. Adjust the placement density and observe the effect on the power performance.
5. Iterate the tuning process by adjusting the clock period, core utilization, and placement density 
until finding the optimal configuration.
Here"s the Python script to perform this optimization:

# Define the optimization function
def optimize_power(clock_period, core_utilization, density):
    # Create an instance of the chateda class
    eda_tool = chateda()
    # Setup the EDA tool for the sensor_interface module on the nangate45 platform
    eda_tool.setup(design_name="sensor_interface", platform="nangate45")
    # Run synthesis with the specified clock period
    eda_tool.run_synthesis(clock_period=clock_period)
    # Perform floorplanning with the specified core utilization
    eda_tool.floorplan(core_utilization=core_utilization)
    # Perform placement with the specified density
    eda_tool.placement(density=density)
    # Get the power metric after placement
    power = eda_tool.get_metric("place", ["power"])
    return power
# Define the parameter ranges
param_ranges = {
    "clock_period": {"minmax": [1, 20], "step": 1},
    "core_utilization": {"minmax": [30, 90], "step": 0},
    "density": {"minmax": [0.05, 0.95], "step": 0}
}
# Tune the parameters using the tune() function
tune(optimize_power, param_ranges)

<<<Response>>>
To perform floorplanning for the "image_processor" design on the platform "nangate45" with 
specific parameters, we need to go through the following steps:
1. Setup: Use the "setup()" function to specify the details of the design. In this case, the design 
name is "image_processor," and the platform is "nangate45."
2. Synthesis: Before floorplanning, we need to run synthesis using the "run_synthesis()" function.
3. Floorplanning: Perform floorplanning using the "floorplan()" function. We set the parameters 
"core_utilization", "core_aspect_ratio", and "core_margins" to the given values.
Here"s the script to perform floorplanning for the "image_processor" design on the platform 
"nangate45" with the specified parameters:

def perform_floorplanning(
    design_name, 
    platform, 
    core_utilization, 
    core_aspect_ratio, 
    core_margins
):
    # Create an instance of the chateda class
    eda_tool = chateda()
    # Setup the design
    eda_tool.setup(design_name=design_name, platform=platform)
    # Run Synthesis
    eda_tool.run_synthesis()
    # Perform Floorplanning with the specified parameters
    eda_tool.floorplan(
        core_utilization=core_utilization,
        core_aspect_ratio=core_aspect_ratio,
        core_margins=core_margins
    )
# Call the function to perform floorplanning for the "image_processor" design with the 
specified parameters
perform_floorplanning(
    design_name="image_processor",
    platform="nangate45",
    core_utilization=75,
    core_aspect_ratio=1.3,
    core_margins=2
)

<<<Requirement>>>
I am designing a "sensor_interface" module on the "nangate45" platform. Can you guide me on 
optimizing the clock period during synthesis, the core utilization during floorplanning, and the 
placement density to achieve the best power performance after placement?

<<<Requirement>>>
Perform floorplanning for the "image_processor" design on the platform "nangate45" with a core 
utilization of 75%, core aspect ratio of 1.3, and core margins of 2.

Fig. 4 Examples of generated EDA tools instructions. Moreover, we also provide more examples in the repo https://github.com/
wuhy68/ChatEDAv1 for a better understanding of the generated dataset.

and GPT-4, while powerful, are not infallible, occasionally
producing erroneous data. To counter this, a portion of the
dataset was manually curated or refined to ensure accuracy and
reliability. Specifically, we first automatically verified whether
our designed OpenROAD API interface, an automated process,
could correctly execute the generated code. In cases where the
code was inexecutable, we modified it to ensure functionality.
Subsequently, we manually evaluated whether the generated
code satisfied the task requirements specified in the prompt. If
the generated code failed to meet the requirements or exhibited
an incorrect thought process, we manually edited it. For the
entire dataset, we dedicated approximately two person-days to
meticulously validate and refine the requirement-response pairs,
ensuring quality and accuracy, resulting in a refined dataset of
approximately 1500 training samples.

We provide some examples of the generated instruction
dataset in Fig. 4.

Instruction Fine-tuning. In the process of fine-tuning, each in-
stance consists of a requirement and a corresponding response.
The response involves a detailed decomposition process and
script. In this context, we view the prompt and requirement
as crucial instructions that direct LLMs to generate accurate
corresponding responses. During instruction fine-tuning, we
utilize a commonly used prompt in the style of Alpaca [35],
and AutoMage is trained on approximately 1500 instances to
learn how to utilize EDA tools.

To ensure an appropriate length for the model sequences,
requirements and responses extracted from the entire training
set are concatenated. This concatenation is performed while em-

ploying a unique token to demarcate these segments effectively.
Consequently, an auto-regressive objective is implemented,
effectively nullifying the loss of tokens originating from the
user requirement. This strategic approach confines the back-
propagation process solely to the response tokens, enhancing
the precision and efficiency of the fine-tuning process.

C. Efficient Fine-tuning of Quantized LLMs
In addressing the critical necessity for swift training procedures,
our study incorporates the QLoRA technique [15], aiming to
expedite the fine-tuning process efficiently. QLoRA employs 4-
bit Normalfloat (NF4) Quantization and Double Quantization
methodologies, ensuring the attainment of high-quality 4-bit
fine-tuning. This innovative approach is intricately coupled with
paged optimizers, which serve the crucial purpose of mitigating
memory spikes during gradient checkpointing, thus averting
potential out-of-memory errors. The notable efficacy of QLoRA
is pivotal in enabling us to ensure the seamless performance
of instruction fine-tuning utilizing Large Language Models on
a substantial scale, specifically 34B/70B models, a milestone
traditionally hindered by memory overhead constraints.

To delve deeper into the components of QLoRA, it is im-
perative to elucidate the essence of the following fundamental
components: NF4 quantization and double quantization.

NF4 Quantization. The NormalFloat (NF) data type, an exten-
sion of Quantile Quantization [36], emerges as an information-
theoretically optimal method, ensuring equal distribution of
values within each quantization bin of the input tensor. Quantile
quantization achieves this uniformity by estimating the quantile
of the input tensor through the empirical cumulative distribution

https://github.com/wuhy68/ChatEDAv1
https://github.com/wuhy68/ChatEDAv1
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function.

Double Quantization. This sophisticated process involves
quantizing the quantization constants to achieve additional
memory savings. While precise 4-bit quantization [37] neces-
sitates a small block size, it inevitably results in significant
memory overhead. Double quantization [15], a pivotal inno-
vation, involves employing the quantization constants cFP32

2

from the first quantization as inputs for a second quantization
step. This process yields quantized quantization constants cFP8

2

and a secondary set of quantization constants cFP32
1 . For the

second quantization, we utilize 8-bit Floats with a block size
of 256, ensuring optimal memory usage without compromising
performance. Notably, to facilitate symmetric quantization, we
center the positive cFP32

2 values around zero after subtracting
the mean before quantization.

QLoRA. Combining these aforementioned components,
QLoRA enhances a linear projection within a transformer
layer of LLMs through an additional factorized projection, thus
contributing to the efficiency and effectiveness of fine-tuning
processes in the realm of LLMs. As shown in the dash box of
Fig. 3, given a linear projection, y = Wx, the computation,
based on Equation (1), is as follows:

yBF16 = doubleDequant(cFP32
1 xBF16, ck-bit

2 ,WNF4)

+LBF16
1 LBF16

2 xBF16,
(5)

where W is original weights and L1 and L2 are ad-
ditional QLoRA weights. The final weights can be com-
bined without extra inference costs. Here, the function
doubleDequant(cFP32

1 , ck-bit
2 ,Wk-bit) can be obtained by:

dequant(dequant(cFP32
1 , ck-bit

2 ),W4bit) = WBF16, (6)

The matrix W is of size NF4 and is quantized to 4-bit precision.
The constant c2 is of size FP8. We choose a blocksize of 64 for
W to achieve higher quantization precision, and a blocksize of
256 for c2 to conserve memory. This choice is based on recent
results showing that 8-bit quantization does not significantly
degrade performance compared to 16-bit quantization.

In summary, QLoRA employs a singular storage data type,
typically NF4, alongside a computational data type represented
by 16-bit BrainFloat (BF16). The forward and backward passes
entail dequantizing the storage data type to the computational
data type. Notably, during these processes, weight gradients
are exclusively computed for the LoRA parameters utilizing
the BF16 representation.

D. Auto-Regressive Decoding
Beam search constitutes a fundamental algorithm employed
across numerous NLP models, serving as the pivotal decision-
making layer responsible for selecting the optimal output
concerning predetermined target variables, such as maximum
probability or the subsequent output character. This method fa-
cilitates the simultaneous consideration of multiple tokens for a
specific position within a given sequence, relying on conditional
probability assessments. The selection process is governed by a
key hyperparameter, denoted as beam width, which determines
the number of N-best alternatives to be considered. In our
auto-regressive decoding process of AutoMage, we implement

beam search with a beam width set to 4. This strategic choice
significantly elevates the precision and quality of text generation
by enabling the model to explore a wider range of possibilities
and select the most suitable output.

V. AUTOMAGE2: AN UPGRADED VERSION OF AUTOMAGE

AutoMage, fine-tuned with datasets comprising approximately
1500 EDA tool instructions, may exhibit overfitting to these
limited datasets. Furthermore, Llama2 exhibits deficiencies in
coding and logical reasoning capabilities [38]. Consequently,
AutoMage inherits these limitations undoubtedly. Considering
that real-world environments present greater challenges, there
are still opportunities to further enhance AutoMage’s abilities.
AutoMage2 is an upgraded version of AutoMage that aims to be
a more stable and capable controller of ChatEDA. Our objective
is to augment AutoMage’s capabilities, particularly in logical
reasoning for task decomposition and script generation coding,
to enhance the system’s overall performance. We adopt the
model architecture (Section IV-A), efficient fine-tuning process
(Section IV-C), and auto-regressive decoding (Section IV-D)
from AutoMage, and employ three key techniques to improve
its capabilities: enriched training corpus, instruction tuning with
explanation [16], and chain of thoughts (CoT) prompting [39].

A. Enriched Training Corpus.
AutoMage’s capabilities stem largely from the pretraining of
the underlying LLMs. To enhance performance, we must also
enhance the base LLMs.

First, a high-quality corpus is critical for instruction tun-
ing. With only around 1500 instances generated by the self
instruction paradigm (Section IV-B), AutoMage achieved high
performance. To augment the data, we not only added more
EDA tool usage instances but also filtered to ensure quality
and semantic diversity. Specifically, we had an instructor [40]
for encoding the generated instructions, calculated cosine sim-
ilarity, and removed those with a similarity score above 0.95.
After deduplication, we obtained around 1500 instances.

Moreover, code corpus represents a highly abstract language
containing complex logical constructs. Exposure to such corpus
can strengthen LLMs’ coding skills and logical reasoning. To
strategically bolster the coding and reasoning proficiencies of
the LLMs, we amalgamated approximately 110k instances of
code instructions [38] sourced from open-access repositories
with our own generated instances of EDA tools instructions
after deduplication. This amalgamation resulted in the creation
of hybrid instruction datasets. These hybrid datasets, rich in
diversity and complexity, were instrumental in fine-tuning the
instructions provided to AutoMage2, thereby augmenting their
overall comprehension and proficiency in utilizing EDA tools
effectively. This amalgamation not only broadened the scope of
the instructions but also fostered a comprehensive understand-
ing of the intricate nuances associated with coding and EDA,
ensuring a robust and well-rounded training process.

B. Instruction Tuning with Explanation.
The training corpus contains teacher (GPT-3.5/4) responses that
explain the reasoning process, providing additional learning
signals beyond the prompt-response pairs used in vanilla in-
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struction tuning (Section IV-B) for AutoMage. To elicit such
explanations, we employ system instructions for instruction
tuning with the explanation of AutoMage2 following Orca [16]
style (e.g. “think step-by-step” and “justify your steps”), which
can better enable mimicking the teacher’s thought process. The
intricately designed prompt is presented below for reference:

INSTRUCTION FINE-TUNING PROMPT

### System:
You are AI assistant, capable of utilizing numerous

tools and functions. User will give you a task.
Your job is to generate a Python script to complete
the task using the provided tools and functions.
While performing the task think step-by-step and
justify your steps.

↪→
↪→
↪→
↪→
↪→
You have access to the following tools and functions:
chateda is an autonomous tool that can automate the RTL

to GDSII flow by executing steps through
tools(functions) with various parameters.

↪→
↪→
tune is a function that can perform parameter tuning.
Specifically, you have access to the following details

of the provided tools and functions:↪→
<<<API documents>>>
### User:
<<<Requirement>>>
### Assistant:
<<<Response>>>

C. Chain of Thoughts.
CoT prompting [39] enables complex reasoning through inter-
mediate reasoning steps. Zero-shot CoT prompting [41] builds
on this by introducing a simple zero-shot prompt: appending
“Let’s think step by step.” This prompts LLMs to generate a
CoT that answers the question. From this, more accurate an-
swers can be extracted. Consequently, we apply zero-shot CoT
during inference of AutoMage models and other notable LLMs
to obtain more precise responses. The intricately designed zero-
shot CoT prompt is presented below for reference:

ZERO-SHOT COT PROMPT

### System:
You are AI assistant, capable of utilizing numerous

tools and functions. User will give you a task.
Your job is to generate a Python script to complete
the task using the provided tools and functions.

↪→
↪→
↪→
While performing the task think step-by-step and

justify your steps.↪→
You have access to the following tools and functions:
chateda is an autonomous tool that can automate the RTL

to GDSII flow by executing steps through
tools(functions) with various parameters.

↪→
↪→
tune is a function that can perform parameter tuning.
Specifically, you have access to the following details

of the provided tools and functions:↪→
<<<API documents>>>
### User:
<<<Requirement>>>
Let's first describe and explain what the task is

asking. Then, analyze how to complete the task step
by step using the provided tools and functions.
Finally, generate the Python script according to
your analysis.

↪→
↪→
↪→
↪→
### Assistant:
<<<Response>>>

VI. EXPERIMENTS

A. Setup
For efficient fine-tuning of AutoMage2, we implement a con-
stant learning rate schedule with a 0.03 warm-up ratio using

paged AdamW 8-bit optimizer [36], initiating with a learning
rate of 1× 10−4, no weight decay, a batch size of 128, and a
sequence length of 4096 tokens. Ultimately, the model is fine-
tuned for 1 epoch on 16×A100 with 80G memory each.

During the inference phase, the user‘s requirement prompts
in natural language. These can be designed for a simple task
(e.g. “Perform routing for the processor design on the asap7
platform.”) or delineate a broader, more general goal (e.g.
“Please show me how to complete the design flow in the
script.”). The output of AutoMage2 is the executable script.

As for evaluation, we consider notable LLMs including
Claude2 [6], GPT-3.5 [4], and GPT-4 [5] as our baselines for
performance assessment. To ensure a comprehensive compari-
son, we utilize different LLMs as the core controllers for our
autonomous agent, ChatEDA. The target API is a simplified
Python wrapper of OpenROAD [1].

For better understanding and easy reproduction of our work,
we provide ChatEDA-bench (Section VI-B), examples of EDA
tool instructions dataset, and API document with its corre-
sponding OpenROAD implementation in the open-source repo
https://github.com/wuhy68/ChatEDAv1.

B. ChatEDA-Bench

To assess the effectiveness of AutoMage2, we have developed
ChatEDA-Bench, a comprehensive evaluation benchmark com-
prising 50 distinct tasks spanning three distinct categories: sim-
ple flow calls (30%), complex flow calls (30%), and parameter
flow calls (40%). The diversity of these tasks ensures a rigorous
evaluation of AutoMage2’s capabilities across various scenar-
ios. In the subsequent sections, we will elucidate two examples
from each task category, shedding light on the intricate nature
of the evaluation scenarios and the challenges posed by each
case.

Simple Flow Calls The first task requires the successful exe-
cution of the whole process, including evaluation. These cases
test the fundamental application of LLMs and their sequence
of usage with the API interfaces.

Case 1: I want to carry out clock tree synthesis for the
design "modulator.v" using the process design kit "gf180"
with a desired density of 0.95. Can you help me to
generate the script?

↪→
↪→
↪→

Case 2: For the "aes" circuit, I want to run the steps from
setup to detailed routing on the platform "asap7"?↪→

Complex Flow Calls These cases heavily rely on logic, includ-
ing traversing parameters, further examining the LLM’s logical
reasoning and understanding of each API argument.

Case 1: I want to perform a grid search on the design "how"
on the "gf180" platform for floorplan parameters, CTS
parameters, and placement parameters to find the best
balance of chip area, power consumption and performance.
Can you help me to do that?

↪→
↪→
↪→
↪→

Case 2: I have a design called "data_processor" on the
platform "asap7". I want to experiment with different
combinations of clock periods, density values, halo
sizes, and channel widths during the whole EDA flow.

↪→
↪→
↪→

https://github.com/wuhy68/ChatEDAv1
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Parameter Tuner Calls These cases require the LLM to
provide a parameter-tuning solution, thoroughly testing the
LLM’s logic and use of EDA tools.

Case 1: I want to perform DSE for the design "aaksdjka" using
the technology node "asap7", and consider tns, wns, the
required chip surface area, and the power consumption at
the final stage as the evaluation metric of DSE. The
search space of parameters are as follows:

↪→
↪→
↪→
↪→
1. Core utilization ranging from 60% to 80% with a step of

5%.↪→
2. Core aspect ratio from 1 to 3 continuously.
3. Core margins from 2 to 10 with a step of 1.
4. Macro place halo from 5 to 15 with a step of 1.
5. Macro place channel from 5 to 15 with a step of 1.
6. Clock period of 5.
7. Density from 0.3 to 0.9 with a step of 0.
8. 50% TNS end percent.

Case 2: I want to perform DSE for the design "aaksdjka" using
the technology node "asap7", and consider tns, wns, the
required chip surface area, and the power consumption at
the final stage as the evaluation metric of DSE. The
search space of parameters includes placement parameters
and clock tree synthesis parameters.

↪→
↪→
↪→
↪→
↪→

C. Evaluation of LLMs
An objective evaluation system was developed to assess the
task decomposition and script generation capabilities of LLMs
designed for automated script generation. An evaluation system
was developed to assess the task decomposition and script
generation capabilities of LLMs designed for automated script
generation. This evaluation system comprises two integral com-
ponents. Initially, the Python scripts generated are subjected
to testing through the EDA tool interface to determine their
executability. Subsequently, a manual assessment is conducted
to ascertain whether the responses from the LLMs meet the
users’ requirements. To maintain fairness and accuracy in the
evaluation process, multiple judges’ perspectives are taken into
account, and these judges are kept unaware of which LLM
generated the response during scoring. The system uses a three-
tiered grading scheme, with Grade A representing the highest
achievement. Grade A is awarded to LLMs that demonstrate co-
herent task decomposition and generate accurate scripts. Grade
B indicates respectable but imperfect performance, assigned to
LLMs that plan logically but falter in script generation. Grade C
denotes failure in both task decomposition and code generation.

During the evaluation process, we use ChatEDA-Bench for
a comprehensive inspection. As summarized in Fig. 5, Au-
toMage models outperform all notable LLMs, and our proposed
AutoMage2 achieved the best performance, correctly earning
Grade A for 82% of test cases. This significantly exceeds the
62% Grade A attained by the next highest performer of no-
table LLMs, GPT-4. While GPT-4 exhibited reasonably strong
capabilities, it struggled to differentiate between lower quality
responses, assigning Grade B and C more evenly at 16% and
22% respectively. In contrast, AutoMage2 reliably identified
the highest grade-worthy responses. The other LLMs, Claude2
and GPT-3.5, performed noticeably worse than AutoMage2,
with Claude2 achieving 46% Grade A and GPT-3.5 only 28%
Grade A. This highlights their comparative deficiencies. In
summary, AutoMage2 substantially outperformed GPT-4 and
other LLMs by consistently assigning appropriate high grades.
The considerable margin between AutoMage2 and second-place
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Fig. 5 Evaluation results for AutoMage [42] and AutoMage2
compared to other LLMs. AutoMage models outperform other
notable LLMs by a significant margin in task planning and
script generation and AutoMage2 performs the best.

GPT-4 demonstrates the advances of our method in grading
performance. Our experiment affirms AutoMage2 as the current
state-of-the-art LLM for this evaluation task, which will be the
most reliable controller of ChatEDA.

D. Case Studies
In this section, we analyze five tasks involving user interac-
tions with EDA tools through a conversational interface. It is
important to note that this exploration is not exhaustive due to
the limitations inherent in this qualitative study. For instance,
controlling all possible variables, such as the vast array of
responses the LLM can generate for a given prompt, is beyond
our reach. As a result, our conclusions are based on a selected
group of samples deemed representative. Nonetheless, we con-
tend that the description of these exemplars will enhance our
understanding of the robust performance of AutoMage2, which
enhances the reliability of AutoMage2 powered ChatEDA.
For each task, we first outline the user’s requirements and
subsequently present the task decomposition process and the
scripts generated by AutoMage2. Moreover, given that GPT-4
is the best LLM in baselines during the script evaluation, we
also provide the scripts generated by GPT-4 for comparison.

Task 1: Parameter Grid Search. The first task requires LLMs
to execute a grid search, heavily relying on logic like traversing
parameters. This further examines the LLM’s grasp of each API
argument. AutoMage2 performed excellently, demonstrating its
logical prowess and exemplary API argument comprehension.
In contrast, GPT-4 showed a deficient understanding of param-
eter combination optimization. This highlights AutoMage2’s
more sophisticated grasp of the EDA tools’ interface and
parameter tuning logic compared to GPT-4.
USER: I want to perform a grid search on the design “how”
on “gf180” platform for floorplan parameters, CTS parameters
and placement parameters to find the best balance of chip area,
power consumption and performance. Can you help me to do
that?

AUTOMAGE2:

TASK DECOMPOSITION

This task requires us to perform a grid search over a set of parameters for
the floorplan, CTS, and placement stages of the chip design flow. The
parameters to be tuned are:

↪→
↪→
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1. Floorplan: core_utilization, core_aspect_ratio, core_margins,
macro_place_halo, macro_place_channel↪→

2. CTS: tns_end_percent
3. Placement: density

The user wants to find the best balance between chip area, power consumption,
and performance. Therefore, we need to get the "area", "power", and
"performance" metrics after the final report stage.

↪→
↪→

Here is the step-by-step analysis of how to complete this task:
1. Initialize the EDA tool using the "setup" function with the design name

"how" and the platform "gf180".↪→
2. Run logic synthesis using the "run_synthesis" function.
3. Perform floorplan using the "floorplan" function, iterating over the values

of the parameters to be tuned.↪→
4. Perform placement using the "placement" function, iterating over the values

of the parameters to be tuned.↪→
5. Perform CTS using the "cts" function, iterating over the values of the

parameters to be tuned.↪→
6. Perform global routing using the "global_route" function.
7. Perform detailed routing using the "detail_route" function.
8. Perform density fill using the "density_fill" function.
9. Generate the final report using the "final_report" function.
10. Get the "area", "power", and "performance" metrics using the "get_metric"

function.↪→

SCRIPT GENERATION

# Define the parameter space for the grid search
floorplan_parameters = [

{"core_utilization": 70, "core_aspect_ratio": 1, "core_margins": 10,
"macro_place_halo": 5, "macro_place_channel": 10},↪→

{"core_utilization": 80, "core_aspect_ratio": 1.2, "core_margins": 15,
"macro_place_halo": 10, "macro_place_channel": 15},↪→

{"core_utilization": 90, "core_aspect_ratio": 1.5, "core_margins": 20,
"macro_place_halo": 15, "macro_place_channel": 20},↪→

]
placement_parameters = [

{"density": 0.6},
{"density": 0.7},
{"density": 0.8},

]
cts_parameters = [

{"tns_end_percent": 20},
{"tns_end_percent": 30},
{"tns_end_percent": 40},

]

# Perform the grid search
best_parameters = {"floorplan": None, "placement": None, "cts": None}
best_performance = float("inf")
for floorplan_parameter in floorplan_parameters:

for placement_parameter in placement_parameters:
for cts_parameter in cts_parameters:

eda = chateda()
eda.setup(design_name="how", platform="gf180")
eda.run_synthesis()
eda.floorplan(

core_utilization=floorplan_parameter["core_utilization"],
core_aspect_ratio=floorplan_parameter["core_aspect_ratio"],
core_margins=floorplan_parameter["core_margins"],
macro_place_halo=floorplan_parameter["macro_place_halo"],
macro_place_channel=floorplan_parameter["macro_place_channel"]

)
eda.placement(density=placement_parameter["density"])
eda.cts(tns_end_percent=cts_parameter["tns_end_percent"])
eda.global_route()
eda.detail_route()
eda.density_fill()
eda.final_report()
performance = eda.get_metric("final", ["area", "power",

"performance"])↪→
if performance < best_performance:

best_performance = performance
best_parameters["floorplan"] = floorplan_parameter
best_parameters["placement"] = placement_parameter
best_parameters["cts"] = cts_parameter

print(best_parameters)

GPT-4:

SCRIPT GENERATION

# Instantiate the chateda class
eda = chateda()
# Setup the EDA tool for the "how" design on "gf180" platform
eda.setup(design_name="how", platform="gf180")
# Define the floorplan function for grid search
def floorplan_func(core_utilization, core_aspect_ratio, core_margins):

eda.floorplan(core_utilization=core_utilization,
core_aspect_ratio=core_aspect_ratio, core_margins=core_margins)↪→

return eda.get_metric(stage="floorplan", metrics=["area", "power",
"performance"])↪→

# Define the CTS function for grid search
def cts_func(tns_end_percent):

eda.cts(tns_end_percent=tns_end_percent)
return eda.get_metric(stage="cts", metrics=["area", "power",

"performance"])↪→
# Define the placement function for grid search
def placement_func(density):

eda.placement(density=density)

return eda.get_metric(stage="place", metrics=["area", "power",
"performance"])↪→

# Grid search parameters for each stage
floorplan_params = {

"core_utilization": {"minmax": [50, 100], "step": 10},
"core_aspect_ratio": {"minmax": [0.5, 2.0], "step": 0.5},
"core_margins": {"minmax": [1, 5], "step": 1}

}
cts_params = {

"tns_end_percent": {"minmax": [10, 100], "step": 10}
}
placement_params = {

"density": {"minmax": [0.1, 1.0], "step": 0.1}
}

# Perform grid search
tune(floorplan_func, floorplan_params)
tune(cts_func, cts_params)
tune(placement_func, placement_params)

Task 2: Parameter Tuning Process. The next task requires the
model to provide a parameter-tuning solution. Examining the
LLM’s use of the tune function also evaluates its ability to sug-
gest an appropriate parameter space. Without sufficient priors,
LLMs cannot determine an exact parameter range. However,
we can see that both AutoMage2 and GPT-4 can generate a
complex search space, endowing the parameter tuning strategy
with greater potential. However, GPT-4 misses an important
intermediate ”synthesis” step in task decomposition, demon-
strating weaker comprehension of the task decomposition. In
this aspect, AutoMage2 excels.

USER: What are the tunable parameters in floorplan? Give me
an example of tuning them for ”router” design on the platform
sky130 to get the ppa results. Try to provide a larger search
space for parameter tuning.

AUTOMAGE2:

TASK DECOMPOSITION

To complete this task, we need to first identify the tunable parameters in the
floorplan function. According to the chateda API documentation, the
tunable parameters in the floorplan function are core_utilization,
core_aspect_ratio, core_margins, macro_place_halo, and
macro_place_channel.

↪→
↪→
↪→
↪→

Next, we need to write a function that takes these parameters as inputs, runs
the flow using these parameters and returns the ppa results.↪→

Finally, we can use the tune function to tune these parameters. We need to
provide a dictionary where the keys are the parameter names and the values
are dictionaries containing the ranges and step sizes for these
parameters.

↪→
↪→
↪→

SCRIPT GENERATION

def tune_floorplan(core_utilization, core_aspect_ratio, core_margins,
macro_place_halo, macro_place_channel):↪→
eda_tool = chateda()
eda_tool.setup(design_name="router", platform="sky130")
eda_tool.run_synthesis()
eda_tool.floorplan(core_utilization=core_utilization,

core_aspect_ratio=core_aspect_ratio, core_margins=core_margins,
macro_place_halo=macro_place_halo,
macro_place_channel=macro_place_channel)

↪→
↪→
↪→
eda_tool.placement()
eda_tool.cts()
eda_tool.global_route()
eda_tool.detail_route()
eda_tool.density_fill()
eda_tool.final_report()
return eda_tool.get_metric("final", ["power", "performance", "area"])

tunable_params = {
"core_utilization": {"minmax": [0, 100], "step": 5},
"core_aspect_ratio": {"minmax": [0.5, 2], "step": 0.1},
"core_margins": {"minmax": [5, 20], "step": 1},
"macro_place_halo": {"minmax": [5, 20], "step": 1},
"macro_place_channel": {"minmax": [5, 20], "step": 1}

}
tune(tune_floorplan, tunable_params)
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GPT-4:

SCRIPT GENERATION

# Define the target function for parameter tuning
def target_function(core_utilization, core_aspect_ratio, core_margins,

macro_place_halo, macro_place_channel↪→
# Initialize chateda class
eda_tool = chateda()
# Setup EDA tool with design_name as "router" and platform as "sky130"
eda_tool.setup(design_name="router", platform="sky130")
eda_tool.floorplan(

core_utilization=core_utilization,
core_aspect_ratio=core_aspect_ratio,
core_margins=core_margins,
macro_place_halo=macro_place_halo,
macro_place_channel=macro_place_channel

)
return eda_tool.get_metric(stage="floorplan", metrics=["power",

"performance", "area"])↪→

# Parameters to be tuned with their respective min, max, and step values
params = {

"core_utilization": {"minmax": [50, 100], "step": 5},
"core_aspect_ratio": {"minmax": [0.5, 2], "step": 0.1},
"core_margins": {"minmax": [1, 5], "step": 1},
"macro_place_halo": {"minmax": [1, 10], "step": 1},
"macro_place_channel": {"minmax": [1, 10], "step": 1}

}
# Tune parameters
tune(target_function, params)

Task 3: Customized Optimization. Customized Optimization
requires tuning parameters in the model per the search space
specified by the user. This process thoroughly evaluates the
model’s understanding of the tune function and the significance
of each API interface parameter. It is clear that AutoMage2
appropriately grasps the need for user-customized parameter
tuning, while GPT-4 exhibits a deficient understanding of key
EDA tool arguments. This demonstrates AutoMage2’s more
sophisticated comprehension of the EDA tools’ interface and
the logic of parameter tuning compared to GPT-4.
USER: We are going to develop the new ASIC project “dat-
acenter chip” for server applications on the “nangate4” plat-
form, I want to create an automated script that will tune the
EDA process, while optimizing for minimal power usage and
maintaining acceptable performance and area. Here is my plan:

1) Density level ranges from 0.1 to 0.9 with increments of
0.005;

2) The search space of core utilization percentages is between
60% and 85%;

3) Clock periods are ranging from 5 to 10 in steps of 1;
4) Resolve 50% to 80% of timing violations, increasing in steps

of 3%;
5) Setting the core aspect ratio play around between 1 and 2

with a step of 0.2;
6) Setting the core margins, macro place halo, and macro place

channel to be 7, 8, 9 separately;
7) Keeping the rest of the parameters at their default values.

AUTOMAGE2:

TASK DECOMPOSITION

This task requires us to develop a script that automates the EDA process for
the "datacenter_chip" project on the "nangate4" platform. The goal is to
optimize the design for minimal power usage while maintaining acceptable
performance and area.

↪→
↪→
↪→

To achieve this, we need to tune several parameters of the EDA process,
including density, core utilization, clock period, percentage of timing
violations to resolve, core aspect ratio, core margins, macro place halo,
and macro place channel.

↪→
↪→
↪→

Here is a step-by-step analysis of how to complete the task:

1. Initialize the EDA tool with the design name "datacenter_chip" and platform
"nangate4".↪→

2. Run logic synthesis with varying clock periods.
3. Perform floorplanning with different core utilization percentages and core

aspect ratios.↪→
4. Run placement with different densities.
5. Run clock tree synthesis with different percentages of timing violations to

resolve.↪→
6. Run global routing and detail routing with default parameters.
7. Run density fill and final report with default parameters.
8. Evaluate the performance metrics for power, performance, and area.

SCRIPT GENERATION

def tune_flow(density, core_utilization, clock_period, tns_end_percent,
core_aspect_ratio, core_margins, macro_place_halo, macro_place_channel):↪→
eda = chateda()
eda.setup(design_name="datacenter_chip", platform="nangate4")
eda.run_synthesis(clock_period=clock_period)
eda.floorplan(core_utilization=core_utilization,

core_aspect_ratio=core_aspect_ratio, core_margins=core_margins,
macro_place_halo=macro_place_halo,
macro_place_channel=macro_place_channel)

↪→
↪→
↪→
eda.placement(density=density)
eda.cts(tns_end_percent=tns_end_percent)
eda.global_route()
eda.detail_route()
eda.density_fill()
eda.final_report()
return eda.get_metric("final", ["power", "performance", "area"])

params = {
"density": {"minmax": [0.1, 0.9], "step": 0.005},
"core_utilization": {"minmax": [60, 85], "step": 1},
"clock_period": {"minmax": [5, 10], "step": 1},
"tns_end_percent": {"minmax": [50, 80], "step": 3},
"core_aspect_ratio": {"minmax": [1, 2], "step": 0.2},
"core_margins": {"minmax": [7, 7], "step": 0},
"macro_place_halo": {"minmax": [8, 8], "step": 0},
"macro_place_channel": {"minmax": [9, 9], "step": 0}

}
tune(tune_flow, params)

GPT-4:

SCRIPT GENERATION

def run_eda_flow(density, core_util, clock_period, tns_end_percent,
core_aspect_ratio, core_margin, macro_halo, macro_channel):↪→
# Setup the design
tool.setup(design_name="datacenter_chip", platform="nangate4")
# Run synthesis with the given clock period
tool.run_synthesis(clock_period=clock_period)
# Perform floorplanning with the specified parameters
tool.floorplan(core_utilization=core_util,

core_aspect_ratio=core_aspect_ratio, core_margins=core_margin,
macro_place_halo=macro_halo, macro_place_channel=macro_channel)

↪→
↪→
# Run placement with the specified density
tool.placement(density=density)
# Execute CTS to address the specified percentage of timing violations
tool.cts(tns_end_percent=tns_end_percent)
# Continue with the default parameters for the subsequent EDA steps
tool.global_route()
tool.detail_route()
tool.density_fill()
tool.final_report()
# Retrieve the power, performance, and area metrics after the EDA flow
power_metric = tool.get_metric(stage="final", metrics=["power"])
performance_metric = tool.get_metric(stage="final",

metrics=["performance"])↪→
area_metric = tool.get_metric(stage="final", metrics=["area"])
# The goal is to minimize power consumption, so we'll use power as our

primary metric↪→
return power_metric

# Parameter space as defined by the user
param_space = {

"density": {"minmax": [0.1, 0.9], "step": 0.005},
"core_util": {"minmax": [60, 85], "step": 1},
"clock_period": {"minmax": [5, 10], "step": 1},
"tns_end_percent": {"minmax": [50, 80], "step": 3},
"core_aspect_ratio": {"minmax": [1, 2], "step": 0.2},
"core_margin": {"minmax": [7, 9], "step": 1},
"macro_halo": {"minmax": [7, 9], "step": 1},
"macro_channel": {"minmax": [7, 9], "step": 1}

}
tune(func=run_eda_flow, param=param_space)

Task 4: Clock Period Minimization. During instruction
tuning, we guided AutoMage2 on using the API interface
according to our specific needs. However, we did not teach it to
modify the parameters using self-feedback from the evaluation
results. In this test case, we examined how the LLM adjusts
the API arguments through self-feedback to achieve the user-
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requested evaluation outcomes. Intriguingly, both AutoMage2
and GPT-4 successfully completed the provided test case.

USER: Try to find out the smallest valid clock period for the
design “leon” on “asap7” platform. Note that a clock period is
valid only if the “wns” metric at the final stage is non negative.

AUTOMAGE2:

TASK DECOMPOSITION

To achieve this, we can follow these steps:
1. Set up the EDA tool with the design name "leon" and platform "asap7".
2. Run logic synthesis with the smallest possible clock period (default

value).↪→
3. Perform floorplanning, placement, CTS, global routing, detail routing,

density fill, and final report.↪→
4. Get the "wns" metric after the final stage.
5. If the "wns" metric is non-negative, return the current clock period.

Otherwise, increase the clock period and repeat the process.↪→

SCRIPT GENERATION

def find_smallest_valid_clock_period(clock_period):
# Create an instance of the chateda class
eda_tool = chateda()
# Setup the design
eda_tool.setup(design_name="leon", platform="asap7")
# Run logic synthesis
eda_tool.run_synthesis(clock_period=clock_period)
# Run floorplanning
eda_tool.floorplan()
# Run placement
eda_tool.placement()
# Run CTS
eda_tool.cts()
# Run global routing
eda_tool.global_route()
# Run detail routing
eda_tool.detail_route()
# Run density fill
eda_tool.density_fill()
# Run final report
eda_tool.final_report()
# Get the "wns" metric
wns = eda_tool.get_metric("final", ["wns"])
if wns >= 0:

return clock_period
else:

return find_smallest_valid_clock_period(clock_period+1)
# Call the function to find the smallest valid clock period
smallest_valid_clock_period = find_smallest_valid_clock_period(1)
print(smallest_valid_clock_period)

GPT-4:

SCRIPT GENERATION

# Starting from an assumed clock period. This might need tweaking based on
prior knowledge of the design and platform.↪→

clock_period = 1.0 # Initial assumption in nanoseconds (ns)
while True:

# Initializing the chateda class
eda_tool = chateda()
# Setup for the 'leon' design on 'asap7' platform
eda_tool.setup(design_name="leon", platform="asap7")
# Running the synthesis with the current clock_period
eda_tool.run_synthesis(clock_period=clock_period)
# Following the EDA flow
eda_tool.floorplan()
eda_tool.placement()
eda_tool.cts()
eda_tool.global_route()
eda_tool.detail_route()
eda_tool.density_fill()
eda_tool.final_report()
# Fetching the WNS metric at the final stage
wns = eda_tool.get_metric(stage="final", metrics=["wns"])
# If WNS is non-negative, then the current clock_period is valid
if wns >= 0:

break
else:

clock_period += 0.1 # Incrementing the clock period by 0.1ns. This
step can also be tweaked.↪→

print(f"The smallest valid clock period for the design 'leon' on 'asap7'
platform is {clock_period} ns.")↪→

Task 5: Self Correct. This task evaluates the model’s ability
to self-correct mistakes, while also testing its capacity to
comprehend EDA tools from the opposite perspective. Both

AutoMage2 and GPT-4 can accurately identify and fix errors,
demonstrating AutoMage2’s self-correction skills and profound
understanding of utilizing EDA tools.

USER: Can you help me check whether the provided script can
complete the task and provide the reason?
Here is the task:
I want to optimize performance at the routing stage for my
design asjdk on nangate45.
Here is the script:
def tune_performance():

params = {"tns_end_percent": {"minmax": [0, 100], "step": 5}}
def optimize(tns_end_percent):

eda = chateda()
eda.setup(design_name="asjdk", platform="nangate45")
eda.run_synthesis()
eda.cts(tns_end_percent=tns_end_percent)
eda.global_route()
eda.detail_route()
return eda.get_metric(stage="route", metrics=["performance"])

best_params = tune(optimize, params)
print(best_params)

tune_performance()

If the script can’t complete the task, please provide a script that
can complete the task.

AUTOMAGE2:

TASK DECOMPOSITION

The task is to optimize the performance at the routing stage for the design
"asjdk" on the "nangate45" platform. The script provided is almost
correct, but it lacks some necessary steps.

↪→
↪→

Here are the steps to complete the task:
1. Set up the EDA tool with the design name "asjdk" and the platform

"nangate45".↪→
2. Run logic synthesis.
3. Perform floorplanning.
4. Run placement.
5. Perform clock tree synthesis (CTS) with different percentages of violating

paths to fix.↪→
6. Run global routing.
7. Run detail routing.
8. Get the performance metric after detail routing.
9. Tune the parameter "tns_end_percent" to find the value that gives the best

performance.↪→

SCRIPT GENERATION

def tune_performance():
params = {"tns_end_percent": {"minmax": [0, 100], "step": 5}}
def optimize(tns_end_percent):

eda = chateda()
eda.setup(design_name="asjdk", platform="nangate45")
eda.run_synthesis()
eda.floorplan()
eda.placement()
eda.cts(tns_end_percent=tns_end_percent)
eda.global_route()
eda.detail_route()
return eda.get_metric(stage="route", metrics=["performance"])

best_params = tune(optimize, params)
print(best_params)

tune_performance()

GPT-4:

SCRIPT GENERATION

def tune_performance():
params = {"tns_end_percent": {"minmax": [0, 100], "step": 5}}
def optimize(tns_end_percent):

eda = chateda()
eda.setup(design_name="asjdk", platform="nangate45")
eda.run_synthesis()
eda.floorplan() # Adding the floorplan step.
eda.placement() # Adding the placement step.
eda.cts(tns_end_percent=tns_end_percent)
eda.global_route()
eda.detail_route()
return eda.get_metric(stage="route", metrics=["performance"])

best_params = tune(optimize, params)
print(best_params)

tune_performance()
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VII. DISCUSSION

Our proposed ChatEDA and its controllers, AutoMage models,
achieve significant performance in the automation of the EDA
flow. Despite the advancements, they face several limitations.
Firstly, ChatEDA’s design lacks universal applicability to di-
verse API documents. This constraint necessitates the creation
of specialized API documentation for different EDA tools,
thereby limiting ChatEDA’s scalability and broader application
in the EDA industry. Moreover, the unique API structure of
each EDA tool requires a bespoke approach, impeding the
seamless integration of ChatEDA across various platforms
and tools. Secondly, although AutoMage models demonstrate
enhanced capability in EDA flow automation, they encompass
a substantial number of model parameters. This complexity
results in a significant slowdown during a single decoding step
in these larger models. Thirdly, we haven’t provided some
basic evaluation flow or (semi-)automated scoring tools to
support comparisons using the ChatEDA-Bench, which cannot
enable a straightforward evaluation of different solutions from
others. Nevertheless, the assessment of LLM outputs presents
challenges due to the vast output space, the subjective nature of
relevance and coherence judgments, and considerations regard-
ing human readability. Therefore, we have chosen to leverage
human-centric evaluation with the input and insights of multiple
expert judges, aiming to comprehensively evaluate not only the
efficacy of task decomposition but also the quality of script
generation within the context of LLM outputs. We hope that the
introduction of a benchmark comprising tasks remains highly
beneficial for model debugging and comparative analysis of
methodologies.

These limitations highlight the imperative for ongoing ef-
forts to augment the versatility and efficiency of ChatEDA.
Firstly, optimizing the decoding strategy of LLMs to im-
prove their decoding speed would significantly enhance the
usability and effectiveness of ChatEDA. Moreover, a critical
goal is to substantially enhance the generalization capacity
of LLMs, enabling them to adeptly manage unfamiliar EDA
tool documentation in zero-shot or few-shot scenarios. Such a
breakthrough would significantly broaden the scope of LLMs
in various EDA contexts, representing a major stride in AI-
powered EDA tool integration and leading to more adaptable
and versatile design automation solutions. Additionally, we plan
to advance the multi-turn dialogue capabilities of our system.
This enhancement will facilitate dynamic interactions based
on user feedback, allowing the system to amend and rectify
potential errors in responses.

VIII. CONCLUSION

Interfacing EDA tools is essential for unleashing circuit design
productivity. In this work, we propose an LLM-powered au-
tonomous agent for EDA, which enables a conversational inter-
face for designers to interact with the design flow. Technically,
ChatEDA integrates a fine-tuned AutoMage, which orchestrates
the design flow through task decomposition, script generation,
and task execution. ChatEDA handles various user requirements
well, outperforming other LLM models like GPT-4 and so on.

We hope this work could inspire next-generation EDA tool
evolution.
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