
HAL Id: hal-01178730
https://inria.hal.science/hal-01178730v1

Submitted on 13 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Infrastructure as Runtime Models - Towards
Model-Driven Resource Management

Filip Krikava, Romain Rouvoy, Lionel Seinturier

To cite this version:
Filip Krikava, Romain Rouvoy, Lionel Seinturier. Infrastructure as Runtime Models - Towards Model-
Driven Resource Management. ACM/IEEE 18th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS’15), Sep 2015, Ottawa, Canada. pp.6. �hal-01178730�

https://inria.hal.science/hal-01178730v1
https://hal.archives-ouvertes.fr

Infrastructure as Runtime Models -
Towards Model-Driven Resource Management

Filip Křikava,
Czech Technical University, Czech Republic

filip.krikava@fit.cvut.cz

Romain Rouvoy, Lionel Seinturier
Inria / University of Lille, France
first.last@inria.fr

Abstract—The importance of continuous delivery and the
emergence of tools allowing to treat infrastructure configura-
tions programmatically have revolutionized the way computing
resources and software systems are managed. However, these
tools keep lacking an explicit model representation of underlying
resources making it difficult to introspect, verify or reconfigure
the system in response to external events.

In this paper, we outline a novel approach that treats system
infrastructure as explicit runtime models. A key benefit of
using such models@run.time representation is that it provides
a uniform semantic foundation for resources monitoring and
reconfiguration. Adopting models at runtime allows one to inte-
grate different aspects of system management, such as resource
monitoring and subsequent verification into an unified view
which would otherwise have to be done manually and require to
use different tools. It also simplifies the development of various
self-adaptation strategies without requiring the engineers and
researchers to cope with low-level system complexities.

I. INTRODUCTION

The growing scale of computing infrastructures keeps rais-
ing new challenges in its provisioning, management, monitor-
ing and recently also self-adaptation [1]. Beyond the scale,
the complexity is also increasing, since even a small cluster,
deployed privately in an enterprise or formed within some
public cloud provider, will include several loosely coupled
software components and services. All of which have to be
appropriately configured, monitored and adapted during the
system execution.

Most of the components and services provide some mon-
itoring and management interfaces. However, despite that
conceptually, there is no difference in spawning new virtual
machine (VM), starting a new service, adding a new user into
a system or creating a new database, performing all these
actions require use of several tools with different syntax and
semantics. This gives rise to accidental complexities not only
for system administration but also for developing any self-
adaptive behavior as the researchers and engineers are obliged
to deal with lot of low-level system details.

The increasing adoption of continuous delivery and the
emergence of tools, such as Ansible, Puppet or Chef have
revolutionized the way computing resources and software
systems are managed.1 These tools treat the infrastructure con-
figuration programmatically. Using these tools for provisioning
and maintenance of server environments resembles the way
software engineers build and maintain application source code.

1Ansible (http://ansible.com), Puppet (http://puppetlabs.com), Chef (http:
//chef.io) are the three most popular infrastructure automation systems ac-
cording to the GitHub ranking as of the time of writing.

Essentially, they can be considered as model transformation
tools that take a description—i.e. a model—of desired states of
a set of computing resources (e.g., virtual machines, services,
users, databases) and generate a set of necessary commands
that appropriately configure the actual resources. For example,
Ansible takes resource state description in a YAML format and
generates a set of Python scripts that are executed on managed
hosts.

Using such design-time models already yields a significant
improvement in the way systems are configured. However,
these models have the potential to be also used at runtime.
Having an explicit model of computing resources available at
runtime brings many additional advantages beyond resource
provisioning and reconfiguration. They allow one to integrate
different aspects of system management, such as resource
monitoring and subsequent system verification into an unified
view which would otherwise have to be done manually and
require to use different tools. Another key benefit of using
such runtime models is that they provide a rich and uni-
form semantic foundation for computing resources monitoring
and reconfiguration [2]. This significantly simplifies building
higher-level abstractions for configuration management system
self-adaptation.

In this paper, we focus on such explicit runtime models
(model@run.time [3]) and propose a novel approach for in-
frastructure management and self-adaptation. The aim is to
provide a flexible abstraction that (i) raises the level of
abstraction on which the computing resources are monitored
and managed, (ii) accurately reflects the state of the resources
it represents, and (iii) can be access through a wide range
of clients (e.g., from existing modeling tools, command line,
domain-specific languages). Furthermore, using models allows
one to reuse some well-established techniques, languages and
tools from classical Model-Driven Engineering (MDE). For
example, model verification can be used to check the system
consistency, model transformation can export an infrastructure
model into a visualization or reporting tool, and model com-
parison and model merging can be used to discover differences
between computing resources and to consolidate them.

II. MOTIVATION

In this section, we motivate the use of model@run.time for
computing resource management. We do that by presenting
some of the drawbacks in the current infrastructure man-
agement on a typical system administration task and self-
adaptation strategy. We argue that these issues can be alle-

http://ansible.com
http://puppetlabs.com
http://chef.io
http://chef.io

viated by shifting from design-time model to model@run.time
and in the next section we show concrete examples of how
these drawbacks are addressed by our vision of resource
management.

As a running example, we consider the administration of
OpenStack2, which is a popular open-source cloud computing
platform. It is composed of a several interconnected services,
such as a compute service (nova) for managing VM instances
an image service (glance) for managing VM images, and a
monitoring service (ceilometer) for collecting measurements
of the utilization of the deployed physical and virtual re-
sources.

A. System Administration
A common administration task is spawning a virtual

machines. In Ansible 1.9, this can be realized using its
nova_compute module with the following code excerpt:
- nova_compute:

state: present
login_tenant_name: demo
name: vm1
flavor_id: 3 # m1.medium
image_name: ubuntu-14.04-x86_64
floating-ips: [192.168.1.32]

It specifies a computing resource, a m1.medium sized VM called
vm1 within the demo cloud tenant, accessible via 192.168.1.32

IP address.
The following is a list of shortcomings that we encounter

with this administration task. It is important to note, that
the list is by no means complete and it solely reflects our
experience. Furthermore, while we choose Ansible as it is
the most popular infrastructure automation tool (according to
GitHub star ranking), the following issues largely applies to
the other tools as well.
— Lack of Verification. Upon execution, Ansible translates

the model resource state into a Python code, which is con-
sequently executed. Since the transformation happens at
design-time without any connection to the target cloud, the
possible verification is limited to basic type conformance.
However, Ansible cannot ensure that the given IP belongs
to the demo tenant or whether given image fits the selected
VM size.

— Leaky Idempotence. Ansible resource definitions are
idempotent—i.e. no action is performed once an action has
put a resource into a desired state. In this example, no new
VM will be started if there exists a VM named vm1. The
problem is that if the administrator changes the VM config-
uration (e.g. flavor, image), none of these changes will be
applied. To have them applied, the administrator will have
to first tear down the VM manually. Since some changes
might affect the VM uptime this might be sometimes the
desired behavior, however, the choice should depend on
the system administrator. This is particularly true when
the infrastructure management is part of a continuous
deployment in which committing a change in the resource
configuration model shall be immediately reflected in the
target infrastructure.
Furthermore, there are multiple strategies to reflect such
changes and their choice depends solely on the system

2http://openstack.org

administrator and the state of the system. For example,
changing the VM image can be done by either recreating
the entire VM or by spawning a new one and live-
migrating the original VM state.

— Lack of Introspection. One of the root cause of the above
issues is the lack of introspection of the target system. This
makes one to rely on additional tools to query the state of
the resource. The main problem is that these additional
tools operate on a different level of abstraction. To give a
concrete example, we might want to find out what are the
differences between the currently running vm1 instance and
the one we have specified in the above snippet. Currently,
this is rather an error-prone task since it results in manually
comparing all the VM meta-data.
Furthermore, the lack of introspection makes the VM
definition rather static. For instance, it is not possible to
specify that we want to have the largest possible VM
within the tenant quotas or to use the newest available
Ubuntu image.

— Lack of Composability. Imagine a scenario in which we
would like to create VM on the first available host that
has the lowest temperature. While OpenStack supports
scheduling hints to influence how nova controller chooses
the target host on which a VM will be created, this use
case is not yet supported3. On the other hand it can be
realized using the existing services. The temperature can be
collected by Ganglia4 or many other monitoring tools and
nova scheduler supports forcing a particular host. However,
to realize this in Ansible is not straightforward and requires
to create a new module that replicates most of the original
nova_compute functionality because Ansible modules are not
composable.
Another scenario applicable to our example is cloud meta-
scheduling in which a VM could be scheduled in more
than one cloud provider. For instance, if the private cloud
is fully utilized, we might want to submit a VM instance
to one of the public cloud providers. Similarly, this is not
a trivial to express due to the lack of composability.

B. Self-Adaptation

A classical5 example of cloud self-adaptation is auto-
scaling. It leverages cloud elasticity allowing a VM cluster
to dynamically adjust its size based on its utilization. There
are different strategies to achieve the auto-scaling itself (i.e.
computing the size of VM cluster based on its utilization), for
example using utility theory [4] or control theory [5]. However,
currently all these solutions rely on a set of custom scripts
that collect the necessary metrics (e.g., memory, CPU usage,
response time, throughput) and provide the reconfiguration
action (e.g. enlisting and discharging VMs). These scripts need
to query different services and build an ad hoc system model
themselves. This requires significant engineering effort and

3https://www.mail-archive.com/openstack-dev@lists.openstack.org/
msg11978.html

4http://ganglia.sourceforge.net
5Amazon EC2 already provides auto scaling support cf. http://aws.amazon.

com/autoscaling. In OpenStack, it is planned cf. https://blueprints.launchpad.
net/heat/+spec/autoscaling-api-resources.

http://openstack.org
https://www.mail-archive.com/openstack-dev@lists.openstack.org/msg11978.html
https://www.mail-archive.com/openstack-dev@lists.openstack.org/msg11978.html
http://ganglia.sourceforge.net
http://aws.amazon.com/autoscaling
http://aws.amazon.com/autoscaling
https://blueprints.launchpad.net/heat/+spec/autoscaling-api-resources
https://blueprints.launchpad.net/heat/+spec/autoscaling-api-resources

complicates experimenting with self-adaptive behavior as the
researchers and engineers need to deal with many low-level
system details.

III. VISION OF MODELS@RUN.TIME FOR
INFRASTRUCTURE MANAGEMENT

In this section we present our vision of the model@run.time
for infrastructure management. We start with an overview
of the model@run.time for our running example and show
an illustration how can it be used to introspect and modify
the underlying OpenStack resources. Next, we discuss the
runtime meta-model and some additional features it supports.
For brevity sake, we deliberately omit some technical details.

A. Overview
Figure 1 shows an excerpt of the model@run.time for

OpenStack management. It contains two top-level models
for the nova and glance services together with models for
some of the OpenStack resources. Each reference and attribute
additionally contains an annotation specifying its mutability
(r/w) and whether, changes have to be manually observed
(o), or change notifications are supported (n). Since most of
the events in OpenStack get posted in a message queue, the
majority of features supports change notifications.

Nova

Glance

NovaInstance

(rn) state: NovaState

NovaFlavor

NovaStatus

(rn) vcpus: Int
(ro) cpu_usage: Double

(wn) instances

0..*

(rn) status

NovaFloatingIP

(wn) flavors
0..*

(rn) floatingIps

GlanceImage
(wn) images

0..*

0..* (rn) images

(wn) image

1

0..*

1

(wn) flavor 1

(wn) floatingIP
1

NovaHypervisor

(rn) hosts 0..* (wn) instances0..*

Ceilometer CeilometerResource
(rn) resources

0..* (ro) ceilometer

1

Fig. 1. Model@run.time for OpenStack management (excerpt)

B. Introspection and Modification
While it is possible to have a multiple client interfaces

(cf. Section IV-C), in the following examples we access the
model@run.time using an internal DSL in Scala6. We use the
interactive Scala read-eval-print-loop console for the execution
environment, but full Scala programs can be used alike.
One of the main reason for a DSL is that it operationalizes
the model@run.time in the sense that it enables manipulat-
ing instances of the meta-model. Its syntax is automatically
generated from the meta-model definition and aligned with
Scala. Furthermore, it allows one to mix declarative model
manipulation with imperative code constructs. The reason for
choosing Scala is that (i) it supports both object-oriented and
functional style of programming, (ii) it uses type inference
to combine static type safety with a “look and feel” close to
dynamically typed languages, and (iii) it has been designed to
host DSLs.

6http://scala-lang.org

To start manipulating our model@run.time, we first need to
connect to a model@run.time instance.
> val nova = connect[Nova]("localhost/nova-demo")

This constructs a connection to a given model@run.time (i.e.
Nova) deployed at a local endpoint (i.e. /nova-demo). Once
connected, we can introspect the state of the virtual machines
by simply navigating the model references and attributes:
> nova.instances
| RTList(
| NovaInstance(name="vm0", state=NovaState.Active,
| image=GlanceImage(name="ubuntu-14.04-x86_64", ...),
| flavor=NovaFlavor(id=3, name="m1.medium", ...),
| status=NovaStatus(vcpu=2, cpu_usage=0.87, ...) ...),
| NovaInstance(name="vm1", ...), ...)

This returns all the deployed virtual machines in a form of
causally connected list (RTList). Any changes to such a list are
immediately propagated to the running system. For example,
adding a new element spawns a new VM:
> nova.instances += NovaInstance(name = "vm2", ...)
| RTFuture[NovaInstance](...)

The return type of this operation (and most of others) is a
future object that represents an asynchronous (and potentially
long running) operation. It can be used to monitor the opera-
tion state and progress if supported by the underlying resource.
The RTList provides most of the expected Scala collection
operations allowing one to easily query the state of the
resources in an expressive and concise way (cf. Appendix A).

All model instances are also causally connected and chang-
ing element features is reflected in the connected resource. For
example, changing VM flavor results in a resize action:
> instance.flavor := nova.flavors find (_.name=="m1.large")

Multiple resize strategies are supported using implicit values7.
For instance:
> implicit val s = NovaResizeStrategy.Recreate

overrides the default resize strategy for all the subsequent calls.

C. Meta-Model
The meta-model is similar to the EMF Ecore meta-

model [11]. It is statically typed with multiple inheritance
and fully reflective. A model class represents a computing
resource. It can contain a number of features (i.e. attributes
and references) and define a number of operations. Similarly
to EMF, it also allows single reference containment only and
additionally, each instance has a string identifier, which is
unique within its container. The structural features further
contain an annotation about their mutability and observability.

At the type level, the runtime model differentiates between
instances that are causally connected to the underlying re-
sources and instances that only describe the desired resource
state. Let us consider the following example:
> val instance = NovaInstance(name = "vm2", ...)
| NovaInstanceDesc(name="vm2")

The call to the model class object factory constructs only a
description of a desired resource state. This instance is not
connected to any resource yet. The connection is established
by containing the instance within another already contained
one:

7Values that are automatically provided to method arguments in the case
they are not give explicitly by caller.

http://scala-lang.org

> nova.instances += instance
// or
> nova.hosts(0).instances += instance

Either of these operations will spawn a new VM and create
its causally connected instance that can be accessed through
the returned future. The difference between the two operations
is that the latter will schedule the instance creation with the
schedule hint that forces the selected hypervisor (i.e. hosts(0)).
Similarly, removing a model instance from its containment
disconnects it and can potentially destroy the underlying
computing resource.

The main consequence is that a connected instance cannot
escape the boundary of the top level container—i.e. the host
that runs the model. For example, given two distinct nova
services (nova1 and nova2), the following is not allowed:
> nova2.instances += nova1.instance(0)

On the other hand it is possible to try to recreate a VM:
> nova2.instances += nova1.instance(0).copy()

The copy() operation returns the model instance description.
It is important to note here that changing a containment

within the same model is possible. For example:
> nova.hosts(1).instances += nova.hosts(0).instances(0)

will try to live migrate the first VM from the first hypervisor
to the second one.

Having an explicit model of computing resources allows one
to use some of the existing MDE tools for its manipulation.
For example FUNNYQT [8] or SIGMA [7] can be directly
used for some common model manipulation tasks. It is also
possible to transform snapshots of model@run.time into into
a more conventional Ecore models and reuse tools from EMF
ecosystem (e.g. for comparison, visualization or reporting).

D. Model Composition
The preferred way to create runtime models is through

composition. In practice, this means that we first design the
model classes of computing resources that reflect the available
operations from a single service point of view. These service-
level runtime models can be then composed together to create
higher-level abstractions that provides a more holistic view
of the system. For example, the NovaStatus is built using the
ceilometer service.

E. Model Monitoring
The model distinguishes between features that are

reactive—i.e. can post notifications—and features whose
changes must be manually observed. The reactive features can
be monitored without any additional work. For example:
> monitor(nova.instances) {

case ElementAdded(e) => log("Added new VM: "+e.name)
}

creates a monitor8 that logs a message every time a new VM
is being scheduled.

Features that have to be manually observed with a help of
periodic monitor:
> monitor(nova.instances(0).status.cpu_usage, 2.sec) { ... }

8The monitor function takes as a second argument a partial function that
is executed for all matching events

Instead of a single attribute, an aggregate can be monitored as
well (e.g. nova.instances.map(_.status.cpu_usage).mean).

Monitors are runtime models as well (contained in the
top level model element). Consequently, they can be also
monitored (e.g. changes in the triggering period). Monitors
provide the fundamental building block for autonomous self-
adaptation as they allow to systematically react to system state
changes.

F. Model Consistency Checking

Similarly to the design-time model, model@run.time also
supports capturing structural constraints as state invariants. An
invariant is represented as a boolean query associated to a
containing reference. The main difference to a design-time
constraints is that the evaluation is triggered automatically at
runtime upon every change of the corresponding resource or
its model@run.time representation.

For example, the following constraint checks whether a
given instance can fit the remaining project quota:

> constraint("Size within quota", nova.instances) { self =>
nova.quota.isAvailable(self.flavor)

}

Constraints are implemented using monitors. Similarly they
are also runtime models and thus they can be also monitored
(e.g. their violations).

G. Interconnection of Various Runtime Models

So far we have only shown examples within the same
model@run.time scope. However, an infrastructure usually
consists of more than one system and therefore it is important
to be able to cross model boundaries. For example, a VM
instance might be running a MySQL database. Using our
model@run.time, it can be accessed using simple traversal:

> instance.models(_.name == "mysql-root").as[MySQL].dbs
| RTList(MySQLDB(name="root", tables=RTList(...)))

This implies that that the NovaInstance inherits from system
Host which provide the models reference discovering deployed
models in a given host.

IV. PROOF OF CONCEPT IMPLEMENTATION

This section provides an overview of the implementation
concepts of out vision of model@run.time for infrastructure
management presented above. It consists of three parts: (1) a
model definition, (2) an implementation of causal connection,
and (3) a synthesis of the runtime platform and client inter-
faces.

A. Model Definition

The model definition consists of a structural description
of the modeled computing resource (e.g. Figure 1). Given
that our model@run.time meta-model is similar to Ecore, the
definition is currently done in EMF, reusing the existing Ecore
editors. We rely on Ecore annotations to attach additional
meta-information to the modeling elements. In the future,
we plan to provide a dedicated DSL for better designing
experience.

B. Causal Connection

From a model definition, we synthesize a skeleton Scala
implementation that has to be completed with a code that
connects the model features and operations to the underlying
computing resources. This phase is currently manual and
requires most of the engineering effort. The amount of effort
largely depends on the quality of the available interfaces used
to monitor and manage the computing resource. The same can
be observed from the-state-of-the-art infrastructure automation
tools that also relies on a manual orchestration of management
interfaces.

For resource-oriented services, there is a potential to auto-
mate this phase, at least to some degree, by synthesizing the
connectors directly from service descriptors (e.g. WADL9).
Nevertheless, the essential challenge is in being able to ac-
curately represent the state of a resource without having any
significant performance impact. This is particularly difficult for
resources that do not provide any push style notifications and
whose changes have to be therefore manually observed. The
current state of the art leaves many opportunities for further
research.

C. Runtime Platform and Client Interfaces

Finally, taking the model definition and implementation of
causal connectors, we can synthesize the runtime platform
and generate client interfaces. The implementation is based on
the Actor model [12] using the Akka10 runtime. The system
architecture is a classical client/server. The server deploys
one or model instances and associates them with a distinct
endpoints to which the clients connect.

Server. The idea is that every model class is handled by
an actor. We have therefore a flat hierarchy of actors that
correspond to all model definitions that are currently loaded.
Each actor handles directly only model attributes and opera-
tion invocations while forwarding reference traversals to the
corresponding actors of the given reference type. This allows
the actors to be stateless and we can use routing patterns that
can scale the number of actors according to the number of
requests (starting a new actor in Akka is a cheap operation).
The only exceptions are monitors, which are implemented as
stateful actors (they have references to their trigger allowing
them to gracefully shutdown). The memory complexity of the
runtime platform is therefore linear to the number of deployed
model classes and monitors.

Client. In general, from the client perspective, the model
definition is technologically agnostic and therefore there might
be potentially many different client interfaces. The only re-
quirement is to be able to make an HTTP connection to the
actor runtime. Currently, we focus on a concrete interface in
a form of a Scala internal DSL. Essentially, it is a library that
allows one to write fragments of code with domain-specific
syntax. These fragments are woven within Scala own syntax
so that it appears different.The advantage of internal DSL is
that it allows us to reuse all the existing language infrastructure

9http://www.w3.org/Submission/wadl/
10http://akka.io

and libraries without any additional effort (e.g. Scala console
and collection operations).

The generated DSL classes are proxies to the remotely
running actors. Each connected model instance has addition-
ally two private attributes: an element path and an endpoint.
The element path is a unique path that identifies the element
instance within a given endpoint (URL to the actor server). It
is the combination of the instance unique name together with
the name of its containing reference starting at the beginning
of the model hierarchy. For example a VM instance vm with
id vm0 that is deployed on a hypervisor host0:
vm = nova.hosts(_.name=="host0").instances(_.name=="vm0")

has the following element path: //nova-demo/hosts/host0/

instances/vm0. Executing vm.status.cpu_usage will append
/status/cpu_usage to the path above and sends a request to the
associated endpoint asking for the value of the attribute. The

root

Nova NovaInstance NovaStatusNovaHypervisor

client

//nova-demo/hosts/host0/instances/vm0/status/cpu_usage

request

forward

response

forward forward forward

Fig. 2. Message forwarding and delegation.

processing of such a request is explained in Figure 2. Basically,
each actor consumes a part of the element path and either
answers the client in the case the path has been exhausted
or further delegates the request to an actor that represents
the reference traversal. The reason for this representation is
that it allows us to design the system in a purely reactive
and asynchronous manner without the need to introduce any
blocking operations.

Another important consequence of this design is that there
are no living model instances. This implementation gives an
illusion of a graph of causally connected model instances,
however, they are recreated with every request (each actor
loads an instance of the model it is responsible for). The reason
is that, these instances represent existing resources which are
already present in the system and more importantly, which can
be externally modified.

V. DISCUSSION AND CONCLUSION

The main motivation for this work is to provide an ap-
proach that leverages infrastructure management. While, there
has been some preliminary work using model@run.time to
target parts of specific infrastructures [9], [10], we rely on
model@run.time to integrate various monitoring and manage-
ment interfaces together in a logical way, providing a holistic
view of the system with an uniform and rich semantic base
for its manipulation.

The model@run.time provides a foundation on top of which
new higher-level abstractions and tools can be built, in par-
ticular for infrastructure automation. For example, instead of
sequential execution of a resource configuration scripts, the
deployment might be treated as an infrastructure adaptation
and use some sophisticated control algorithms (e.g. discrete
control). Similarly, the infrastructure model@run.time can be
used as the monitoring and reconfiguration layer in some
of the self-adaptive software engineering frameworks and

http://www.w3.org/Submission/wadl/
http://akka.io

toolkits (e.g., RAINBOW [4], EUREMA [14] or ACTRESS [6]).
Moreover, using a specific client, the infrastructure model
could used directly from tools like Matlab. This would greatly
simplify the work needed for system identification and con-
troller design.

A. Research Challenges and Limitations
The are many research challenges associated with the use

of model@run.time [13]. In the context of infrastructure man-
agement, we find the following to be the most import ones:
— What is the right abstraction in which a multi-layer, multi-

tier system infrastructure can be expressed?
— How to scale such abstraction so it can represent a large

number of assets in the targeted domain?
— How to create causal connections that accurately represent

the state of the underlying system, yet without any signif-
icant performance impact?

— How can this connection be automatically synthesized for
existing resource oriented services?

— How to turn legacy services into resource oriented ones?
— How to handle resource inconsistencies and failures?
— Which of the existing MDE tools could be used in connec-

tion to such model@run.time and how to make the runtime
model accessible to them?

— What are the relevant user interfaces that shall be provided
to the users to interact with the model?

While this work tries to partially address some of them,
much is left for further work. The main limitations is cur-
rently in the prototype implementation, in the way the causal
connection is implemented (i.e. manually), and in the scale
of current experiments. We believe that the principal design
choice of using reactive platform and the Actor model will
allow us to scale the implementation. In Akka 2.0 version, the
memory overhead is only about 400 bytes per actor instance
(2.7 million actors per GB of heap) with a possible throughput
of 50 million messages per sec on a single machine11.

There are also some additional, in a way technical, chal-
lenges related to authentication and authorization. Many of the
resources we model have their own security model and autho-
rization schemes. Currently, the deployed model is embedded
with authorization credentials (e.g. the endpoint /nova-demo

uses OpenStack demo user and tenant).

B. Conclusion
This paper presents a novel use of model@run.time for

infrastructure management. We have shown examples of us-
ing such model for managing OpenStack virtual machines
implemented in an initial prototype. While preliminary and
incomplete, it shows a great potential for system management,
for building new higher-level abstractions on the top of it,
and for its integration into existing self-adaptive engineering
frameworks and tools.

We focused primarily on the infrastructure management,
however, the same ideas can be applicable to any application
that is manageable. For example, we can imagine a runtime
model of a local email client12, an iTunes library, or a desktop

11http://bit.ly/1AMqrcJ
12Finding the email with a largest attachment will be then a simple query.

window manager. This might open a whole new window of
opportunities for model@run.time research.

ACKNOWLEDGMENT

This work is partially financed by the Datalyse project13.

REFERENCES

[1] B. H. Cheng et al., “Software Engineering for Self-Adaptive Systems: A
Research Roadmap,” in Software Engineering for Self-Adaptive Systems,
vol. 5525, 2009.

[2] N. Bencomo, R. France, B. H. Cheng, and U. Aßmann, Mod-
els@run.time: Foundations, Applications, and Roadmaps, 2014.

[3] G. Blair, N. Bencomo, and R. B. France, “Models@run.time”, 2009.
[4] D. Garlan et al., “Rainbow: architecture-based self-adaptation with

reusable infrastructure,” in Computer, 2004.
[5] F. Krikava, P. Collet, and R. Rouvoy, “Integrating Adaptation Mech-

anisms Using Control Theory Centric Architecture Models: A Case
Study,” in International Conference on Autonomic Computing, 2014.

[6] F. Krikava, P. Collet, and R. B. France, “ACTRESS: Domain-Specific
Modeling of Self-Adaptive Software Architectures,” in Symposium on
Applied Computing, 2014.

[7] F. Krikava, P. Collet, and R. B. France, “SIGMA: Scala Internal
Domain-Specific Languages for Model Manipulations,” in International
Conference on MODELS, 2014

[8] T. Horn, “Model Querying with FunnyQT,” in International Conference
on Model Transformation, 2013

[9] X. Zhang et al., “Demonstration of Runtime Model Based Management
of Diverse Cloud Resources,” in Demo Session at MODELS’13, 2013

[10] N. Huber, F. Brosig, and S. Kounev, “Modeling dynamic virtualized
resource landscapes”, in International Conference on Quality of Software
Architectures, 2012

[11] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework, Addison-Wesley Professional, 2008.

[12] C. Hewitt, “Viewing control structures as patterns of passing messages,”
Artificial Intelligence, vol. 8, no. 3, pp. 323–364, Jun. 1977.

[13] B. Bennaceur, “Mechanisms for leveraging models at runtime in self-
adaptive software,” in LNCS 8378, 2014.

[14] T. Vogel and H. Giese, “Model-Driven Engineering of Self-Adaptive
Software with EUREMA,” in ACM Transactions on Autonomous and
Adaptive Systems, Vol. 8, No. 4, Article 18

APPENDIX

— Get current CPU usage of all deployed VMs:
> nova.instances map (x => x.name -> x.status.cpu_usage)
| RTList((vm0,0.87), (vm1,0.27)))

— Get instance with the highest CPU usage:
> nova.instances maxBy (_.status.cpu_usage)
| NovaInstance(name="vm0", ...)

— Get the mean of CPU usage of all active VMs:
> nova.instances.filter(_.state==NovaState.Active)

.map(_.status.cpu_usage).mean
| 0.57

— Spawn largest available VM with the latest Ubuntu:
> nova.instances += NovaInstance(name = "vm2",

image=nova.images.filter (_.name startsWith "Ubuntu")
.maxBy (_.name),

flavor=nova.flavors.sorted.reverse
.find (x => nova.quota isAvailable x))

13http://www.datalyse.fr

http://bit.ly/1AMqrcJ
http://www.datalyse.fr

	Introduction
	Motivation
	System Administration
	Self-Adaptation

	Vision of Models@Run.Time for Infrastructure Management
	Overview
	Introspection and Modification
	Meta-Model
	Model Composition
	Model Monitoring
	Model Consistency Checking
	Interconnection of Various Runtime Models

	Proof of Concept Implementation
	Model Definition
	Causal Connection
	Runtime Platform and Client Interfaces

	Discussion and Conclusion
	Research Challenges and Limitations
	Conclusion

	References
	Appendix

