
Enhancing syntax expressiveness in
domain-specific modelling

Damiano Di Vincenzo∗, Juri Di Rocco†, Davide Di Ruscio† and Alfonso Pierantonio†
Università degli Studi dell’Aquila

67100 L’Aquila, Italy
∗damiano.divincenzo@graduate.univaq.it, †name.surname@univaq.it

Abstract—Domain-specific modelling helps tame the complex-
ity of today’s application domains by formalizing concepts and
their relationships in modelling languages. While meta-editors
are widely-used frameworks for implementing graphical editors
for such modelling languages, they are best suitable for defining
novel topological notations, i.e., syntaxes where the model layout
does not contribute to the model semantics. In contrast, many
engineering fields, e.g., railways systems or electrical engineering,
use notations that, on the one hand, are standard and, on
the other hand, are demanding more expressive power than
topological syntaxes. In this paper, we discuss the problem
of enhancing the expressiveness of modelling editors towards
geometric/positional syntaxes. Several potential solutions are
experimentally implemented on the jjodel web-based platform
with the aim of identifying challenges and opportunities.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

In Model-Driven Engineering [1] (MDE), the all-important
goal of delivering better modeling tools at lower cost has led
to the emergence of meta-editors to produce such tools more
efficiently [2]. Frameworks like GMF [3], Eugenia [4], and
Sirius [5] are powerful means for building graphical editors for
modeling languages based on EMF1. Arguably, a contributory
factor limiting the application range of such frameworks is that
their support is confined to the class of topological notations
in which the model layout does not contribute to the model
semantics.

Conventional wisdom suggests that topological notations are
sufficiently expressive for modeling the inherent information
concerning software, although exceptions like sequence dia-
grams are still possible. Indeed, most of the time, representing
knowledge using attributed nodes and relationships seems
expressive enough and the most natural way of doing it.
Like this, usual operations like resizing, moving, or even
rotating elements in the editors are merely used for the sake
of understandability and do not contribute to the definition of
the model. In this respect, the correspondence between the
knowledge encoded in the model and its representation can
be considered unidirectional, i.e., property dialogs are used to
assign values to attributes of a model element that are then, in
turn, adequately visualized using conditional formatting rules.
For instance, if an attribute ranges within an interval like in
the amplifier knob in Fig. 1, current platforms do not allow to

1https://www.eclipse.org/modeling/emf/

set its value by interacting with the given representation but
only via a property dialog; the corresponding knob rotation is
then obtained by providing a different representation for each
admissible value. Such an application scenario describes a
forward engineering process in which the modeling notation is
designed from scratch as well as the notation syntax according
to the elicited requirements provided by domain experts. In
contrast, many engineering fields, e.g., railways systems or
electrical engineering, use notations that are standard and
cannot be modified, thus designing a modeling tool by means
of the existing meta-editors may be challenging because of
the lack of expressiveness of the topological notations. For
instance, if the user must interact with the knob in Fig. 1
in order to assign a value to the corresponding attribute by
rotating it accordingly, a bidirectional mapping [6] between
the layout representation and the model semantics is needed.
In essence, bidirectionality permits the user to interact with the
modeling elements without using property dialogs and assign
attributes values that depend on layout attributes, including
element coordinates, dimensions, and rotation angles.

This paper discusses how to enhance the syntax expres-
siveness for domain-specific model language to go beyond
topological editors. To this end, we briefly surveyed the char-
acteristics of the existing frameworks for generating graphical
editors for modeling languages. Potential solutions that have
been experimentally implemented on the jjodel web-based
platform are analyzed and discussed through several examples
to identify challenges and opportunities.
Outline. The paper is structured as follows: the next section
presents background and a motivational example. Section III
illustrates the jjodel modeling environment; in particular, the
architecture is presented in Sect. III-A), the syntax definition
in Sect III-B, the bidirectionality between the concrete and
abstract syntax is discussed in Sect. III-C, the syntax layers
are presented in III-D, and finally how these components
synergically work together is illustrated in III-E. A simple
yet interesting case study in Sect. IV. Finally, Sect. VI draws
some conclusions and prospects for future work.

Fig. 1. ”Pump up the volume”, an amplifier knob

ar
X

iv
:2

11
1.

14
45

3v
1

 [
cs

.S
E

]
 2

9
N

ov
 2

02
1

TABLE I
OVERVIEW OF EXISTING MDE TOOLS PROVIDING THE DEFINITION OF GRAPHICAL MODELING WORKBENCHES

jjodel MetaEdit+ GMF Eugenia Sirius
G

en
er

al Environment Web Standalone Eclipse Eclipse Eclipse
Supported M3 ecore GOPPRR ecore ecore ecore
Version control system no yes any (code based) any (code based) any (code based)
Model fragments no yes no no yes
Validation constraints yes OCL-based OCL-based OCL-based OCL-based

G
ra

ph
ic

al
sy

nt
ax

fa
ci

lit
ie

s

Multiple syntax layer yes yes no no yes
Stack of layers yes no no no yes
Node customization complete

(html/css based)
predefined
customization

predefined
customization

predefined
customization

predefined
customization

Edge customization yes yes yes yes yes
Model representation any (html/css

based)
diagram, matrix
and table

diagram diagram diagram, table,
tree, sequence

Conditional style yes yes yes yes yes
Positional constraints yes no no no no
Bidirectional semantic position yes no no no no
Auto-layout yes, physical

(constraint
based) simulation

nodes alignment nodes alignment nodes alignment yes, with possi-
bility to pin ele-
ments

II. BACKGROUND AND MOTIVATION

In this section, we briefly survey existing frameworks for
the generation of graphical editors for modelling languages.
The discussion is restricted to the only generative frameworks
that, starting from a metamodel and additional attributions,
can generate a fully-fledged model editor. Next, we illustrate
an example of notation that the existing frameworks cannot
manage without custom code extensions.

A. Frameworks for developing DSM graphical editors

In the following, the features of a number of frameworks for
generating graphical editors are analyze and discussed with the
aim of outlining research challenges that can help understand
where they fall short. A summary of the analysis is provided
in Table I.

MetaEdit+ [7] is an environment for building modelling tools
and generators fitting to application domains. MetaEdit+ pro-
vides a metamodelling language (i.e., GOPPRR) and tool suite
for defining the abstract concepts of a domain where concepts,
as well as the relationships among them, are expressed by
modelling infrastructure. Based on the GOPPRR, MetaEdit+
provides a set of functionalities for defining diagramming
editors and model generators.

GMF [3] is a framework for developing graphical editors
based on the Eclipse Modeling Framework (EMF) [8] and
Graphical Editing Framework (GEF).2 The GMF Tooling sup-
ports a model-driven process for generating a fully functional
graphical editor based on the GMF Runtime starting from the
four different models: i) the Ecore-based metamodel, ii) the
graphical definition model that identifies graphical elements,
iii) the tooling definition model contributes to palettes, menus,
toolbars, and other periphery of the editor, and iv) the mapping
model that establishes all links to define the links between the
aforementioned models.

2https://www.eclipse.org/gef/

Eugenia [4] aims to simplifies the development of GMF-based
graphical model editors. Eugenia uses metamodel annotations
to generate the four models previously mentioned by applying
a well-defined model transformation chain.

Sirius [5] is an Eclipse project based on GMF and the
EMF that is increasingly replacing GMF in building mod-
ern graphical editors because it requires little programming
overhead. Sirius allows the conceptual separation between the
metamodel and the corresponding representation: starting from
a Ecore-based domain specification, it allows a model-based
specification of visual concrete syntax organized in viewpoints.

Recently, the framework Sprotty3 gained some attention as it
provides web-based diagramming functionalities for rendering
and animating model diagrams. The framework relies on the
Graphical Language Server Platform4 (GLSP) and provides
robust and scalable rendering experience possibilities. Unfor-
tunately, Sprotty does not (yet?) provide meta-facilities for
the generation of graphical editors, and therefore it has been
omitted from the comparison with the other meta-editors.

In Table I, we provide an overview of the meta-editors
mentioned above in the context of graphical representation
and positional semantics we discussed before. The table also
includes our jjodel prototype presented in Sect. III. The
first general rows report aspects of the meta-editors, i.e., the
environment where the meta-editor is run, the meta notation
to define metamodels, version control systems, the support
of models fragments, and the availability of model validation
constraints. Then, the table reports if and how the considered
meta-editors support the graphical syntax facilities. In partic-
ular, we analyze the support of multiple syntax layers and
the possibility of stacking them, the chance to define nodes
and edges customization, the supported model representation,
the availability of conditional style, and the auto-layout model
features. Finally, it is worth noting that apart from our jjodel

3https://projects.eclipse.org/projects/ecd.sprotty
4https://www.eclipse.org/glsp/

https://www.eclipse.org/gef/
https://projects.eclipse.org/projects/ecd.sprotty
https://www.eclipse.org/glsp/

prototype, all the meta-editors have little or no support for
positional features. In particular, positional constraint and
bidirectional semantic position are only supported by jjodel.

B. Motivational example

This section proposes an illustrative example to show how
certain representations are challenging to be managed in a
topological editor. In particular, the example features a nota-
tion to represent a catalog of airplanes to be stored in a hangar.
Figure 2(a) presents an excerpt of the metamodel formalizing
such a domain, where the Hangar stores several Airplanes
that are distinguished in two categories, Motorized and
Glider. Each airplane is characterized by its maxAltitude,
height, length, and the number of seats. Despite its
simplicity, the metamodel permits identifying some of the
challenges that a positional/geometric editor should address.
Let us assume that an hangar named ROMAFIU1234 contains
two motorized airplanes and a glider, as specified in the
instance model (whose abstract syntax is) given in Fig. 2(b).

In order to convey more intuition to the domain expert, an
alternative representation for the model is given in Fig. 3 where
the dimension and the position of an airplane in the diagram
denotes its size, capacity, and maximal altitude, respectively.
In particular, the y-axis and x-axis represent the altitude and
the number of seats, respectively, whereas the dimension of
the airplane gives its length and height.

Besides representing such information on the diagram, it
would be interesting to let the domain expert instantiate
an airplane and specify its characteristics by dragging and
resizing the graphical elements according to the semantics
given to its geometric features. Such kind of editor behavior
requires a bidirectional mapping between the model content
and the model representation. More precisely, interacting with
the objects in the editor to define their characteristics requires a
mapping from the representation to the model abstract syntax.

Missing properties can be represented in a traditional ap-
proach through node content and styling, by the layout proper-
ties of a sub-node like the tankCapacity, or not represented
at all and left to other views.

Since not all the elements in the metamodel require a reverse
mapping from the positional attributes to the model abstract
syntax, there is a problem about what to do with those objects
not having such attributes; solutions could be either:

– exclude them from the view,
– display them with any position and size ignoring the

positional semantics, or
– display them with custom semantic following other posi-

tional rules.
Finally, since element positioning contributes to the model
definition and semantics, such elements cannot always be
freely positioned in the editors. Thus, it may be of crucial
relevance defining positional constraints as, for instance, in
the following cases:

– an aircraft cannot fly below the ground level: this means
that the aircraft cannot be positioned with negative value
of y-axis);

– an aircraft cannot have less than 1 passenger: in other
words the aircraft cannot be positioned before the 0 value
of the x-axis;

– the airplane height cannot exceed its length: that would
be more likely to be a mistake than a design choice.

None of the mentioned meta-editors implements a complete
bidirectional mapping between the model representation and
the model content or abstract syntax nor permits the specifica-
tion of layout or positional constraints. Consequently, certain
common features like for instance, the grid or the snap-to-
grid function, are either provided as ”canned” abstractions
of behaviors for a fixed set of graphical objects or require
to be manually implemented (most of the frameworks offer
extension mechanisms). While the mapping from the model
content is typically part of the machinery in the generated
editors as the property dialog is the only way to modify
specific attributes, specifying a mapping from the model
representation to its abstract syntax is not supported.

To a certain extent, the presented example is artificial and
does not exhaustively cover all possible cases that topological
editors cannot handle. However, it shows how enhancing the
expressiveness of the current meta-editors would widen the
general model-driven application range, especially regarding
those engineering fields where tooling has a significant role.

III. THE JJODEL MODELLING ENVIRONMENT

To mitigate the challenges proposed in Sect. II, we propose
jjodel, a web-based tool for defining modelling editors. The
architecture of jjodel is presented in Sect. III-A. Section III-B
describes the View components to define the graphical notation
of the modelling elements. To support the specification of
positional editors, event-driven rules have been discussed in
Sect. III-C. Section III-D describes the possibility of stacking
view layers for rendering the abstract concepts defined in the
metamodel, while Sect. III-E presents all the jjodel workbench
parts.

A. Architecture
jjodel is a prototypical web-based platform that consists of

four main components as illustrated in Fig. 4; in particular:
– the Renderer is the component responsible for workbench

arrangement as, for instance, themes and color schemes
that contains two subcomponents, ColorScheme that pro-
vides coloring customization used by Graph that, in turn,
renders the model;

– the Model API component provides API management
to access and bridge modelling elements throughout the
metamodelling architecture tiers, i.e., model, metamodel,
and meta-metamodel;

– the ViewLayer combines different Views and keeps the
abstract syntax and the graphical concrete syntax in a
consistent state; in addition, it enforces the positional
semantics, with constraints and execution rules;

– finally, the ExportManager manages the serialization
of the authored models in the XMI format5 or in

5https://www.omg.org/spec/XMI/2.5.1/About-XMI/

https://www.omg.org/spec/XMI/2.5.1/About-XMI/

(a) Aircraft metamodel (b) An instance of the Aircraft metamodel

Fig. 2. A Topological editor

Fig. 3. A positional/geometric editor. The diagram is approximately on scale with a Y-axis on power (0.5) scale, X-axis with linear scale, aircraft length and
height on a Log2 scale, nodes are positioned by the bottom-left vertex. Images from Lufthansa

Fig. 4. An overview of jjodel components

JSON6 by means of the Serializer and EMFExporter
sub-components; the Persistence sub-component is re-
sponsible for managing external repositories, e.g., MDE-
Forge [9] or ReMoDD [10], where modeling artifacts can
be persistently stored.

jjodel is designed to be primarily client-centered and, as
such, can be used offline as the server does nothing more than
serving static resources. The dynamic content, user customiza-

6https://emfjson.github.io/

tions, and persistence are granted by JavaScript and the client
internal localStorage.

The main objective of the architectural design is reducing
the accidental complexity of the modeling tool by providing
the platform with zero setup possibilities, low or no main-
tenance, and simplifying the overall workflow by removing
those platform-related steps like the regeneration of the editors.
This has been possible by adopting the technological stack
summarized in Table II.

https://emfjson.github.io/

TABLE II
TECHNOLOGICAL STACK

Technology Description
Typescript7 The main programming language used for the jjodel

implementation
Angular CLI8 The command-line interface tool that has been used

to initialize, develop, and maintain the graphical
elements of jjodel

jQuery9 The JavaScript library to easily traverse and manipu-
late DOM documents10; it has been used to manage
the user-defined dynamic content

Bootstrap11 Used to manage the UI and to aid the user in defining
customized concrete syntax by well-known bootstrap
shortcut classes

vis.js12 The open source graph visualization software for rep-
resenting structural information as diagrams, graphs,
and networks; it has been used to handle automatic
layout of the graphical elements

Fig. 5. The layered syntax

B. Graphic concrete syntax

A jjodel project comprehends a metamodel and an associ-
ated specification of the graphical concrete syntax. The latter is
managed by the ViewLayer and consists of a number of layered
Views, each composed by ViewRules. Each ViewRule defines
the visual representation, layout constraints, execution rules,
and positional semantics for one or more modelling elements
through a customizable template defined by the modeler. A
View can represent the model partially or entirely and binds
a modeling element at most to a single ViewRule, although
views can be combined by means of the ViewCombiner giving
place to ViewRules (collected from different Views) assigned
to a single modelling element. Rules assigned to the same
modeling element are arranged in a priority queue managed by
the ViewCombiner, which will apply the rule with the highest
priority. Ultimately the ViewCombiner can stack partial Views
solving overlaps with a priority policy as depicted in Fig. 5.

A View consists of a collection of ViewRules. Each of such
rules specifies the concrete syntax for one or more metaclasses
by providing the HTML/SVG/CSS used in the renderer’s
graph. Besides specifying the pictorial representation for the
instances of a metamodel, rules specify also the actions to be
executed when their parent view is active. When a view is
activated (or deactivated) the corresponding rules are dynami-

7https://www.typescriptlang.org/
8https://angular.io/cli
9https://jquery.com/
10https://www.w3schools.com/js/js htmldom.asp
11https://getbootstrap.com/
12https://github.com/mdaines/viz.js

cally enabled (or disabled) by means of the Graph component
that displays the content computed by the View subsystem.
Like this, depending on the active views the model is given
the desired pictorial representation and the editor the specified
behavior as specified by the rules. It is worth mentioning that
rules are not applied unconditionally but only when certain
events in the editor are triggered and related conditions are
verified as described in the next section.

C. Bidirectional syntax mapping

Constraints and positional semantics are enforced through
the rules specified in the views. A rule consists of a triple

(< trigger >,< condition >,< action >)

where a trigger is an event occurring on the editor that can be
spontaneously activated or the outcome of the user interacting
with the editor. When a trigger is fired and the condition
is satisfied, then the action is executed providing the editor
the desired behavior. Multiple triggers can be combined in
a disjunction, in case the rule can be activated by multiple
events. The available triggers are listed in Table III and refer
to events that occur when the model content is modified, when
an element is moved around, resized, or rotated. Additional
triggers are fired when the mentioned actions start, end, or
while the action is executed. While triggers are fired many
times during the execution of an action.

Every time a specific trigger fires, such as changes in the
model or movements on the graphical layout, if a rule with
that specific trigger exists and the corresponding condition is
verified, then the action presented in the rules will be executed.
The condition can predicate on layout and model values or
the outcome of other action executions. Once the condition is
verified, the provided action can perform changes in the model
content or its graphical representation. In addition, an action
can enforce a provided constraint to make sure the positioning
of the affected element is correct. The constraint enforcement
is performed employing an underlying constraint solver. It is
worth noting that actions always produce an output value that
can be used by other actions or as a condition for triggers and
optionally side effects in the layout or model content.

The actions are grouped in three main categories (for the
sake of brevity, we are listing the most significant ones):

TABLE III
RULE TRIGGERS

Trigger Description
onRefresh when the model data changes
onDragStart when the move action starts
whileDragging when the move action is being executed
onDragEnd when the move action ends
onResizeStart when the resize action starts
whileResizing when the resize action is being executed
onResizeEnd when the resize action ends
onRotationStart when the rotation starts
whileRotating when the rotation action is being executed
onRotationEnd when the rotation ends

https://www.typescriptlang.org/
https://angular.io/cli
https://jquery.com/
https://www.w3schools.com/js/js_htmldom.asp
https://getbootstrap.com/
https://github.com/mdaines/viz.js

Fig. 6. context-sensitive auto completion for layout actions

Export actions: such actions allow to propagate the computed
values to other elements by editing the target element HTML
content and attributes. They can be used to style a reference
target according to his referrer.
Constraint actions: these actions prevent the user from gen-
erating an invalid layout enforcing positional semantics. Con-
straint actions have the following shape ”property operator
value” where: i) the property is layout graphical attribute, e.g.,
the width of the current element, its absolute position or its
position relative to a target; ii) operator is the comparison
operator; iii) value is the output computed by a mathematical
or JavaScript function from the modelling values, the layout
properties of the current modelling element, the relative target
of this rule, or the entire model. A valid example of this rule
is width = this.target.width * 2, which will enforce
the width of the modelling element holding this rule always
to be twice the size of his target. NB: the ”target” of this
rule is always a single HTML target selected by a CSS
selector, but it is possible to refer to multiple modelling targets
accessing the model content through this.model. Figure 6
shows the completion feature to assist the user to navigate
model elements;
Generic action/variable actions: they enable to access layout
and modelling data and apply any valid change by using the
provided API in the auto-completion editor. They are typically
used to compute an output value that other triggers or actions
will use and can produce side effects and act as a fallback for
actions that cannot be performed using other commands, such
as constraints that cannot be expressed as a single equation.

D. Layered Syntax

As already mentioned, a view is a collection of bundles that
can customize the visual styling, layout constraints, and data
constraints; such bundles will be just called style in this sequel
whenever it does not give place to ambiguity.

A single modelling element can have an arbitrary number
(possibly none) of applicable styles forming a priority queue,
but only the top of the queue is applied to the element. Simi-
larly to what happens with CSS, a style can affect modelling
elements according to the following priority order:

1) Personal, it is applied directly to the element, and an
element can only have a single personal style;

2) Inherited / inheritable, it is inherited by the M1 from the
M2, or by the M2 from M3, where M1, M2, and M3

are the usual levels in the metamodeling architecture. If
an inheritable style is defined inside an M2 classifier,
all the recognized instances of the class will inherit this
style.

3) Default (of a view), it is applied with low priority to all
modelling elements.

4) Global default, it is only applied if the queue is empty;
this style is immutable and does not belong to any view.

A view does not need to be total; it can also specify styles for
only a subset of the modelling elements. Partiality allows to
address specific styling needs and combine different styles as
long as they do not interfere. Indeed, multiple views can be
applied to the same model; however, if the same attributions
are specified in multiple views, then the definitions in the view
that is at the highest priority will prevail by overriding the
definitions in the lower priority views.

E. jjodel in action

Figure 7 illustrate the jjodel interface; more in detail, it
presents the metamodel editor, which is based on a diagram-
matic notation similar to that of the UML class diagrams. The
interface consists of several panes focusing on different aspects
of language definition: i) the definition of the abstract syntax,
ii) the specification of the graphical concrete syntax for the
modelling elements and iii) the definition of both positional
semantics and constraints. More in detail

– the top bar 1 contains app-wide or model-wide options
and allows to change between metamodelling and mod-
elling views;

– the left pane 2 lists the metaelement of the metamod-
eling notation that can be instantiated for creating or
enumeration types;

– the canvas graph 3 containing the model being edited (in
this case, a metamodel) in the selected graphical notation;

– the right pane 4 whose content is dynamic and always
relative to the selected element on the graph; it composed
of three subsections: i) the structured view is a static
tree-like view of the selected model element and his sub
features which can be used to edit elements not displayed
in the graph, ii) the style editor allows to customize the
graphical representation of the current modelling sub-
object, and iii) the Raw view shows the selected element
data in Ecore/JSON format;

– finally, the console 5 accepts queries to traversing and
visiting modelling elements and programmatically up-
dates their values (not fully implemented).

IV. EXAMPLES OF DOMAIN-SPECIFIC ENVIRONMENT

In this section, we illustrate the jjodel potential by showing
an implementation of the metamodel presented in Sect. II-B
and the corresponding modeling environment. In particular, the
modeling environment consisting of an editor with a default
view and a positional syntax is obtained from the metamodel
specification and the view definition, as explained in the

Fig. 7. jjodel graphical user interface

Fig. 8. The M2 default editor

previous sections. The entire environment with the relative
specifications is freely accessible13.

A. Metamodelling

As described in the Sect. III the starting point of any jjodel
projects is the metamodel definition. The platform supports
metamodeling by providing a predefined editor for specifying
Ecore-based metamodels. Figure 8 presents the jjodel meta-
model editor containing the example proposed in Sect. II-B.

Once the metamodel is specified, jjodel dynamically config-
ures the corresponding model editor as described in the next
section.

B. Model editor

The obtained model permits to instantiate the given meta-
model. Thus, all the instantiable concepts (i.e., the non abstract
metaclasses) formalized in the metamodel are listed in the
left pane (2 in Fig. 7). The left pane and the default view
are the baselines to fully express the model content. Figure 9

13https://bit.ly/3iK01GC

Fig. 9. The M1 left pane

shows the available concepts ready to be used for authoring
the model.

C. Concrete syntax

The default syntax provided by jjodel for editing models
is similar to the diagrammatic notation of the UML object
diagrams; nothing has to be done by the modeler since this
comes as part of the default environment of the platform. In
order to customize the syntax and the editor behavior, a new
View must be created using the view manager at the upper-right
corner of 3 of Fig. 7. A newly created view does not contain
any ViewRule; thus, the default style is still applied throughout
the model elements in the editor. By defining a new ViewRule
4 for the selected elements in the graph 5 , the designer
can customize the way model elements are represented in the
editor and how the user can interact with them accordingly.
Figure 10 shows how a sub-node (highlighted with a red
dashed outline) is represented by means of a HTML/CSS
fragment. It is worth noting that in such a fragment, the
expression $##name$ specifies the system to search for the
property name in the modelling element associated with the
current ViewRule. However, this form of templating does not

https://bit.ly/3iK01GC

Fig. 10. A template

allow the specification of any positional feature. The user can
only interact with the usual property dialog without performing
direct manipulations of the modelling elements. In order to
give some positional attribution to the modeling element, it
has to be made measurable as illustrated in Fig. 11. Once

Fig. 11. Measurable settings

an element is made ”measurable”, its movement and resizing
capability may be further characterized by using the provided
options; the element in figure has been constrained to be freely
draggable, but only resizable through its lower-right corner.

D. Positional constraint example

Positional constraints are expressions that predicate the po-
sitioning of the modeling elements in the editor. In our airplane
example, the number of seats of an airplane is determined by
its position along the x-axis. However, since the number of
seats cannot be negative or greater than a reasonable upper
limit, aircraft cannot be freely moved along the x-axis but only
within a specific range. To this end, the following constraint
action (see Sect. III-C)

vertexSize.x = 2 *
this.model.getChildren(’seats’).getValue()

can be provided in the dialog in Fig. 12. Such a rule prescribes
that X positioning of the aircraft must be double the amount
of his passengers. If the actual position does not satisfy the
predicate, then the underlying constraint solver will find the
closest position satisfying the constraint, and the visual node
will be moved accordingly. The constraint must be evaluated
in correspondence to specific trigger events: when the airplane
is created the first time, and when it is moved around. These

Fig. 12. A constraint action

Fig. 13. A trigger condition

two cases are captured by the onRefresh and whileDragging
triggers that will be associated to the constraint above.

V. RELATED WORK

In this section, we discuss related work, which may be
confined to the realm of meta-editors, visual languages and
positional grammars, and general user interface and experi-
ence. As to meta-editors, we briefly surveyed existing tools
and approaches in Sect. II; the list of considered frame-
works is not exhaustive, but most likely, they have pretty
extended coverage of current meta-editor usage. The corpus
research related to visual language is vast. In this context,
Costagliola et al. [11], [12] extend context-free grammars
for visual languages by considering graphical constructs in
addition to string concatenation. The paper represents a class
of approaches that aim to support diagrammatic languages
and generate the corresponding programming environment
through so-called Visual Language Compiler-Compilers (VL-
CCs). In particular, relation-based representation describes a
set of graphical objects and a set of relations. In contrast, a
set of attributed graphical objects are specified by attribute-
based representation. Here, the authors provide a first attempt
to express language’s attributes and references by graphical
notation. Similar works, including [13]–[15], include variants
on the expressiveness and present formal characterizations.
A more systematic review of the literature for the field of
visual languages is deferred to future work. The main objective
will be to identify approaches that provide insights and that
can easily be leveraged to metamodeling. More recently,
in [2] a discussion of how model-driven platforms fall short
concerning User interface and eXperience (UX). While most
of the focus is on platform usability, characteristics, advan-
tages, and disadvantages, very little is said on the intrinsic
quality of the generated environments. Nevertheless, the paper
introduces a notion of user experience for MDE (MX) to
highlight the challenges and opportunities surrounding UX
for MDE tool development, such as user model integration,

processes for tailoring UX to a domain-specific language, and
interoperability. In such a context, jjodel makes a step forward
in the usability of modeling tools by getting a more faithful
alignment between domain community needs and provided
modeling environments.

More general papers discussing what nowadays still is
challenging in current platforms have been recently published
(see [16], [17]). In particular, it is worth noting how accidental
complexity is one of the major hindrances for broader and
easier adoption of current model-driven tooling. The reasons
are not easily identifiable but are related to the complexity
of tools (e.g., Eclipse/EMF). Indeed, most of the time, the
decision-making process concerning the platform design and
implementation took place ages ago, with requirements and
objectives mutated over the years.

VI. DISCUSSION AND CONCLUSIONS

A fundamental challenge for model-driven engineering is
to reap the benefits of current generic platforms while ad-
dressing the need to design better domain-specific modeling
environments. Despite the traction gained in the industry by
MDE, such discipline is still affected by issues and problems
as described in recent investigations [16], [17]. For instance,
a recurring complaint for industrial organizations considering
the adoption of model-driven technologies is the lack of
sufficient tool support [2]. In particular, current users are often
exposed to a certain extent to forms of accidental complexity
that became even more evident with the advent of low-
code development platforms (LCDPs), where complexity is
minimized, and usability [18] maximized.

By designing and implementing jjodel we were addressing
the problem of making the modeler life a bit easier, i.e., we
tried to borrow some of the ideas that made LCDPs successful,
like zero setup, low or no maintenance, and advanced tech-
niques for user interfaces. Notably, a prototype does not fea-
ture the technical maturity of a commercial or industrial grade
tool but at least can help explore new territories and experi-
ment with prospective solutions. In our case, the intention was
to overcome the limitations due to the topological nature of the
existing meta-editors (and also of the design choice of offering
a limited set of pre-built functionalities). Many functionalities
offered by jjodel are obviously still requiring some polishing
and simplified (and elegant) notations. While jjodel features
a strictly more expressive concrete syntax than the existing
meta-editors, it is still unclear how far such expressiveness can
go, e.g., it is unclear whether a sequence diagram editor can be
easily arranged in jjodel. Indeed, a formal characterization of
the expressiveness of positional syntax is missing to the best of
our knowledge. Nevertheless, the paper shows that enhancing
what in [2] is called user experience for MDE (MX) by means
of positional notations, the application landscape for MDE
appears vaster and reasonably prone to new opportunities.
As to jjodel, it is a prototypical system that will be further
developed and refined. Especially, the possibility of using it
on the web represents a useful opportunity for those instructors
who want to focus on the more conceptual and foundational

aspects of modeling without spending ages in installing and
configuring the n-th instance of the latest EMF bundle.

Besides improving the general maturity of the tool, future
work includes a more foundational treatment of the class of
positional syntax and editors; more specifically, how it differs
from that of topological editors. Moreover, we would like to
survey different engineering domains to assess whether model-
driven engineering with the help of positional features, like the
modeling tools for designing railway interlocking systems.

REFERENCES

[1] D. C. Schmidt, “Model-driven engineering,” Computer-IEEE Computer
Society-, vol. 39, no. 2, p. 25, 2006.

[2] S. Abrahão, F. Bordeleau, B. Cheng, S. Kokaly, R. Paige, H. Stöerrle,
and J. Whittle, “User experience for model-driven engineering: Chal-
lenges and future directions,” in 2017 ACM/IEEE 20th International
Conference on Model Driven Engineering Languages and Systems
(MODELS). IEEE, 2017, pp. 229–236.

[3] “Eclipse project: Graphical Modeling Framework (GMF).” [Online].
Available: https://www.eclipse.org/modeling/gmp/

[4] D. S. Kolovos, A. Garcı́a-Domı́nguez, L. M. Rose, and R. F. Paige,
“Eugenia: towards disciplined and automated development of gmf-based
graphical model editors,” Software & Systems Modeling, vol. 16, no. 1,
pp. 229–255, 2017.

[5] “Eclipse project: Sirius.” [Online]. Available: https://www.eclipse.org/
sirius/

[6] S. Takahashi, S. Matsuoka, A. Yonezawa, and T. Kamada, “A general
framework for bi-directional translation between abstract and pictorial
data,” in Proceedings of the 4th annual ACM symposium on User
interface software and technology, 1991, pp. 165–174.

[7] K. Smolander, K. Lyytinen, V.-P. Tahvanainen, and P. Marttiin,
“Metaedit—a flexible graphical environment for methodology mod-
elling,” in International Conference on Advanced Information Systems
Engineering. Springer, 1991, pp. 168–193.

[8] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. Grose, Eclipse
Modeling Framework. Addison Wesley, 2003.

[9] F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino, and
A. Pierantonio, “Mdeforge: an extensible web-based modeling platform,”
in 2nd International Workshop on Model-Driven Engineering on and
for the Cloud, CloudMDE 2014, Co-located with the 17th International
Conference on Model Driven Engineering Languages and Systems,
MoDELS 2014, vol. 1242. CEUR-WS, 2014, pp. 66–75.

[10] R. France, J. Bieman, and B. H. Cheng, “Repository for model driven
development (remodd),” in International Conference on Model Driven
Engineering Languages and Systems. Springer, 2006, pp. 311–317.

[11] G. Costagliola, A. De Lucia, S. Orefice, and G. Tortora, Positional
Grammars: A Formalism for LR-Like Parsing of Visual Languages.
New York, NY: Springer New York, 1998, pp. 171–191. [Online].
Available: https://doi.org/10.1007/978-1-4612-1676-6 5

[12] G. Costagliola and G. Polese, “Extended positional grammars,” in
Proceeding 2000 IEEE International Symposium on Visual Languages,
2000, pp. 103–110.

[13] E. J. Golin, “Parsing visual languages with picture layout grammars,”
J. Vis. Lang. Comput., vol. 2, no. 4, p. 371–393, Dec. 1991. [Online].
Available: https://doi.org/10.1016/S1045-926X(05)80005-9

[14] K. Marriott, “Constraint multiset grammars,” in Proceedings of 1994
IEEE Symposium on Visual Languages, 1994, pp. 118–125.

[15] K. Wittenburg, “Earley-style parsing for relational grammars,” in Pro-
ceedings IEEE Workshop on Visual Languages, 1992, pp. 192–199.

[16] A. Bucchiarone, F. Ciccozzi, L. Lambers, A. Pierantonio, M. Tichy,
M. Tisi, A. Wortmann, and V. Zaytsev, “What is the future of modeling?”
IEEE software, vol. 38, no. 2, pp. 119–127, 2021.

[17] A. Bucchiarone, J. Cabot, R. F. Paige, and A. Pierantonio, “Grand
challenges in model-driven engineering: an analysis of the state of the
research,” Software and Systems Modeling, vol. 19, no. 1, pp. 5–13,
2020.

[18] M. Hassenzahl and N. Tractinsky, “User experience-a research agenda,”
Behaviour & information technology, vol. 25, no. 2, pp. 91–97, 2006.

https://www.eclipse.org/modeling/gmp/
https://www.eclipse.org/sirius/
https://www.eclipse.org/sirius/
https://doi.org/10.1007/978-1-4612-1676-6_5
https://doi.org/10.1016/S1045-926X(05)80005-9

	I Introduction
	II Background and motivation
	II-A Frameworks for developing DSM graphical editors
	II-B Motivational example

	III The JJodel modelling environment
	III-A Architecture
	III-B Graphic concrete syntax
	III-C Bidirectional syntax mapping
	III-D Layered Syntax
	III-E jjodel in action

	IV Examples of domain-specific environment
	IV-A Metamodelling
	IV-B Model editor
	IV-C Concrete syntax
	IV-D Positional constraint example

	V Related work
	VI Discussion and Conclusions
	References

