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Abstract—In Federated Learning (FL), hyper-parameters sig-
nificantly affect the training overhead in terms of computation
time, transmission time, computation load, and transmission
load. The current practice of manually selecting FL hyper-
parameters puts a high burden on FL practitioners since various
applications have different training preferences. In this paper,
we propose FedTune, an automatic hyper-parameter tuning
algorithm tailored to applications’ diverse system requirements
in FL training. FedTune is lightweight and flexible, achieving
8.48%-26.75% improvement for different datasets compared to
using fixed FL hyper-parameters.

I. INTRODUCTION

Federated learning (FL) has been applied to a wide range
of applications such as mobile keyboard [4] and speech
recognition [17] on top of mobile devices [1] and Inter-
net of Things (IoT) [26], [27]. Compared to other model
training paradigms (e.g., centralized machine learning [6],
conventional distributed machine learning [20]), FL has unique
properties such as massively distributed, significant unbal-
anced, and non-IID data distribution [15]. In addition to the
common hyper-parameters of model training such as learning
rates, optimizers, and mini-batch sizes, FL has unique hyper-
parameters, including aggregation algorithms and participant
selection [10], [11]. Fortunately, these FL hyper-parameters do
not affect the FL convergence property. Many FL algorithms
such as FedAvg [15], have been proved to converge to the
global optimum under different FL hyper-parameters [14] [22].
However, they can significantly affect the training overhead of
reaching the final model.

In this paper, we focus on the training overhead. Specifi-
cally, computation time (CompT), transmission time (TransT),
computation load (CompL), and transmission load (TransL)
are the four most important system overhead. CompT mea-
sures how long an FL system spends in model training; TransT
represents how long an FL system spends in model parameter
transmission between the clients and the server; CompL is
the number of Floating-Point Operation (FLOP) that an FL
system consumes; and TransL is the total data size transmitted
between the clients and the server.

Application scenarios can have different training prefer-
ences in terms of CompT, TransT, CompL, and TransL.
Consider the following examples: (1) attack and anomaly
detection in computer networks [3] is time-sensitive (CompT
and TransT) as it needs to adapt to malicious traffic rapidly;
(2) smart home control systems for indoor environment

automation [16], e.g., heating, ventilation, and air condi-
tioning (HVAC), are sensitive to computation (CompT and
CompL) because sensor devices are limited in computation
capabilities; (3) traffic monitoring systems for vehicles [24]
are communication-sensitive (TransT and TransL) because
cellular communications are usually adopted to provide city-
scale connectivity.

A few papers have studied FL training performance under
different hyper-parameters [21]. However, they do not consider
CompT, TransT, CompL, and TransL together, which are
essential from the system’s perspective. In addition, it is
challenging to tune multiple hyper-parameters in order to
achieve diverse training preferences, especially when we need
to optimize multiple system aspects. For example, it is unclear
how to select hyper-parameters to build an FL training solution
that is both CompT and TransL-efficient.

Contributions. This paper targets a new research problem
of optimizing the hyper-parameters for FL from the system
perspective. To do so, we formulate the system overhead in
FL training and conduct extensive measurements to understand
FL training performance. To avoid manual hyper-parameter se-
lection, we propose FedTune, an algorithm that automatically
tunes FL hyper-parameters during model training, respecting
application training preferences. Our evaluation results show
that FedTune achieves a promising performance in reducing
the system overhead.

II. RELATED WORK

Hyper-Parameter Optimization (HPO) is a field that has
been extensively studied [25]. Many classical HPO algorithms,
e.g., Bayesian optimization [19], successive halving [7], and
hyperband [12], are designed to optimize hyper-parameters of
machine learning models.

Designing HPO methods for FL, however, is a new research
area. Only a few works have touched FL HPO problems. For
example, FedEx is a general framework to optimize the round-
to-accuracy of FL by exploiting the Neural Architecture Search
(NAS) techniques of weight-sharing, which improves the
baseline by several percentage points [8]; FLoRA determines
the global hyper-parameters by selecting the hyper-parameters
that have good performances in local clients [28]. However,
existing works cannot be directly applied to our scenario of
optimizing FL hyper-parameter for different FL training pref-
erences for two reasons. First, CompT (in seconds), TransL (in

ar
X

iv
:2

11
0.

03
06

1v
6 

 [
cs

.L
G

] 
 4

 O
ct

 2
02

2



seconds), CompL (in FLOPs), and TransL (in bytes) are not
comparable with each other. Incorporating training preferences
in HPO is not trivial. Second, hyper-parameter tuning needs
to be done during the FL training. No “comeback” is allowed
as the FL model keeps training until its final model accuracy.
Otherwise, it will cause significantly more system overhead.

III. UNDERSTANDING THE PROBLEM

We first quantify the system overheads of FedAvg to illus-
trate the problem. FedAvg minimizes the following objective

f(w) =

K∑
k=1

nk
n
Fk(w) where Fk(w) =

1

nk

∑
i∈Pk

fi(w)

(1)
where fi(w) is the loss of the model on data point (xi, yi),
that is, fi(w) = `(xi, yi;w), K is the total number of clients,
Pk is the set of indexes of data points on client k, with nk =
|Pk|, and n is the total number of data points from all clients,
i.e., n =

∑K
k=1 nk. Due to the large number of clients in a

typical FL application (e.g., millions of clients in the Google
Gboard project [4]), a common practice is to randomly select
a small fraction of clients in each training round. In the rest of
this paper, we refer to the selected clients as participants and
denote M as the number of participants on each training round.
Each participant makes E training passes over its local data
in each round before uploading its model parameters to the
server for aggregation. Afterward, participants wait to receive
an updated global model from the server, and a new training
round starts.

A. System Model

Assume that clients are homogeneous in terms of hard-
ware (e.g., CPU/GPU) and network (e.g., transmission speeds).
Let bk,r indicates whether client k participates at the training
round r. Then, we have

∑K
k=1 bk,r = M , i.e., each round

selects M participants. The number of training rounds to reach
the final model accuracy is denoted by R, which is unknown
a priori and varies when different sets of FL hyper-parameters
are used in FL training. CompT, TransT, CompL, and TransL
can be formulated as follows.
Computation Time (CompT). If client k is selected on a
training round, it spends time in local training. The local
training delay can be represented by C1 ·E · nk, where C1 is
a constant. It is proportional to its number of data points (i.e.,
nk) because nk decides the number of local updates (number
of mini-batches) for one epoch, and each local update includes
one forward-pass and one backward-pass. The computation
time of the training round r is determined by the slowest
participant and thus is represented by C1 ·E ·maxK

k=1 bk,r ·nk.
In total, the computation time of an FL training can be
formulated as

CompT = C1 · E ·
R∑

r=1

K
max
k=1

bk,r · nk (2)

Transmission Time (TransT). Each participant on a training
round needs one download and one upload of model parame-
ters from and to the server [21]. Thus, the transmission time
is the same for all participants on any training round, i.e., a
constant C2. The total transmission time is represented by

TransT = C2 ·R (3)

Computation Load (CompL). Client k causes C3 · E · nk
computation load if it is selected on a training round, where
C3 is a constant. The computation load of the training round
r is the summation of each participant’s computation load and
thus is C3 · E ·

∑K
k=1 bk,r · nk. We can formulate the overall

computation load as

CompL = C3 · E ·
R∑

r=1

K∑
k=1

bk,r · nk (4)

Transmission Load (TransL). Since each training round
selects M participants, the transmission load for a training
round is C4 ·M where C4 is a constant. The total number of
training rounds is R, and thus, the total transmission load of
an FL training is represented by

TransL = C4 ·R ·M (5)

In the experiments, we assign the model’s number of FLOPs
for one input to C1 and C3, and the model’s number of
parameters to C2 and C4.

B. Measurement Study

We conduct measurements to study the system overhead
when different FL hyper-parameters are used for training. We
use the Google speech-to-command dataset [23]. Please refer
to Section V-A for the training setup. The speech-to-command
dataset meets the data properties of FL: massively distributed,
unbalanced, and non-IID. The measurement study investigates
the FL training overhead in terms of the following three hyper-
parameters.
• The number of participants (i.e., M ). It is well-known

that more participants on each training round have a better
round-to-accuracy performance [15]. In the measurement
study, we set M to 1, 10, 20, and 50.

• The number of training passes (i.e., E). Increasing the
number of training passes as a method to improve
communication efficiency has been adopted in several
works, such as FedAvg [15] and FedNova [14]. In the
measurement study, we set E to 0.5, 1, 2, 4, 8, where
0.5 means that only half of each client’s local data are
used for local training in each round.

• Model complexity. We also investigate how the model
complexity influences the training overhead if a target
accuracy is met. We use ResNet [5] to build different
models, as listed in Table I.

Computation Time (CompT). Fig. 1(a) compares CompT for
a different number of participants M and a different number of
training passes E. In the experiments, we use ResNet-18 and
normalize their overheads. As we can see, more participants



Model ResNet-10 ResNet-18 ResNet-26 ResNet-34

#BasicBlock [1, 1, 1, 1] [2, 2, 2, 2] [3, 3, 3, 3] [3, 4, 6, 3]
#FLOP (×106) 12.5 26.8 41.1 60.1
#Params (×103) 79.7 177.2 274.6 515.6

Accuracy 0.88 0.90 0.90 0.92

TABLE I
DIFFERENT MODELS USED FOR THE MEASUREMENT STUDY.

lead to smaller CompT, i.e., it takes a shorter time to converge.
However, the difference is not significant among 10, 20, and 50
participants, especially when the number of training passes is
large. In addition, we can see that larger E has worse CompT.
Transmission Time (TransT). Fig. 1(b) plots TransT, which
clearly shows that TransT favors larger M and E. Since
TransT is dependent on the number of training rounds R
(Eq. (3)), it is equivalent to the metric of round-to-accuracy.
Our measurement result is consistent with the common knowl-
edge (e.g., [22]) that more participants and more training
passes have a better round-to-accuracy performance. We can
also observe that when M is small, e.g., 1, TransL is much
worse than the other cases.
Computation Load (CompL). Fig. 1(c) shows CompL. We
make the following observations: (1) More participants re-
sult in worse CompL. The results indicate that the gain of
faster model convergence from more participants does not
compensate for the higher computation costs introduced by
more participants. (2) CompL is increased when more training
passes are used. This is probably because that larger E
diverges the model training [13] and thus, the data utility per
unit of computation cost is reduced.
Transmission Load (TransL). Fig. 1(d) illustrates TransL.
As shown, more participants greatly increase TransL. This is
because more participants can only weakly reduce the number
of training rounds R [14], however, in each round, the number
of transmissions is linearly increased with the number of
participants. Regarding the number of training passes, larger
E reduces the total number of training rounds R and thus
has better TransL. On the other hand, the gain of larger E
is diminishing. The results are consistent with the analysis of
[14] that R is hyperbolic with E (the turning point happens
around 100-1000 in their experiments).
Model Complexity. Table I tabulates the models for com-
paring training overheads versus model complexity. In this
experiment, we select one participant (M = 1) to train one
pass (E = 1) on each training round. Fig. 2 shows the
normalized CompT, TransT, CompL, and TransL for different
models. The x-axis is the target model accuracy, and the y-axis
is the corresponding overhead to reach that model accuracy.
Since only one client and one training pass are used on
each round, CompT and CompL have the same normalized
comparison, and so are TransT and TransL. The results show
that smaller models are better with regard to all training
aspects. In addition, it is interesting to note that heavier models
have higher increase rates of overhead versus model accuracy.
This means that model selection is especially essential for high
model accuracy applications.

(a) Computation Time (b) Transmission Time

(c) Computation Load (d) Transmission Load

Fig. 1. CompT, TransT, CompL, and TransL when a different number of
participants and a different number of training passes are used. The lower the
better.

(a) Computation time and load (b) Transmission time and load

Fig. 2. CompT, TransT, CompL, and TransL versus model complexity. The
lower the better.

Training aspect M E Model complexity

CompT > < <
TransT > > <
CompL < < <
TransL < > <

Model Accuracy = = >

TABLE II
SYSTEM OVERHEADS VERSUS THE NUMBER OF PARTICIPANTS M , THE
NUMBER OF TRAINING PASSES E , AND MODEL COMPLEXITY. ‘<’, ‘=’,
AND ‘>’ MEANS THE SMALLER THE BETTER, DOES NOT MATTER, AND

THE LARGER THE BETTER, RESPECTIVELY.

C. Summary of System Overheads

Based on our measurement study, we summarize systems
overheads versus FL hyper-parameters in Table II. As we can
see, CompT, TransT, CompL, and TransL conflict with each
other in terms of M and E. Regarding model complexity,
smaller models have better system overhead if the model
accuracy is satisfied. Please note that Table II is consistent
with existing works (e.g., [22]), but is more comprehensive.

IV. FEDTUNE

FedTune considers training preferences for CompT, TransT,
CompL, and TransL, denoted by α, β, γ, and δ, respectively.
We have α+ β + γ + δ = 1. For example, α = 0.6, β = 0.2,
γ = 0.1, and δ = 0.1 represent that the application is greatly



concerned about CompT, while slightly about TransT, with
CompL and TransL the least concern.

A. Problem Formulation

For two sets of FL hyper-parameters S1 and S2, FedTune
defines the comparison function I(S1, S2) as

I(S1, S2) = α× t2 − t1
t1

+ β × q2 − q1
q1

+γ × z2 − z1
z1

+ δ × v2 − v1
v1

(6)

where t1 and t2 are CompT for S1 and S2 achieving the same
model accuracy. Correspondingly, q1 and q2 are TransT, z1
and z2 are CompL, and v1 and v2 are TransL. If I(S1, S2) <
0, then S2 is better than S1. A set of hyper-parameters is
better than another set if the weighted improvement of some
training aspects (e.g., CompT and CompL) is higher than the
weighted degradation of the remaining training aspects (e.g.,
TransT and TransL). The weights are training preferences on
CompT, TransT, CompL, and TransL.

However, the training overhead for different sets of FL
hyper-parameters are unknown a priori. As a result, directly
identifying the optimal hyper-parameters before FL training
is impossible. Instead, we propose an iterative method to
optimize the next set of hyper-parameters. Given the current
set of hyper-parameters Scur, the goal is to find a set of hyper-
parameters Snxt that improves the training performance the
most, that is, minimizing the following objective function:

G(Snxt) = α× tnxt − tcur
tcur

+ β × qnxt − qcur
qcur

+γ × znxt − zcur
zcur

+ δ × vnxt − vcur
vcur

(7)

where tcur, qcur, zcur, and vcur are CompT, TransT, CompL,
and TransL under the current hyper-parameters Scur; tnxt,
qnxt, znxt, and vnxt are CompT, TransT, CompL, and TransL
for the next hyper-parameters Snxt. We focus on the number
of participants M and the number of training passes E, since
model complexity is monotonous with training overheads.
Therefor, we need to optimize Snxt = {Mnxt, Enxt}.

B. Snxt Optimization

To find the optimal Snxt, we take the derivatives of G(Snxt)
over M and E, obtaining

∆M =
∂G(Snxt)

∂M
=

α

tcur
× ∂tnxt

∂M
+

β

qcur
× ∂qnxt

∂M

+
γ

zcur
× ∂znxt

∂M
+

δ

vcur
× ∂vnxt

∂M

(8)

∆E =
∂G(Snxt)

∂E
=

α

tcur
× ∂tnxt

∂E
+

β

qcur
× ∂qnxt

∂E

+
γ

zcur
× ∂znxt

∂E
+

δ

vcur
× ∂vnxt

∂E

(9)

We illustrate how to obtain ∆M . The process of solving
∆E is similar. Considering that each step makes a small
adjustment of M , ∂tnxt/∂M can be represented by (+1) ×

|tnxt − tcur|, where (+1) means CompT prefers larger M
according to Table II. To estimate |tnxt − tcur|, we apply a
linear function ηt−1×|tcur−tprv| where ηt−1 =

|tcur−tprv|
|tprv−tprvprv|

(tprvprv is the CompT at two steps before). Similarly, we
have ηq−1, ηz−1, ηv−1 for TransT, CompL, and TransL when
calculating their derivatives over M . As a result, ∆M can be
approximated as

∆M =
(+1)× α× ηt−1 × |tcur − tprv|

tcur

+
(+1)× β × ηq−1 × |qcur − qprv|

qcur

+
(−1)× γ × ηz−1 × |zcur − zprv|

zcur

+
(−1)× δ × ηv−1 × |vcur − vprv|

vcur

(10)

Similarly, we can calculate ∆E as

∆E =
(−1)× α× ζt−1 × |tcur − tprv|

tcur

+
(+1)× β × ζq−1 × |qcur − qprv|

qcur

+
(−1)× γ × ζz−1 × |zcur − zprv|

zcur

+
(+1)× δ × ζv−1 × |vcur − vprv|

vcur

(11)

where ζt−1, ζq−1, ζz−1, and ζv−1 are the parameters for
calculating the derivatives of CompT, TransT, CompL, and
TransL over E.

C. Decision Making and Parameter Update

FedTune is activated when the model accuracy is improved
by at least ε. Then, it computes ∆M and ∆E, and determines
the next M and E based on the signs of ∆M and ∆E.
Specifically, Mnxt = Mcur + 1 if ∆M > 0, otherwise,
Mnxt = Mcur − 1. Likewise, FedTune increases Enxt by one
if ∆E > 0; else FedTune decreases Enxt by one. The FL
training is resumed using the new hyper-parameters. FedTune
is lightweight and negligible to the FL training: it only requires
dozens of multiplication and addition calculations.

FedTune automatically updates ηt−1, ηq−1, ηz−1, ηv−1,
ζt−1, ζq−1, ζz−1, and ζv−1 during FL training. At each
step, FedTune updates the parameters that favor the current
decision. For example, if Mcur is larger than Mprv , FedTune
updates ηt−1 and ηq−1 as CompT and TransT prefer larger
M ; otherwise, FedTune updates ηz−1 and ηv−1.

Furthermore, FedTune incorporates a penalty mechanism to
mitigate bad decisions. Given the previous hyper-parameters
Sprv and the current hyper-parameters Scur, FedTune calcu-
lates the comparison function I(Sprv, Scur). A bad decision
occurs if the sign of I(Sprv, Scur) is positive. In this case,
FedTune multiplies the parameters that are against the current
decision by a constant penalty factor, denoted by D (D ≥ 1).
For example, if I(Sprv, Scur) > 0 and Mcur > Mprv ,
FedTune updates ηt−1 and ηq−1 as explained before, but also
multiplies ηz−1 and ηv−1 by D.



Dataset Speech-command EMNIST Cifar-100
Data Feature Voice Handwriting Image
ML Model ResNet-10 2-layer MLP ResNet-10

Performance +22.48% (17.97%) +8.48% (5.51%) +9.33% (5.47%)

TABLE III
PERFORMANCE OF FEDTUNE FOR DIVERSE DATASETS WHEN FEDAVG

AGGREGATION METHOD IS APPLIED.

V. EXPERIMENTS AND ANALYSIS

Benchmarks and Baseline. We evaluate FedTune on three
datasets: speech-to-command [23], EMNIST [2], and Cifar-
100 [9], and three aggregation methods: FedAvg [15], Fed-
Nova [22], and FedAdagrad [18]. We set equal values for
the combination of training preferences α, β, γ and δ (see
the first column in Table V). Therefore, for each dataset, we
conduct 15 combinations of training preferences. We set target
model accuracy for each dataset and measure CompT, TransT,
CompL, and TransL for reaching the target model accuracy.
We regard the practice of using fixed M and E as the baseline
and compare FedTune to the baseline by calculating Eq. (6).
We implemented FedTune in PyTorch. All the experiments are
conducted on a server with 24-GB Nvidia RTX A5000 GPUs.

A. Overall Performance
Training setup. (1) speech-to-command dataset. It classifies
audio clips to 35 commands (e.g., ‘yes’, ‘off’). We transform
audio clips to 64-by-64 spectrograms and then downsize them
to 32-by-32 gray-scale images. As officially suggested [23],
we use 2112 clients’ data for training and the remaining 506
clients’ data for testing. We set the mini-batch size to 5,
considering that many clients have few data points. We use
ResNet-10 and the target model accuracy of 0.8. (2) EMNIST
dataset. It classifies handwriting (28-by-28 gray-scale images)
into 62 digits and letters (lowercase and uppercase). We split
the dataset based on the writer ID. We randomly select 70%
writers’ data for training and the remaining for testing. We
use a Multiplayer Perception (MLP) model with one hidden
layer (200 neurons with ReLu activation). We set the mini-
batch size to 10 and the target model accuracy of 0.7. (3)
Cifar-100 dataset. It classifies 32-by-32 RGB images to 100
classes. We randomly split the dataset into 1200 users, where
each user has 50 data points. Then, we randomly select 1000
users for training and the remaining 200 users for testing. We
set the mini-batch size to 10. ResNet-18 is used, and the target
model accuracy is set to 0.2 (due to our limited computational
capability, we set a low threshold for Cifar-100).

For all datasets, we normalize the input images with the
mean and the standard deviation of the training data before
feeding them to models for training and testing. Both M and
E are initially set to 20. FedTune is activated when the model
accuracy is increased by at least 0.01 (i.e., ε = 0.01). The
penalty factor D is set to 10. All results are averaged by three
experiments.
Results for Diverse Datasets. Table III shows the overall
performance of FedTune for different datasets when FedAvg
is applied. We set the learning rate to 0.01 for the speech-to-
command dataset and the EMNIST dataset, and 0.1 for the

Aggregator FedAvg FedNova FedAdagrad
Performance +22.48% (17.97%) +23.53% (6.64%) +26.75% (6.10%)

TABLE IV
PERFORMANCE OF FEDTUNE FOR DIVERSE AGGREGATION ALGORITHMS.

SPEECH-TO-COMMAND DATASET AND RESNET-10 ARE USED IN THIS
EXPERIMENT.

Cifar-100 dataset, all with the momentum of 0.9. We show
the standard deviation in parenthesis. As shown, FedTune
consistently improves the system performance across all the
three datasets. In particular, FedTune reduces 22.48% system
overhead of the speech-to-command dataset compared to the
baseline. We also observe that the FL training benefits more
from FedTune if the training process needs more training
rounds to converge. Our experiments with EMNIST (small
model) and Cifar100 (low target accuracy) only require a
few dozens of training rounds to reach their target model
accuracy, and thus their performance gains from FedTune are
not significant. The observation is consistent with the decision-
making process in FedTune, which increases/decreases hyper-
parameters by only one at each step. We leave it as future
work to augment FedTune to change hyper-parameters with
adaptive degrees.
Results for Different Aggregation Methods. Table IV shows
the overall performance of FedTune for different aggregation
methods when we use the speech-to-command dataset and the
ResNet-10 model. We set the learning rate to 0.1, β1 to 0,
and τ to 1e-3 in FedAdagrad. As shown, FedTune achieves
consistent performance gain for diverse aggregation methods.
In particular, FedAdagrad reduces the system overhead by
26.75%.
Trace Analysis of FedTune. We present the details of traces
when the speech-to-command dataset and the FedAdagrad
aggregation method are used. Table V tabulates the results.
We report the average performance, as well as their standard
deviations in parentheses. The first row is the baseline, which
does not change hyper-parameters during the FL training. We
show the final M and E when the training is finished. As we
can see from Table V, FedTune can adapt to different training
preferences. Only one preference (0.33, 0.33, 0, 0.33) results
in a slightly degraded performance. On average, FedTune
improves the overall performance by 26.75%.

VI. CONCLUSION

FL involves high system overheads, which hinders its re-
search and real-world deployment. We argue that optimizing
system overhead for FL applications is valuable. To this end, in
this work, we propose FedTune to adjust FL hyper-parameters,
catering to the application’s training preferences automati-
cally. Our evaluation results show that FedTune is general,
lightweight, flexible, and is able to significantly reduce system
overhead.
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α β γ δ CompT (1012) TransT (106) CompL (1012) TransL (106) Final M Final E Overall

- - - - 0.94 (0.01) 11.61 (0.10) 5.97 (0.04) 232.24 (1.99) 20 20 -
1.0 0.0 0.0 0.0 0.42 (0.02) 50.19 (2.57) 4.57 (0.22) 2418.71 (240.91) 57.33 (4.50) 1.00 (0.00) +55.23% (2.22%)
0.0 1.0 0.0 0.0 1.34 (0.22) 7.68 (1.12) 14.99 (2.73) 289.82 (46.98) 48.00 (2.16) 48.00 (2.16) +33.87% (9.67%)
0.0 0.0 1.0 0.0 1.02 (0.10) 615.98 (97.52) 1.76 (0.16) 672.21 (91.62) 1.00 (0.00) 1.00 (0.00) +70.51% (2.75%)
0.0 0.0 0.0 1.0 2.18 (0.47) 35.47 (7.51) 3.30 (0.22) 76.47 (1.68) 1.00 (0.00) 46.67 (3.30) +67.07% (0.72%)
0.5 0.5 0.0 0.0 0.82 (0.13) 9.17 (1.26) 9.13 (1.66) 347.11 (54.31) 47.33 (2.05) 21.33 (4.78) +16.97% (9.68%)
0.5 0.0 0.5 0.0 0.48 (0.04) 81.42 (9.83) 3.23 (0.14) 1875.99 (155.21) 25.00 (1.63) 1.00 (0.00) +47.57% (3.43%)
0.5 0.0 0.0 0.5 0.79 (0.10) 11.59 (0.55) 5.04 (0.89) 241.86 (68.65) 22.33 (5.79) 15.67 (4.50) +5.82% (11.28%)
0.0 0.5 0.5 0.0 0.83 (0.03) 10.66 (0.15) 5.16 (0.31) 207.79 (6.08) 21.00 (1.41) 21.00 (1.41) +10.87% (2.83%)
0.0 0.5 0.0 0.5 1.54 (0.16) 11.48 (3.83) 9.59 (3.52) 190.52 (61.53) 19.67 (14.82) 49.00 (0.00) +9.55% (7.08%)
0.0 0.0 0.5 0.5 1.69 (0.26) 50.14 (8.21) 2.70 (0.26) 93.21 (8.48) 1.00 (0.00) 23.33 (2.49) +57.32% (3.76%)
0.33 0.33 0.33 0.0 0.82 (0.07) 11.59 (1.01) 5.65 (0.27) 255.35 (9.65) 22.33 (2.62) 15.67 (1.25) +6.09% (6.67%)
0.33 0.33 0.0 0.33 1.06 (0.08) 10.07 (0.90) 8.10 (0.34) 247.54 (29.18) 26.33 (2.05) 27.00 (2.16) -1.93% (7.40%)
0.33 0.0 0.33 0.33 0.91 (0.19) 18.23 (5.83) 4.15 (1.13) 229.26 (63.40) 12.00 (1.41) 14.00 (5.72) +11.66% (11.76%)
0.0 0.33 0.33 0.33 1.13 (0.13) 16.16 (3.36) 4.51 (0.59) 169.93 (25.84) 9.00 (5.35) 23.00 (4.55) +3.99% (6.19%)
0.25 0.25 0.25 0.25 0.91 (0.10) 9.73 (1.81) 6.19 (0.76) 207.34 (3.34) 23.33 (5.44) 22.67 (3.30) +6.51% (6.13%)

TABLE V
PERFORMANCE OF FEDTUNE FOR THE SPEECH-TO-COMMAND DATASET WHEN FEDADAGRAD IS USED FOR AGGREGATION.

‘+’ IS IMPROVEMENT AND ‘−’ IS DEGRADATION. STANDARD DEVIATION IN PARENTHESES.
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ment Number W911NF-13-2-0045 (ARL Cyber Security
CRA). The views and conclusions contained in this document
are those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the
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Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on. The
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1901218 and USDA-020-67021-32855.
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