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Abstract—Current, near-term quantum devices have shown
great progress in the last several years culminating recently with
a demonstration of quantum supremacy. In the medium-term,
however, quantum machines will need to transition to greater
reliability through error correction, likely through promising
techniques like surface codes which are well suited for near-term
devices with limited qubit connectivity. We discover quantum
memory, particularly resonant cavities with transmon qubits
arranged in a 2.5D architecture, can efficiently implement surface
codes with substantial hardware savings and performance/fidelity
gains. Specifically, we virtualize logical qubits by storing them in
layers of qubit memories connected to each transmon.

Surprisingly, distributing each logical qubit across many
memories has a minimal impact on fault tolerance and results
in substantially more efficient operations. Our design permits
fast transversal application of CNOT operations between logical
qubits sharing the same physical address (same set of cavities)
which are 6x faster than standard lattice surgery CNOTs. We
develop a novel embedding which saves approximately 10x in
transmons with another 2x savings from an additional optimiza-
tion for compactness.

Although qubit virtualization pays a 10x penalty in serializa-
tion, advantages in the transversal CNOT and in area efficiency
result in fault-tolerance and performance comparable to conven-
tional 2D transmon-only architectures. OQur simulations show our
system can achieve fault tolerance comparable to conventional
two-dimensional grids while saving substantial hardware. Fur-
thermore, our architecture can produce magic states at 1.22x
the baseline rate given a fixed number of transmon qubits.
This is a critical benchmark for future fault-tolerant quantum
computers as magic states are essential and machines will spend
the majority of their resources continuously producing them. This
architecture substantially reduces the hardware requirements for
fault-tolerant quantum computing and puts within reach a proof-
of-concept experimental demonstration of around 10 logical
qubits, requiring only 11 transmons and 9 attached cavities in
total.

Index Terms—quantum computing, quantum error correction,
quantum memory

I. INTRODUCTION

Quantum devices have improved significantly in the last
several years both in terms of physical error rates and number
of usable qubits. For example, IBM and others have made
accessible via the cloud several devices with 5 to 53 qubits
with moderate error rates [1]. Concurrently, great progress
has been made at the software level such as improved com-
pilation procedures reducing required overhead for program
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execution. These efforts are directed at enabling NISQ (Noisy
Intermediate-Scale Quantum) [2] algorithms to demonstrate
the power of quantum computing. Machines in this era are
expected to run some important programs and have recently
been used to by Google to demonstrate “quantum supremacy”
(3.

Despite this, these machines will be too small for error
correction and unable to run large-scale programs due to
unreliable qubits. The ultimate goal is to construct fault-
tolerant machines capable of executing thousands of gates
and in the long-term to execute large-scale algorithms such
as Shor’s [4] and Grover’s [5] with speedups over classical
algorithms. There are a number of promising error correction
schemes which have been proposed such as the color code [6]
or the surface code [7]-[9]. The surface code is a particularly
appealing candidate because of its low overhead, high error
threshold, and its reliance on few nearest-neighbor interactions
in a 2D array of qubits, a common feature of superconducting
transmon qubit hardware. In fact, Google’s next milestone is
to demonstrate error corrected qubits [3]], [[10].

Current architectures for both NISQ and fault-tolerant quan-
tum computers make no distinction between the memory and
processing of quantum information (represented in qubits).
While currently viable, as larger devices are built, the engi-
neering challenges of scaling up to hundreds of qubits becomes
readily apparent. For transmon technology used by Google,
IBM, and Rigetti, some of these issues include fabrication
consistency and crosstalk during parallel operations. Every
qubit needs dedicated control wires and signal generators
which fill the refrigerator the device runs in. To scale to the
millions of qubits needed for useful fault-tolerant machines
[O], we need to a memory-based architecture to decouple
qubit-count from transmon-count.

In this work, we use a recently realized qubit memory
technology which stores qubits in a superconducting cavity
[11]. This technology, while new, is expected to become
competitive with existing transmon devices. Stored in cavity,
qubits have a significantly longer lifetime (coherence time) but
must be loaded into a transmon for computation. Although
the basic concept of a compute qubit and associated memory
has been demonstrated experimentally, the contribution of our
work is to design and evaluate a system-level organization
of these components within the context of a novel surface
code embedding and fault-tolerant quantum operations. We
provide a proof of concept in the form of a practical use
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Fig. 1. Our fault-tolerant architecture with random-access memory local to
each transmon. On top is the typical 2D grid of transmon qubits. Attached
below each data transmon is a resonant cavity storing error-prone data qubits
(shown as black circles). This pattern is tiled in 2D to obtain a 2.5D array
of logical qubits. Our key innovation here is storing the qubits that make up
each logical qubit (shown as checkerboards) across many cavities to enable
efficient computation.

case motivating more complex experimental demonstrations
of larger systems using this technology.

Our proposed 2.5D memory-based design is a typical 2D
grid of transmons with memory added as shown in Figure
This can be compared with the traditional 2D error correction
implementation in Figure 2] where the checkerboards represent
error-corrected logical qubits. The logical qubits in this system
are stored at unique virtual addresses in memory cavities when
not in use. They are loaded to a physical address in the
transmons and made accessible for computation on request
and are periodically loaded to correct errors, similar to DRAM
refresh. This design allows for more efficient operations such
as the transversal CNOT between logical qubits sharing the
same physical address i.e. co-located in the same cavities.
This is not possible on the surface code in 2D which requires
methods such as braiding or lattice surgery for a CNOT
operation.

We introduce two embeddings of the 2D surface code to
this new architecture that spread logical qubits across many
cavities. Despite serialization due to memory access, we are
able to store and error-correct stacks of these logical qubits.
Furthermore, we show surface code operations via lattice
surgery can be used unchanged in this new architecture while
also enabling a more efficient CNOT operation. Similarly,
we are able to use standard and architecture-specific magic-
state distillation protocols [12]] in order to ensure universal
computation. Magic-state distillation is a critical component
of error-corrected algorithms so any improvement will directly
speed up algorithms including Shor’s and Grover’s.

We discuss several important features of any proposed error
correction code, such as the threshold error rate (below which
the code is able to correct more errors than its execution
causes), the code distance, and the number of physical qubits

to encode a logical qubit. In many codes, the number of
physical qubits can be quite large. We develop an embedding
from the standard representation to this new architecture which
reduces the required number of physical transmon qubits by
a factor of approximately k, the number of resonant modes
per cavity. We also develop a Compact variant saving an
additional 2x. This is significant because we can obtain a
code distance \/2k times greater or use hardware with only
le the required physical transmons for a given algorithm.
In the near-to-intermediate term, when qubits are a highly
constrained resource this will accelerate a path towards fault-
tolerant computation. In fact, the smallest instance of Compact
requires only 11 transmons and 9 cavities for k logical qubits.

We evaluate variants of our architecture by comparing
against the surface code on a larger 2D device. Specifically, we
determine the error correction threshold rates via simulation
for each and find they are all close to the baseline threshold.
This shows the additional error sources do not significantly
impact the performance. We explore the sensitivity of the
threshold to many different sources of error, some of which
are unique to the memory used in this architecture. We end
by evaluating magic-state distillation protocols which have a
large impact on overall algorithm performance and find a 1.22x
speedup normalized by the number of transmon qubits.

In summary, we make the following contributions:

o We introduce a 2.5D architecture where qubit-local mem-
ory is used for random access to error-corrected, logical
qubits stored across different memories. This allows a
simple virtual and physical address scheme. Error cor-
rection is performed continuously by loading each from
memory.

o« We give two efficient adaptations of the surface code
in this architecture, Natural and Compact. Unlike a
naive embedding, both support fast transversal CNOTs
in addition to lattice surgery operations with improved
connectivity between logical qubits.

o We develop an error correction implementation optimized
for Compact and designed to maximise parallelism and
minimize the spread of errors.

o Via simulation, we determine the surface code adapted to
our 2.5D architecture is still an effective error correction
code while greatly reducing hardware requirements.

II. BACKGROUND

In this section we briefly introduce the basics of quan-
tum computation. We review current superconducting qubit
architectures and memory technology our proposed design
takes advantage of. We then discuss the noise present in these
physical systems. Next, we introduce the basics of quantum
error correction and give a detailed introduction to the surface
code and lattice surgery. We conclude with a review of the
basic procedure for decoding physical errors.

A. Basics of Quantum Computing

The fundamental unit of quantum computing is the qubit.
Like the classical bit, it can exist in the |0) or |1) state, but



it may also exist in a coherent superposition of the two states
and n qubits may exist in a superposition of all 2" bit strings.
For example, a single qubit state is |¢)) = a'|0) + 8 |1) where
la)* + |8° = 1 and «, 3 € C. To manipulate these bits we
apply quantum operations, often called gates. Single qubit
gates like X (bit flip), Z (phase flip), H (Hadamard basis
change), and T (4 phase) and two-qubit gates like CNOT
(reversible XOR with output b’ = a @ b) are unitary and
reversible (invertible). We may measure a qubit to obtain
either a 0 or a 1 outcome with probabilities |a|* and |8|°,
respectively. Multi-qubit operations like CNOT can create
entanglement between qubits. Using only CNOT and single
qubit gates, universal computation is possible, meaning any
reversible multi-qubit operation is possible. The three-qubit
Toffoli (reversible AND gate with output ¢’ = (a A D) ® ¢),
a common primitive in error-corrected algorithms, can be
implemented by performing a few CNOT, H, and T gates.
See [13] for a more comprehensive background.

B. Superconducting Qubit Architectures

In contrast to other leading qubit technologies such as
trapped ion devices with one or more fully-connected qubit
chains, superconducting qubits are typically connected in
nearest-neighbor topologies, often a 2D mesh on a regular
square grid. For near-term computation, this limitation makes
engineering these devices easier but results in high communi-
cation costs, increasing the chance of errors on NISQ devices
and communication congestion for error corrected operations.
This is a leading technology in industry, used by Rigetti, IBM,
and Google.

C. Qubit Memory Technology

Recently, studies have demonstrated random access memory
for quantum information [11]], [[14]]. Qubit states can be stored
in the resonant modes of physical superconducting cavities
attached to a transmon qubit as depicted in Figure [3] In
these devices, transmon-transmon interactions are essentially
the same as other superconducting transmon technology and
transmon-cavity interactions are expected to perform similarly.
Currently demonstrated error rates are promising, and there
is nothing fundamental preventing this technology from be-
coming competitive with other transmon devices. We expect
operation error rates to improve, cavity sizes and coherence
times to increase and in general expect performance to improve
as it has with other quantum technologies.

Local memory is not free. Stored qubits cannot be operated
on directly. Instead, operations on this information are medi-
ated through the transmon. Furthermore, to operate on qubits
stored in memory, we first load the qubit from memory. Then
we perform the desired operation on the transmons, and store
the qubit back in its original location. A two-qubit operation
such as a CNOT can also be performed directly between the
transmon and a qubit in its connected cavity by manipulating
higher states of the transmon. We use this transmon-mode
CNOT later.

logical qubit logical qubit
/N NN\ N\ O\ data

N/ N/ N/
7/ \ 7\ 7/ \

ancilla

\/

/7 \
NSNS\
/.7 N/ \

N/

7/ \
NSNS\
/' N/ N\ ./ \

\/

7\
NYN/ N/

connectivity

/N N\ \

N/ \N./ N/
7\ 7\ 7\
NN NSNSN\S
logical qubit logical qubit

Fig. 2. A typical 2D superconducting qubit architecture. The dots are
transmon qubits where black are used as data and gray are used as ancilla
for error correction. The lines indicate physical connections between qubits
that allow operations between them. Four logical qubits, each consisting of
9 error-prone data qubits, are shown here in the rotated surface code with
distance 3. Z parity checks are shaded yellow (light) and X parity checks are
shaded blue (dark) where checks on only 2 data are drawn as half circles.
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Fig. 3. A close-up representation of the qubit memory technology we use. On
top is a superconducting transmon qubit physically connected to a resonant
superconducting cavity. This cavity has many resonant modes each used to
store a qubit. These qubits can be loaded and stored (with random access) via
the transmon.

In this architecture, qubits stored in the same cavity cannot
be operated on in parallel. For example, consider two qubits
stored in different modes of the same cavity (two virtual
addresses corresponding to the same physical address). If we
want to perform an H gate on each of them in parallel, this
would not be possible. Instead, we serialize these operations.
There are two primary benefits of this technology. First, we
are able to quickly perform two-qubit interactions between
any pair of qubits stored in the same cavity because we have
star-graph connectivity between the transmon and its cavity
modes. Second, qubits stored in the cavity are expected to
have longer coherence times by about one order of magnitude
i.e. there will be 10x fewer idle errors when qubits are stored
in the cavity.



D. Quantum Errors

Quantum systems are inherently noisy, subject to a variety
of coherent and non-coherent error. For example, when at-
tempting to apply some gate U to a qubit we may actually
apply some other gate U’ which is close to the desired
operation but may include an additional undesired operation.
Fortunately, this type of coherent error is fairly easy to model.
Since every single-qubit unitary can be expressed as a linear
combination of the Pauli matricesE]I ,X,Y,Z we can express
this coherent error as a combination of bit flip (X) and phase
flip (Z) errors where [ is no error and Y is simultaneous bit
and phase errors (Y = ¢X Z). For a quantum error correcting
code this will play a part in digitizing errors, meaning we will
be able to simply detect and correct X and Z errors.

Errors such as decoherence errors can be attributed to
interaction with the environment. These errors are inevitable
because manipulating qubits requires they not be perfectly
isolated. When modeling and simulating this type of error we
require the use of full density matrix simulation. In this paper,
we opt not to model coherence errors in this way because
simulation of this class of errors is hard (density matrices
have size exponential in the number of qubits), we instead
also model storage errors as Pauli errors. This is a common
simplification and a conservative overestimate for the error
causing our error threshold estimation to be slightly more
conservative. For example, when decoherence resets a qubit
to |0), this causes an error to a qubit in the |1) state but not to
a qubit already in the |0) state whereas a Pauli X error causes
a bit flip which is an error on either state.

The above errors apply to all superconducting systems and
we often assume consistent error rates across the device. We
treat all two-qubit interactions equally so gates like a CNOT
incur some fixed error cost, a fixed chance of some error
Uy ® Us is applied to |¢) where Uy, Us € {I,X,Y,Z}. In
traditional superconducting architectures (our baseline), we
consider a few error sources—storage error, one and two-
qubit gate error, and measurement error. In superconducting
architectures with resonant cavities such as our design, there
is more nuance. We consider cavity storage and transmon
storage error rates separately since each has its own coherence
time and we separate transmon-transmon two-qubit gates and
transmons-cavity two-qubit gates. We detail this and our other
assumptions for simulation in experimental setup.

E. Surface Codes, Error Decoding, and
Lattice Surgery

The surface code [7] is one of the most promising quantum
error correction protocols because it requires only nearest
neighbor connectivity between physical qubits. The surface
code is implemented on a two-dimensional array of physical
qubits. These qubits are either data, where the state of the
logical qubit is stored, or ancilla used for syndrome extraction

'The Pauli matrices X = {? (1)], Y = |:(z) BZ], Z = |:(1) _01}

along with I form a complete basis over complex matrices so any single-qubit
unitary U = al + bX + ¢Y + dZ.

(parity checks). These ancilla qubits are measured to stabilize
the entangled state of the data. These ancilla fall into two
categories, measure-Z and measure-X for Z syndromes and X
syndromes designed to detect bit and phase errors respectively.
Data qubits not on the boundary are adjacent to two measure-Z
and two measure-X qubits.

In Figure 2| we show four logical qubits with code distance
3 mapped to a 2D lattice of superconducting qubits. Dark
physical qubits are used as data and light qubits are used as
measure qubits. In this paper, we opt to explicitly indicate
qubits in order to make clear how logical qubits, formed of
many square and half-circle plaquettes, are mapped directly
to hardware. In our diagrams however, we use customary
notation by shading X-plaquettes blue (dark) and Z-plaquettes
yellow (light). Half-plaquettes contain only 2 data qubits and
are shown as half circles.

Each X (Z) plaquette corresponds to a single measure-X (Z)
qubit and the four data which it interacts with. The corners
of each plaquette are the data qubits. For the baseline, we use
standard Z and X syndrome extraction (parity measurement)
circuits where the qubits of this circuit are physical qubits. The
Z-syndrome measures the bit-parity of its corner qubits and
the X-syndrome measures their phase-parity. By repeatedly
performing syndrome extraction and detecting parity changes
we are able to locate errors. This repeated syndrome extraction
collapses any error to a correctable Pauli error and forces
the data to remain in what is called the code, or quiescent,
state. Once the qubits are in this state, subsequent syndrome
extraction should result in the same outcomes. If errors occur,
we detect them as changes in measurement outcomes.

Errors are decoded by running a classical algorithm on the
measured syndromes [[15]]. In the surface code, when an error
occurs on a data qubit, for example a single X bit-flip error, we
see this as a change in the measurement outcome of both of the
Z-syndrome ancilla adjacent to it. If an error occurs on every
data qubit in a chain of neighbors, only the two syndromes at
the ends will detect a change. The standard way of performing
error decoding is to collect all of these changed syndromes
into a complete graph with edge weights given by the log-
probability of that chain of errors occurring. We perform a
maximum likelihood perfect matching of this graph to find
the most probable set of error locations which we correct or
track in the classical control. If errors are sufficiently low these
error chains will be well isolated and this decoding algorithm
will be able to determine the correct set of corrections to be
made. If errors are less sparse, this matching algorithm may
misidentify which error chains have actually occurred and this
can result in a logical error, that is a logical bit flip or phase
flip is applied. These logical errors cannot be detected because
they result from misidentifying the physical errors.

There are two primary ways to manipulate the logical qubits
of the surface code to perform desired logical operations—
braiding and lattice surgery. In this paper we will primarily
consider lattice surgery which has been shown to have some
advantages over braiding like using fewer physical qubits. For
a more thorough introduction to lattice surgery we refer the
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Fig. 4. The lattice surgery operations to perform a logical CNOT on the standard surface code (and directly supported in our architecture). Given control and
target qubits |C) and |T'), a CNOT is performed by enabling and disabling the parity checks as shown across 6 timesteps ((e) is two steps). We show this
complex process to contrast with the fast transversal CNOT enabled by our architecture (described later in Section @)

reader to [8]l, [12]], [16]. In our proposed scheme, all primitive
lattice surgery operations can be used such as split and merge
which together perform a logical CNOT as shown in Figure 4]
For universal quantum computation in surface codes we allow
for the creation and use of magic states such as |T") or |CCZ).
These states are necessary because the T and CCZ operations
cannot be done transversely (using physical gates on the data
in parallel to reliably perform the logical gate) in this type of
code. However, high fidelity versions of these states can be
generated via distillation [12], where many error-prone
copies of the state are combined to generate the state with
low error probability. Our scheme permits the use of these
methods in the same way as other surface code schemes and
also allows more efficient implementations.

III. VIRTUALIZED LOGICAL QUBITS

In this section we describe in detail our proposed archi-
tecture, an embedding of the surface code which virtual-
izes logical qubits, saving over 10x in required number of
transmons. This takes advantage of quantum resonant cavity
memory technology described above to store logical qubits,
in the form of surface code patches, in memory local to the
computational transmons. In this section we describe how we
can embed surface code tiles in two variations, Natural and
Compact. We show the hardware operations needed to perform
efficient syndrome extraction for both in our new fault-tolerant
architecture. We then describe how typical lattice surgery
operations are translated into operations in this new scheme,
and finally how our system supports fault-tolerant transversal
interactions between logical qubits sharing the same virtual
address. We verify these operations via process tomography.
We briefly describe how magic state distillation, an important
primitive for algorithms, is translated to our system.

A. Natural Surface Code Embedding

Our goal here is to take logical qubits stored in a plane
and find an embedding of that plane in 3D where the third
dimension (our transmon-local memory) is a limited size,
k. The intuitive answer is to simply fold the surface k
times. While this works, it does not have the benefits of a
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Fig. 5. Circuit showing how to execute our Natural embedding on hardware.
Left: The layout of eight data (black) and two ancilla (gray) in hardware.
CNOT operations between qubits are drawn between. Right: A circuit diagram
of the operations applied over time where each horizontal line corresponds
to a qubit and each box or symbol is an operation. The steps are L.: load
from memory mode z, |0): reset ancilla, CNOTSs: compute the Z or X parity,
Meter: measure the result, .S, : store back to memory.

more clever embedding. We propose slicing the plane into
many pieces, storing them flat in memory to enable them to
stitch together on-demand. This embedding enables the fast
transversal CNOT and high connectivity we will describe later.

Consider the high-level three dimensional view of the
quantum memory architecture presented in [I1]. For every
transmon in this architecture (the compute qubits in the top
layer of Figure[T) there is a cavity attached with a fixed number
of resonant modes, k. Each cavity can store k qubits, one
per mode. Each transmon can load and store qubits from its
attached cavity by performing a transmon mediated iISWAP.
We assume all transmons can be operated on in parallel as
is the case in most superconducting hardware (i.e. from IBM
or Google). For example, we can load qubit ¢;, to transmon
t; and load g¢;, to transmon ¢; in parallel, simultaneously
execute single qubit operations on each qubit, then store in
parallel. Any other qubits stored in cavities ¢ or 5 will be
unaffected by these operations. We expect this technology to
allow cavity size k on the order of 10 to 100 qubits and it will
likely not be practical to scale k along with the size of the 2D



grid as hardware improves so we cannot implement a true 3D
code such as [18]]. For our analysis, we conservatively assume
k = 10 and view this as a 2.5D architecture where we expect
the width and height of the grid to scale while the depth, k,
remains small.

We demonstrate how our system is sensitive to the length of
these cavities in section [VI where the amount of time between
error correction cycles is directly a function of this cavity size
k. As the size of the cavity becomes very large, the physical
qubits stored are expected to be subject to more and more
decoherence errors which will reduce our ability to properly
decode the errors.

Consider the rotated surface code of Figure [2| and the
high level view of this architecture in Figure [I| We imagine
mapping each of the physical qubits of this logical qubit gy, ;
to the same mode z of each cavity in this memory architecture.
Another logical qubit gy, 2 can be mapped to mode z; # z of
the same set of cavities. We view this as stacking the surface
code patches, the logical qubits, together under the same set
of transmon qubits. The transmons themselves are only used
for logical operations and error correction cycles performed
on the patches.

For logical qubits with code distance d we define patches on
the architecture, contiguous grids of size d x d data qubits and
d x d ancilla qubits. Logical qubits are mapped to multiples of
d coordinates on the grid and a specific mode, z, for storage.
For example, logical qubit g7, is mapped to a pair (Pyy, 2)
where P, refers to the square patch of data transmons ¢g..,q.y
t0 ¢g.x+d—1,d-y+d—1 and z indicates which cavity mode it is
stored in. A virtual memory address of a logical qubit refers to
exactly the pair (transmon patch, index). We sometimes refer
to all pairs with the same transmon patch collectively as a
stack where transmon patch is the physical memory address
where a patch is loaded.

In this memory architecture, recall we are unable to operate
on qubits stored in the same cavity in parallel, however
we are permitted to operated on qubits stored in different
cavities in parallel. This implies for two logical qubits gy, 1
and gy, » stored in the same stack we are only able to perform
syndrome extraction on at most one of these qubits at a
time. In order to detect measurement errors, we typically
require d rounds of syndrome extraction before we perform
our decoding algorithm and correct errors. If all indices are
occupied by logical qubits and we want to perform d rounds
of correction to each one we have two primary strategies. We
can load a logical qubit (meaning load all data in parallel to
each transmon), perform all d rounds of extraction, then store
the qubit.

Alternatively, we can Interleave the extraction cycles by
loading the logical qubit in index 0, performing one syndrome
extraction step, then storing. We execute this same procedure
for every logical qubit in the stack and repeat d times. We
expect this latter procedure to be less efficient, subjecting the
data qubits to d load and store errors per d cycles as opposed to
performing exactly one set of loads and stores when collecting
all d measurements at once. We study the effect of this choice

of syndrome extraction on the error threshold in Section[V] We
detail these extraction protocols for each syndrome in Figure[3}
Here we use L, (5,) to indicate loading (storing) the data from
(to) index z of the attached cavity.

Intuitively, this scheme is stacking many different logical
tiles together in a single location. This includes mapping
measure-Z/X ancilla to cavity modes. However, this is un-
necessary, because measure ancilla do not actually store any
data and are reset before every extraction step. Therefore, we
can reduce the number of cavities required for this system by
simply omitting any cavity where ancilla are stored. Instead,
every patch in the same stack shares the same ancilla, the
transmons at the top layer with no attached cavity.

In our system, up to k£ logical qubits share the same set
of transmons, more efficiently storing these qubits than on
a single large surface. In order to interact logical qubits in
different stacks we load them in parallel to the transmons then
interact them via lattice surgery operations like the CNOT
shown in Figure @] In these cases, all of the other stacks’
transmons between the interacting logical qubits act as a single
(possibly large) logical ancilla. In typical planar architectures,
we are unable to execute transversal two-qubit operations due
to limited connectivity. We can perform physical operations
between qubits in the same cavity, mediated by the transmon.
Therefore, in our system, we are able to perform transversal
two-qubit interactions if the logical qubits are co-located in
the same stack. We describe this next.

B. Transversal CNOT

A major advantage of this 2.5D architecture, enabled by our
embedding of patches across memories, is the ability to do
two-qubit operations transversely using the third dimension.
The logical operation is performed directly by doing the same
physical gate to every data qubit and correcting any resulting
errors. On typical 2D architecture error correcting codes like
the surface code, the only transversal operations are single-

logical
7y control

<
CNOT gate

mode z

logical
target

N

Fig. 6. The transversal CNOT enabled by our 2.5D architecture. The data
qubits for the control logical qubit are loaded into the transmons. Transmon-
mediated CNOTs to mode z for every data qubit perform the logical operation.
This takes one timestep to perform, 6x better than a lattice surgery CNOT.



qubit like X, Z, or H. Two-qubits operations are not possible
because the corresponding data qubits of two logical patches
cannot be made adjacent. However, with memory, it is possible
to load one patch into the transmons and apply two-qubit gates
mediated by each transmon onto the data qubits for a second
qubit stored in one mode of the cavities. This works in both
Natural and Compact (described later).

Figure [6] demonstrates this for the transversal CNOT gate
which we verified via process tomography [13], [[19] to apply
the expected CNOT unitary in simulation. This can be per-
formed in a single round of d error correction cycles while
the lattice surgery CNOT shown in Figures [ (and later [9)
takes 6 rounds. This can translate to major savings in runtime
for algorithms.

The transversal CNOT is not limited to logical qubits
currently stored in the same 2D address. With an extra step it is
possible to transversely interact any two logical qubits. To do
this one of the qubits must be moved to the same 2D address as
the other using a move operation described in [12]]. The move
operation involves growing the patch toward the move target
in one step by adding new plaquettes along the entire path and
performing d cycles, one timestep, of error correction. Once
grown, the patch can be shrunk from the other end back to
its original size. The data qubits freed during the shrink are
measured and used to determine any fixup operation. Once the
two qubits are in the same 2D address, the transversal CNOT
can be applied. It can then be moved back, left where it is,
or moved somewhere else as determined during compilation.
This process takes 2 timesteps or 3 if including the second
move.

C. Compact Surface Code Embedding

In the previous scheme, half of the transmons did not have
attached cavities (or they did not make use them). An ancilla
and data qubit could share a transmon because the data are
stored in the cavity the majority of the time and the ancilla
are reset every cycle. This leads to a more efficient, Compact
embedding which halves the required number of transmons.
We will see that this comes at the cost of additional loads and
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Fig. 8. A 3D view of our Compact embedding. Shown at the top is the
2D grid of transmon qubits. Attached below every transmon is a resonant
cavity. Compact surface code patches are shown stored, one in each mode.
This deformed patch can be tiled in 2D.

stores from memory due to contention during error correction,
effectively trading some error and time for significant space
savings.

In the above memory architecture, because we do not store
any logical qubits in the transmon layer, these qubits can act as
the measurement ancilla, rather than have separate transmons
only there to act as the syndrome measurement ancilla. With
this observation, we can pack the data qubits of the surface
code patch of Figure [/ more efficiently with every transmon
having a cavity attached. Each plaquette of the rotated surface
code has a single ancilla at its center, interacting with each data
qubit. For Z plaquette (yellow or light) in this mapping scheme
we colocate the upper-right data and the ancilla; the upper-
right data is located in the cavity attached to the transmon
corresponding to the ancilla. Similarly, for each X plaquette
(blue or dark) we colocate the lower-left data and the ancilla;
the lower-left data is located in the cavity attached to the

N N N N

Fig. 7. Transformation from Natural to Compact. (a) Natural embedding: Only data have attached cavities (not shown). (b) The transformation: Z ancilla
(over yellow/light areas) merge with the upper-right data transmon and X ancilla (over blue/dark areas) merge with the lower-left data transmon. The opposite
parings are key to keeping 4-way grid connectivity. (c) Compact embedding: All ancilla transmons without attached cavities have been removed. All remaining

transmons have cavities and are used as both data and ancilla.
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Fig. 9. The Compact lattice surgery operations to perform a CNOT. The logical operations performed are identical to Figure E|but the corresponding physical
operations are arranged as shown in Figure This uses half as many transmons as Natural. As before, it takes 6 timesteps of d error correction cycles each.

A
'

Fig. 10. The CNOT sequence for parity checks in Compact. Left: A quantum circuit showing the hardware operations over time. Right: The CNOT execution
order repeats AgD2, A1 D3, A2Co, A3C1, BoC2, B1C3, Ba Dy, BsD1. The AB and C'D sequences run in parallel but offset to ensure ancilla and data
use do not conflict. CNOTSs for Ag D2 are marked in red where an isolated circle indicates a transmon-mediated CNOT.

transmon corresponding to the ancilla.

This mapping results in plaquettes which resemble triangles
rather than squares, where the center of the hypotenuse of each
triangle corresponds to both the ancilla qubit and the data
qubit, stored “beneath” in its cavity. Every data qubit is still
mapped to the same index. Notice in this scheme every data
(sans the boundary) is still adjacent to two measure-Z and two
measure-X ancilla where adjacent means either in the cavity of
the ancilla or in a cavity adjacent to the ancilla. We illustrate
this transformation from our undistorted Natural surface code
patch to Compact in Figure[7]and a diagram of this architecture
with a cavity for every transmon in Figure [8] If a different
ancilla location were chosen, for example all sharing with the
upper-right data, some of the syndrome extraction gates in the
resulting arrangement would require six-way connectivity, two
diagonal to the grid, which would be much more difficult to
engineer with low noise. This scheme where X and Z ancilla
share with data in opposite directions is the best scheme we
found to satisfy the hardware connectivity.

In Natural, we assign square patches to predetermined
square patches on the hardware. In Compact, we assign square
patches to predetermined rhombus or diamond patches on the
hardware. Previously, operations on the virtualized patches
closely resembled the original operations because the shape
was unchanged, except with the addition of loads and stores
to retrieve the logical qubit from memory. The same operations
apply here. We can examine the original, unmapped surface
code patch and perform the same sequence of operations

modulo loads and stores, on the transformed coordinates of
the mapped version.

This new mapping also requires a new syndrome extraction
procedure because data cannot be loaded while a transmon is
in use as an ancilla. A single round of syndrome extraction
can be executed by dividing the plaquettes into four groups,
with each group containing non-interfering plaquettes. Two
plaquettes are non-interfering if they do not share their ancilla
with any data qubits of the other plaquette. This process is
detailed explicitly in Figure [I0] It is imperative this process
use both the minimum number of loads and stores and keep
data qubits loaded for as short a time as possible as the error
incurred during this circuit directly impacts the error threshold
for the code. This has a similar cost as Natural, Interleaved
where a higher numbers of load and store gates were also
required.

Error correction can be performed Interleaved or All-at-once
just as with Natural. This should be chosen dependent on
how likely storage errors and gate errors are. For example,
if storage errors are expected to be significant, we may opt to
use Interleaved syndrome extraction. This will cost more loads
and stores so if gate errors are more significant than storage
errors we may opt for All-at-once.

D. Architectural Considerations

When compiling and executing programs in our system
there are several important architectural features to keep in
mind. First, it is always possible to execute a transversal two-
qubit interaction, rather than requiring use of split and merge.



In surface code architectures, the logical qubits are not bound
to a specific hardware location and are free to move around on
the grid. This qubit movement is fairly cheap requiring only a
single round of d error correction cycles (usually referred to as
a single timestep) to move any distance. However, we require
a clear area of unused patches to move through; typically,
this requires about 1/3 to 1/2 of the total area to be kept
as open channels to allow for distant qubit interactions. In
our architecture this translates to keeping one of the resonant
modes in every stack unused (1/k of total qubits for cavity
depth k£ ~ 10) and loading this mode along a path when a
logical qubit needs to move, i.e there is an index in the stack
which has no logical qubit mapped to it. This enables our
system to transport logical qubits between stacks to execute
more time and space efficient transversal CNOTs. The empty
mode is necessary for Compact because data is always stored
back to the cavity during syndrome extraction but not required
for Natural, All-at-once where the transmons themselves can
act as the unused qubits to move the logical qubit through.

Unfortunately, this qubit movement is not entirely free.
During the compilation process if we request many logical
qubits to move in parallel this can be expensive due to serial-
ization of intersecting move paths. Just as in current quantum
systems without error correction where it is imperative to
map and schedule multi-qubit interactions in a way which
minimizes total execution time, it is also important in our
system that logical qubits which interact heavily be located
close by for similar reasons. The mapping problem on the
system presented here is interesting because there is now a
tradeoff between locality and serialization between operations
with qubits sharing the same 2D address.

Second, we stress even though the logical qubits are stored
in memory, they are still subject to errors and it is critical that
every logical qubit be error corrected regularly. In the case of
Interleaved syndrome extraction, every logical qubit of a stack
will be roughly guaranteed to get a round of correction every
k time steps, where k is the cavity depth. This rate is during
steady state, when qubits are idle. When logical operations
are being executed, this rate may be reduced slightly. When
compiling and executing on this system, we may need to delay
some operations in order to ensure stored logical qubits get
the required amount of error correction and are not left so
long that errors accumulate and error correction becomes less
likely to succeed.

Finally, many lattice surgery operations require the use
of ancilla logical qubits, for example to measure specific
stabilizers which are done to execute a particular set of
operations in [12]. This restriction requires our architecture
and any compiler to guarantee one free mode of every stack
be allocated to temporarily obtain large logical qubits. This
free mode may be shared with qubit movement or separate if
many ancilla logical qubits are used.

IV. EVALUATION

In this section, we outline our error model and experimental
setup used to determine error thresholds for our mapping

and syndrome extraction schemes. We compare to the surface
code on a typical 2D architecture. Our goal is to demonstrate
the error thresholds for various error correction schemes, i.e.
to determine the necessary physical error rate required to
begin obtaining exponentially better logical error rate as the
code distance increases. Currently, neither transmon devices
nor transmon-memory devices used for our schemes have
consistently achieved physical error rates below this threshold
and instead the threshold serves as a goal or checkpoint.

A. Error Model and Noise Assumptions

For our experiments we make the following further assump-
tions about how noise and errors behave in both a typical
2D architecture and our 2.5D cavity memory architecture
since both have the same fundamental underlying transmon
technology:

o The error rates in the device do not fluctuate appreciably
over time.

o Transmon qubits can be actively reset and reinitialized to
|0) efficiently and without significant error.

o All errors are independent. No leakage errors and no
correlated noise.

o All classical processing of the syndromes is instantaneous
and error-free.

o Every n-qubit gate with the same n is equally error-
prone. For example, every one qubit operation has the
exact same chance of failure regardless of which actual
physical qubit it is applied to.

e All errors are Pauli, ie. drawn from the set
{I,X,Y,Z}®". For example, if a one-qubit error
occurs with probability p then we apply an X, Y, or Z
with probability p/3 and I (no error) with probability
1—p.

o We detect and correct X and Z errors independently. A
Y error is both an X and Z error.

For each of our experiments we rely on realistic device
data for current superconducting devices, provided by IBM
[1]]. For the memory hardware, we use experimental data from
[11]]. These parameters are listed in Table I, where T} . is
the coherence time of the cavity, T3 ; is the coherence time
of the transmon, A; is the single qubit gate time, A;_; is
the two-qubit transmon-transmon gate time, A;_,, is the two-
qubit gate time of transmon-mode interactions, and A/, is the
load and store times. In every experiment, the gate durations
for one- and two-qubit interactions is fixed. In a first set
of experiments, we vary all gate errors and coherence times
together, all derived from a single probability of error p given
as the probability of an SC-SC (Transmon-Transmon gates)
two-qubit gate error. We consider 77 times of both cavities
and transmons to determine the probability of storage error
given as A = 1 — exp{—At/T1}, where At is the duration
stored. We consider the same potential gate error rates for
each of these devices since the underlying technology behaves
very similarly. While typical coherence errors are not generally
Pauli, we model them as Pauli errors here as a worst-case



TABLE I
STARTING POINT COHERENCE TIMES AND CONSTANT GATE TIMES FOR
THE HARDWARE MODELS.

Hardware Baseline Transmons
Parameter Transmons with Memory
Ty 100 ps 100 ps
Ty,c - 1 ms
A¢_t 200 ns 200 ns
Ay 50 ns 50 ns
At_m - 200 ns
Apys - 150 ns

approximation since correcting Pauli errors is harder than
correcting coherence errors in general.

B. Experimental Setup

In every experiment, we run 2,000,000 simulated trials
per data point with each trial consisting of a round of error
correction. We compute the logical error rate as the number of
logical errors (misidentified error chains) over the total number
of trials. The large number of trials is required to estimate
logical error rates to 1075, To determine the error threshold
values for different surface code schemes, we vary the physical
error rate over several different code sizes. The goal is to find
an intersection point for each of these lines which gives a
physical error rate below which we expect our logical error
rate to get better as the physical error rate improves. Below
the threshold we also expect the logical error rate to get better
exponentially in the code distance d.

We study 5 setups to determine initial error thresholds.

o The surface code on a 2D superconducting architecture
as our baseline.

e Our Natural embedding with either the All-at-once or
Interleaved syndrome extraction.

¢ Our Compact embedding with either the All-at-once or
Interleaved syndrome extraction.

In our designs, the possible sources of error are more
nuanced and we study the thresholds’ sensitivity to variation
in the parameters. In all threshold experiments, we assume
cavity depth of 10 but later study sensitivity to cavity size.
The simulation code used to generate our results is available
on GitHub [20].

V. ERROR THRESHOLD RESULTS

We detail our threshold results in Figure We study 5
different code distances in order to obtain the physical error
threshold value. The threshold value indicates at which point
increasing the code distance, d, improves the logical error rate
instead of hurting it. This threshold is a function of both the
physical system model, the chosen syndrome extraction circuit,
and the specific decoding procedure. For example, decoding
procedures which do not accurately represent the probability of
certain error chains occurring will do a poor job of correcting
those errors. The decoding process should be directly informed
by the error model. In systems with more complicated error
models, the decoder should be aware of these further details to
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inform its decision about which types of errors occurred and
the proper way to correct them. We use the usual maximum
likelihood decoder because we use standard assumptions in
our error model.

The major difference in each procedure is the additional
error sources and different syndrome extraction procedures.
For example, the baseline is not subject to any of the ef-
fects related to cavity storage or transmon-mode operations.
These syndrome extraction procedures differ by the amount
of storage time of data qubits in different locations (cavity
vs. transmon) as well as the number of different physical
gate operations applied to them. These differences however,
do not cause substantial variation in the error threshold for
the different setups which is extremely promising. Second,
the slopes for each code distance compared across the various
schemes is stable, indicating each scheme improves at a similar
rate, post error threshold, and showing that the logical error
rate decays exponentially with d as desired. This is significant
because it means we will be able to save on total number of
transmons without major shifts in the error threshold. Since
transmon memory technology is expected to perform as well
as other competing transmon technology, we obtain higher
distance codes, and hence better logical error rate, with fewer
total transmons.

VI. ERROR SENSITIVITY RESULTS

In this section, we study the effects of different sources of
error on the thresholds obtained in section [V] Specifically, we
show how different system-level details affect the threshold
of the code. Here we focus on Compact, Interleaved as the
most efficient physical qubit mapping and subject to a wide
variety of errors. In these studies, the physical error rates of
all but a single error source are fixed at a typical operating
point below the threshold obtained previously, 2 x 10~3 and
the cavity depth is fixed at 10. Gate times are fixed while we
vary the physical error rate of SC-SC gates, SC-Cavity gates,
Load-Store gates or the coherence times of the cavity and the
transmon. We additionally study the duration of load/store, the
gates unique to memory technology. We note the effect of the
SC-Cavity gate duration will be a similar, smaller effect since
it occurs only once per qubit per error correction cycle. Finally,
we study the effect of cavity size by varying the number of
modes per cavity, causing a proportional delay between error
correction cycles.

The results of these sensitivity studies are found in Fig-
ure The logical error rate is sensitive to a particular error
source’s probability if the slope of the line is pronounced at the
marked reference value. The logical error rate for Compact,
Interleaved is sensitive to all changes in system-level details to
some degree. The gate error rates show the highest sensitivity,
indicating improvement in these will give the greatest benefit.
Coherence times are not quite as sensitive but the slightly over
10x offset between the cavity and transmon plots shows that
there is no benefit in transmon 7} being longer than 1/10
cavity T7 when the cavity size is 10. The lines taper off,
indicating other errors sources eventually dominate. Initially,
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Fig. 13. (a) The T-state generation rates of three different circuits. Higher

generation rate is better. (b) The space, in terms of number of patches, required
to produce a single |T") per time step. Lower is better. Fast [21] and Small [12]
work in the surface code and do not use memory. VQubits is implemented
with transversal CNOTSs in our 2.5D architecture. All are based on [17].

we expected the cavity size to have a large impact on the
logical error rate. However, when coherence times are high and
gate error rates are fairly low below the threshold, the logical
error rate does increase proportional to the length of the cavity
but the effect is very minor. This indicates, given cavities with
good coherence times, our proposed system will be able to
scale smoothly into the future as cavity sizes increase.

While larger cavity sizes will make this architecture even
more advantageous, there will be a point at which it has a
vanishing benefit because the delay between error correction
becomes too long and decoherence error dominates. For the
error rates used in the evaluation, we find that cavity deco-
herence error starts dominating after cavity size k =~ 150.
After this point, it would be more beneficial to improve cavity
coherence time.

VII. MAGIC STATE DISTILLATION
RESOURCE ESTIMATES

Now that we have shown error correction is effective in our
virtualized qubit architecture, we analyze how the transversal
CNOT and memory connectivity can benefit the performance
of an algorithm overall. In error-corrected quantum algorithms,
the dominating cost (commonly > 90%) in both space and
time resources is magic state distillation [9], [22], [23]. For
this analysis we consider how T-state distillation, a commonly
used magic state, is improved. Any improvements here will
translate directly to improvements in important algorithms like
Shor’s and Grover’s.

We take the 15-to-1 distillation circuit of [[17] to generate a
T magic state using a single patch of transmons with 6 logical
qubits stored in the attached cavities. This circuit consists of
16 qubit initializations, 15 measurements, 35 CNOT gates and
a few other operations. It takes a total of 110 surface code
timesteps to generate a T-state using only a single patch of
transmons. If pairs of these circuits are executed in lock-step,
they only take 99 timesteps.

In Figure we compare the T-state generation rate with
memory against two representative extremes designed for
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TABLE II
TRANSMON, DEPTH-10 CAVITY, AND TOTAL QUBIT COSTS OF EACH
T-STATE GENERATION PROTOCOL FOR d = 5.

Protocol | # transmons | # cavities | total qubits
Fast Lattice [21] 1499 - 1499
Small Lattice [12]] 549 - 549
VQubits (natural) 49 25 299
VQubits (compact) 29 25 279

speed or size, Fast Lattice [21] and Small Lattice [12]
(also based on [17]). Fast Lattice generates a T-state every 6
timesteps but uses 30 patches of space whereas Small Lattice,
generates a T-state every 11 timesteps using only 11 patches
of space. We compare these results by computing the T-state
generation rate per timestep if we filled 100 patches with
copies of the circuit running in parallel. Table lI|show the qubit
cost of each and chip area will be proportional to the number
of transmons. Using our VQubits protocol generates 1.82x as
many T-states as Fast Lattice and 1.22x as many as Small
Lattice. This improvement allows an algorithm like Shor’s to
run roughly 1.22x faster or work on smaller hardware.

VIII. CONCLUSION

Realizable quantum error correction protocols are a critical
step in the path towards fault-tolerant quantum computing.
There has been great progress in NISQ-era devices, but it
is equally critical to look towards designing architectures for
QEC. In this paper, we introduce a system which virtualizes
logical, error corrected qubits and is both space and time
efficient without sacrificing in terms of fault tolerance.

By taking advantage of recent advances in quantum memory
technology, we present a new architecture to substantially
reduce hardware requirements by storing logical qubits dis-
tributed in memory. This technology allows memory to be
separated but local to computation in a quantum system. We
provide two direct mappings of the surface code to this new
system with virtual addressing and illustrate how syndrome
extraction and error correction procedures can be executed
efficiently on the embedded surface code. Our embedding,
combined with the random-access nature of the memory is
important for several reasons. It enables fast transversal gates
like the CNOT which can reduce program execution time by
allowing faster operations and indirectly through improved
magic-state distillation protocols. It significantly reduces the
total number of transmon qubits required (10x for our anal-
ysis) which allows larger code distance patches while using
10x fewer transmon qubits and classical control wires. This
allows error correction to be realized much sooner on small
architectures. Our results show superconducting cavity-based
architectures offer a promising path towards quickly scaling
fault-tolerant quantum computation and can be evaluated with
10 logical qubits using as few as 11 transmons and 9 cavities.
We hope this work motivates further experimental efforts and
prompts industry to adopt and scale-up this architecture.
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