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Abstract 
The superblock is a scheduling region that is used by 
compilers for exploiting instruction-level parallelism 
across basic blocks. Many heuristic techniques have been 
proposed for solving this difficult scheduling problem, but 
none accurately approximates the optimal solution. This 
paper presents a new technique that finds provably 
optimal solutions to superblock scheduling problems. The 
technique is based on reducing the problem of finding 
branch combinations that yield incrementally increasing 
weighted execution times to a subset-sum problem, which 
is solved by dynamic programming. An enumerative 
approach that employs a number of powerful pruning 
techniques to efficiently explore the solution space is then 
used to search for a feasible schedule for each branch 
combination. Experimental evaluation using the SPEC 
CPU fp2000 and int2000 benchmarks shows that, within a 
per-problem time limit of one second, this combination of 
dynamic programming and enumeration optimally solves 
about 99% of the hard superblock scheduling problems 
with an average solution time of 9 milliseconds per 
problem. For 80% of the hard problems, the optimal 
schedule is improved compared to the schedule produced 
by an established heuristic technique. 

 
Keywords: global instruction scheduling, compiler 
optimizations, superblock, optimal scheduling, 
enumeration. 

 
 

1. Introduction 
 
Instruction scheduling is an essential phase of 

optimizing compilers that tries to find an ordering of 
instructions that minimizes pipeline stalls without 
violating dependency or resource constraints [15]. 
Originally, this reordering was done locally within a basic 
block. However, as wider issue machines were designed, 
the basic block no longer provided enough parallel 
instructions to utilize the functional units. The problem is 
more pronounced in control-intensive programs, which are 
characterized by smaller basic blocks. This has stimulated 

substantial research effort in global instruction scheduling 
beyond the basic block.  

Many region shapes have been proposed for 
performing global instruction scheduling. Common 
examples are traces [9], superblocks [12] and multi-path 
acyclic regions [1, 2]. A recent paper by Faraboschi et al. 
provides an excellent survey of region shapes and 
scheduling techniques [8]. 

The superblock is one of the simplest global scheduling 
regions, which makes it an attractive choice in many 
compilers. However, scheduling a superblock is 
substantially more difficult than basic-block scheduling 
due to the presence of multiple branches with conflicting 
requirements. Scheduling one branch early may delay 
other branches. A number of serious attempts have been 
made to resolve this problem using heuristics, including 
the Speculative Hedge [6] and Balance Scheduling 
heuristics [7]. However, even the most elaborate heuristics 
produce sub-optimal solutions on a significant percentage 
of the harder problems.  

This paper describes the first algorithm for optimal 
superblock scheduling. Because the problem is NP-hard 
[11] it is not likely that there is an algorithm that exactly 
solves all instances in polynomial time. The algorithm 
presented in this paper solves about 99% of the hard 
superblocks in the SPEC CPU benchmark suite in less 
than one second per problem. This constitutes 
experimental evidence that intractable instances of the 
superblock scheduling problem rarely occur in practice. 

In addition to generating improved code as an advanced 
compiler optimization, optimal global scheduling provides 
the most accurate way of assessing the success of existing 
heuristics at exploiting instruction-level parallelism (ILP). 
Studying the limits of ILP can also be used as a guide by 
hardware architects to avoid wasting hardware resources 
on architectural features that compilers are unable to 
utilize. In spite of the many global scheduling techniques, 
very few attempts have been made to evaluate their quality 
relative to optimality.   

The optimal technique presented in this paper is based 
on an enumerative approach, which efficiently explores 
the entire solution space. The efficiency is achieved by 
using a number of pruning techniques that have been 
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proposed in previous work for solving the more 
fundamental problem of basic-block scheduling [5, 16, 19]. 
The contribution of this paper can be viewed as a 
transformation that decomposes a superblock scheduling 
problem into a set of basic-block scheduling problems that 
can be solved optimally using enumeration. 

The paper is organized as follows. Section 2 defines the 
problem and terminology. Section 3 summarizes prior 
work. Section 4 describes the enumeration engine, which 
is the core of the solver. Section 5 derives the optimal 
superblock scheduling algorithm. Section 6 presents the 
experimental results. A final conclusion and future work 
are covered in Section 7. 

 
2. Problem Definition 

 
An instruction scheduler operates on one scheduling 

region at a time. The superblock is a global scheduling 
region that consists of a single-entry multiple-exit (SEME) 
sequence of basic blocks. Branch instructions inside the 
superblock are called side exits, while the end of the last 
basic block is called the final exit. In the context of this 
paper, the terms exit and branch are used interchangeably. 

The input to an instruction scheduler is a directed 
acyclic graph (DAG), called the data dependence graph.  
Each node in the DAG represents an instruction. A 
directed edge of label l from node i to node j is included if 
instruction j depends on instruction i with a latency l. If 
there is a directed path in the DAG from node m to node n, 
m is said to be a predecessor of n and n is said to be a 
successor of m. A node with no predecessors is called a 
root node, while a node with no successors is called a leaf 
node. The DAGs in this paper are represented in a 
standard format in which there is only one root node and 
one leaf node. Any DAG can be converted to this format 
by introducing a dummy root and/or leaf node and adding 
edges from (to) the dummy node to (from) the original 
root (leaf) nodes.  

In addition to satisfying the latency constraints 
represented by the DAG, a scheduler must satisfy the 
resource constraints of the machine model. A machine 
model in this paper consists of a certain number of 
functional-unit types (pipelines) and a number of instances 
of each type, along with a mapping of instructions to 
functional-unit types. To simplify the presentation, it is 
assumed that all functional units are fully pipelined and 
that each instruction can execute on only one functional-
unit type.  

Given a DAG and a machine model, a feasible schedule 
is an assignment of an issue cycle to each instruction in the 
DAG that satisfies the latency and resource constraints. In 
this paper, schedules will follow the convention of starting 
at cycle 0, and the total length of a schedule is defined as 
the number of the last cycle in which an instruction is 
issued. In local scheduling the objective is to minimize the 

total length. In superblock scheduling, however, where 
there are multiple paths within the scheduling region, the 
objective is to minimize the weighted length. The 
weighted length W of a schedule S is defined as: 
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where E is the number of side exits (E+1 is the total 
number of exits), Ci is the issue cycle of exit i in schedule 
S and Pi is the probability that exit i is taken. Due to their 
role in this equation, exit probabilities are also called 
weights in the context of superblock scheduling.   

The critical-path distance (CP) of a given node from 
the root (leaf) is the length of a longest path between the 
node and the root (leaf), where the path length is the sum 
of edge labels along the path. The forward lower bound 
(FLB) or release time of a node is a lower bound on the 
cycle in which the node can be scheduled. The reverse 
lower bound (RLB) is a lower bound on the difference 
between the node’s issue cycle and the leaf node’s issue 
cycle. The reverse lower bound can be used to compute 
the deadline of an instruction with respect to a given 
schedule length. In a schedule of length L, the leaf node is 
scheduled at cycle L. Accordingly, any instruction i in the 
DAG must be scheduled by the deadline L-RLB(i) for the 
length L to be feasible. For a given length, the scheduling 
range of an instruction is the period starting at the release 
time and ending at the deadline. Scheduling ranges play an 
important role in the enumerative technique presented in 
this paper. One way of computing an instruction’s forward 
(reverse) lower bound is to use the instruction’s critical-
path distance from the root (leaf). Techniques for 
computing tighter lower bounds will be presented in 
Section 3.1.  

When a lower bound is established on the issue cycle of 
each exit, it is convenient to measure the quality of a 
superblock schedule by a normalized cost function that 
represents weighted delays from the exit lower bounds, or 
in equation form: 
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where Li is a lower bound on the issue cycle of exit i and 
Di=Ci-Li is the delay of exit i from its lower bound. The 
cost function simplifies superblock calculations by 
eliminating the lower bound component of the weighted 
length. However, since the cost is defined relative to a 
certain set of exit lower bounds, two cost functions are 
comparable only if they are measured relative to the same 
set of exit lower bounds.  

Figure 1.a shows an example DAG for a superblock 
that consists of three basic blocks. In this DAG, nodes 3 
and 7 are side exits defining the ends of two basic blocks, 
while node 8, the DAG’s leaf node, is the final exit. The 
figure also shows the probability that each of these three 
exits is taken. 
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3. Previous Work 
 
This work is built on prior work on lower-bound and 

enumeration techniques for local instruction scheduling. 
This section provides a summary of these techniques. It 
also surveys existing heuristic methods for superblock 
scheduling.   

 
3.1 Lower Bounds 

 
Various lower-bound computation techniques have 

been developed for local instruction scheduling. These 
techniques play an important role in optimal scheduling. 
Lower bounds are also useful for evaluating the 
performance of heuristics. Lower bound techniques are 
based on analyzing resource availability versus resource 
requirements.  

 
 
Figure 1: (a) Example superblock DAG. Branch nodes are 
shown in dotted lines. (b) Lower bounds for a single-issue 
machine. I#: instruction number in the DAG, FLB: forward 
lower bound, RLB: reverse lower bound, DL: deadline for 
length 8   

 
A fundamental lower-bound algorithm is the relaxed 

scheduling algorithm by Rim and Jain [17]. It is based on 
relaxing the scheduling problem to a minimum-lateness 
release-time and deadline (MLRD) problem, which can be 
solved optimally in polynomial time. Given a set of initial 
release times and deadlines of all nodes in the DAG, the 
algorithm computes a potentially tighter release time for 
the DAG’s leaf node, which is a lower bound on the total 
schedule length. The initial release times and deadlines are 
usually computed using critical-path distances. 

The Rim-Jain algorithm considers instructions in non-
decreasing deadline order (the deadlines are for a schedule 
length L equal to the leaf node’s initial release time) and 
schedules each instruction in the earliest available issue 
slot. After scheduling all instructions, the maximum delay 

of an instruction from its deadline is added to the initial 
leaf-node release time to produce a tighter lower bound on 
the schedule length. 

In a subsequent work, Langevin and Cerny [13] 
observed that an even tighter lower bound can be 
computed if the release times of the nodes are themselves 
computed by recursively applying the Rim-Jain algorithm 
to the sub-graph between each node and the root node. 
This has the additional advantage of computing potentially 
tighter lower bounds for the internal DAG nodes. 

These two lower-bound techniques can be applied to 
any DAG whether it represents a basic block or a 
superblock. However, Meleis et al. [14] go a step further 
and develop tighter lower bounds specific to the 
superblock problem by taking branch conflicts into 
account. 

It is interesting to note that lower-bound techniques can 
be applied to the DAG in both directions. In the reverse 
direction, the roles of the root and leaf nodes are 
interchanged and the directions of all edges are reversed. 
The same technique is then applied to compute tighter 
reverse lower bounds and consequently tighter deadlines. 

In this work, the Rim-Jain technique is used during 
enumeration to compute the lower bounds needed by the 
branch-and-bound technique, while the more expensive 
Langevin-Cerny technique is applied once in each 
direction to the entire DAG in a preprocessing step that 
computes tight scheduling ranges for all instructions. The 
cost function is evaluated based on the Langevin-Cerny 
lower bounds computed in this preprocessing step. The 
Meleis lower bounds, however, are not used in this paper, 
since they are dominated by the enumeration process. 

Figure 1.b shows the Langevin-Cerny forward and 
reverse lower bounds for the example superblock. The 
four columns show the instruction number, forward lower 
bound, reverse lower bound and deadline for a length-
eight schedule. 

 
3.2 Heuristics for Superblock Scheduling 

 
List scheduling is the most widely used technique for 

performing instruction scheduling [15]. List scheduling is 
a greedy algorithm that considers issue slots in order and 
maintains a ready list of instructions. An instruction is 
ready if all of its predecessors in the DAG have been 
issued and the corresponding latencies have been satisfied. 
When multiple instructions are ready, one is selected 
according to certain heuristics. The critical-path (CP) 
distance from the leaf is one of the most commonly used 
heuristics. 

When the superblock was introduced [12], it was first 
scheduled using the critical-path heuristic. However, 
subsequent research revealed that a priority based only on 
the critical path from the final exit may unnecessarily 
delay side exits [6, 7]. This led to the development of 
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superblock-specific scheduling heuristics. Two fast 
heuristics that work well in practice are Successive 
Retirement (SR) [3] and Dependence Height and 
Speculative Yield (DHASY) [7, 9]. The SR heuristic gives 
higher priority to instructions in earlier basic blocks. 
Within each basic block, critical path is used as a priority 
scheme among local instructions.  DHASY is a 
generalization of the critical-path heuristic to superblocks. 
The weighted sum of critical path distances to all exits is 
used instead of the critical-path distance to the final exit. 

In addition to these fast heuristics, three more accurate 
but computationally expensive heuristics have been 
proposed. The G* heuristic [3] tries to find a compromise 
between Critical Path and Successive Retirement by 
selectively applying successive retirement to the critical 
branches. Speculative Hedge [6] avoids over-speculation 
by setting each instruction’s priority to the sum of weights 
of the branches that it helps schedule early. The most 
recent heuristic is Balance Scheduling, which is based on 
tight superblock lower bounds [7]. It tries to achieve more 
accuracy by determining the instructions that each branch 
needs to have scheduled early and selecting branches with 
compatible needs. 
 

 
 

 
Figure 2: Superblock scheduling heuristics on a single-
issue machine: (b) critical path (c) successive retirement. 
The numbers to the left of the colons are cycle numbers, 
while the numbers to the right are instruction numbers. 

 
Figure 2 shows the application of two fast heuristics to 

the DAG of Figure 1. The critical-path heuristic, which 
ignores side exits succeeds in scheduling the final exit at 
its lower bound of 8, but delays each of the side exits by 
one cycle. This corresponds to a cost of 0.5 according to 
Equation (2). Successive Retirement, on the other hand, 
schedules the side exits at their lower bunds, but at the 
cost of delaying the final exit by two cycles. Equation (2) 
quantifies this cost by a value of 1.0.   

Meleis et al. [14] studied the performance of the six 
heuristics mentioned above and found that Balance 
Scheduling, on average, generates the best schedules. It 
finds the optimal schedule for 50% to 88% of the non-
trivial superblocks on different processor models. 
However, their compile-speed measurements show that 
Balance Scheduling is relatively slow. Its most accurate 
form is, on average, 455 times slower than critical-path list 
scheduling. These results suggest that even the most 
complex heuristic-based approaches produce sub-optimal 
schedules on a significant number of real problems.  

 
3.3 Instruction Scheduling using Enumeration  

 
Branch-and-bound enumeration is a well-known 

technique in combinatorial optimization [18]. Researchers 
have applied enumeration to instruction scheduling but 
only in its local form [5, 16, 19]. A particularly important 
idea in enumerative approaches to optimal instruction 
scheduling is using relaxed scheduling as the lower-bound 
method [16]. Another powerful idea is using history 
information to prune certain tree nodes if they are 
dominated by previously visited nodes [19]. In addition to 
these two primary pruning techniques, a secondary 
pruning technique, called Node Superiority, can provide 
further speedup of the enumeration process [5].  

 
4. Enumeration Framework 

 
The proposed superblock scheduling algorithm is based 

on an enumerator that employs the three pruning 
techniques mentioned in Section 3.3. This section 
describes the enumerator’s structure and illustrates how 
these pruning techniques are used. 

The enumeration framework explores the solution 
space in an iterative manner. In each iteration, the input to 
the enumerator is a DAG and a target length. The output is 
either a feasible schedule of the target length or a proof 
that no such schedule exists. The input DAG includes the 
scheduling ranges of all instructions as computed by the 
Langevin-Cerny algorithm. The enumerator allows an 
arbitrary subset of instructions to be fixed in certain cycles, 
and then restricts its search to the sub-space that satisfies 
these fixing constraints. This fixing feature plays a key 
role in the proposed optimal superblock scheduler. 

The enumerator mimics the operation of a slot-by-slot 
list scheduler but with the additional powerful feature of 
backtracking when it finds that the target schedule length 
is no longer feasible. It tries to construct a feasible 
schedule incrementally, starting with an empty schedule 
and adding one instruction (or stall) at a time. At any 
given point in the enumeration, the scheduled instructions 
form a partial schedule. In each step the enumerator either 
makes forward progress by augmenting the current partial 
schedule or determines that the target length cannot be met 
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with the current partial schedule, in which case it 
backtracks by removing the last instruction added. 
Augmenting the current partial schedule is done by 
choosing one instruction from the ready list (see Section 
3.2). In the case of backtracking, an alternate ready 
instruction is attempted and so on. This behavior can be 
modeled by an enumeration tree in which scheduling an 
instruction (or a stall) in the next available slot is a branch 
from the current tree node to a new tree node1. 

Figure 3 shows a simple enumeration example, where 
the objective is to find a feasible schedule of length 4 on a 
single-issue machine. Initially, instructions 0, 1 and 2 are 
ready and the enumerator chooses to schedule instruction 
0. After scheduling instruction 0, the enumerator has the 
option of scheduling either instruction 1 or 2. It first 
chooses to schedule instruction 1 (the left branch) then it is 
left with the only choice of scheduling instruction 2. After 
scheduling instruction 2, a stall must be scheduled to 
satisfy its 2-cycle latency. For the target length of 4 to be 
met, the remaining two instructions 4 and 5 must be 
scheduled in one remaining slot, which is impossible. The 
enumerator makes three backtracking steps until it finds 
the branch on the right, which successfully constructs the 
feasible schedule 0, 2, 1, 3, 4.  

 
 
 
 
 
 
 
 
 
 

Figure 3: Enumeration example for a single-issue 
machine. Target length = 4 

 
The enumeration algorithm is listed in Alg 1. Initially, 

the current tree node is set to the enumeration tree’s root 
node where no instructions are scheduled. The main loop, 
starting at Line 2, repeats until a feasible schedule is found 
or the entire tree is explored. In this loop, the procedure 
FindNextFeasibleNode is called to find a feasible new node. 
If such a node is found, the algorithm steps forward to that 
node (Line 5); otherwise the algorithm backtracks to the 
previous tree node (Line 10). 

 The procedure FindNextFeasibleNode fetches the next 
priority instruction from the ready list and calls the 
ExamineNode procedure to check if scheduling this 
instruction (which could be a stall if the ready list is 

                                                
1  The notions of a branch and node in the enumeration tree 
should not be confused with branch instructions and DAG nodes. 
When the meaning is not clear from the context, the tree qualifier 
will be used. 

empty) is feasible. The ExamineNode procedure 
temporarily steps to the candidate tree node by scheduling 
the given instruction or stall and then performs the 
following four tests to check feasibility: 
First Test: Node Superiority  

For a candidate instruction j, each alternate instruction i 
of the same type that has been examined at the same tree 
node and found infeasible is checked for the following 
conditions: 
- Each immediate successor of j in the DAG is also a 
successor of i. 
- For each common successor k, the latency from j to k is 
less than or equal to the latency from i to k. 

If these conditions hold, then it can be shown that for 
any feasible schedule in which j appears before i, there is a 
feasible schedule of the same length in which i appears 
before j [5]. Under these conditions, i is said to be 
superior to j, and because scheduling i has already been 
examined and found infeasible, the option of scheduling j 
does not need to be explored. 

 
Enumerate(DAG, targetLength) 
1     currentNode= rootNode; 
2     while(!(allNodesExpolred || feasibleSolnFound)) 
3      foundFeasibleNode=FindNextFeasibleNode(); 
4      if(foundFeasibleNode==TRUE) 
5           currentNode=StepForward() 
6      else 
7           if(currentNode == rootNode) 
8               allNodesExplored = TRUE 
9   else 
10        currentNode=BackTrack() 
 
boolean FindNextFeasibleNode() 
11   for each unexamined option at the current node 
12       inst=GetNextReadyInst() 
13       if(ExamineNode(inst)==TRUE) 
14           return TRUE 
15       else 
16           RestoreState() 
17 return FALSE 
 
boolean ExamineNode(inst) 
18   if(WasSuperiorNodeExamined(inst)==TRUE) 
19       return FALSE 
20   if(TightenAndPropagateLowerBounds(inst)==FALSE) 
21       return FALSE 
22   if(WasDominantHistroryNodeExamined(partialSched)==TRUE) 
23       return FALSE 
24   if(IsRelaxedScheduleFeasible(unScheduledInsts)==FALSE) 
25       return FALSE 
26   return TRUE 
 

Alg 1: Enumeration algorithm 
 

Second Test: Lower-Bound Tightening 
After scheduling an instruction, the lower bounds of 

some other instructions can be tightened. When the 
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enumerator steps from cycle C to cycle C+1, the lower 
bounds (release times) of all unscheduled instructions 
should be tightened to C+1 (unless they already have a 
larger lower bound). Since increasing the lower bound of 
an instruction may increase the lower bounds of its 
successors, the tightened lower bounds are propagated to 
the successors and the scheduling ranges are checked. If 
that causes an instruction to have an empty range (its 
release time is larger than its deadline), infeasibility is 
detected. 
Third Test: History-Based Domination 

Exploring the entire sub-tree below some tree node A 
without finding a feasible schedule, implies that there is no 
feasible way of scheduling the remaining instructions in 
the remaining issue slots. This information can be kept in 
a history table and used to prove the infeasibility of some 
other tree node B with the same set of unscheduled 
instructions below it. In this case, A is said to dominate B. 
History-based domination is checked by considering the 
initial conditions of the remaining scheduling sub-
problems below A and B as represented by the release 
times of unscheduled instructions and the available 
resources (issue slots). The following conditions are 
sufficient to conclude that A dominates B [19]: 
- B lies at the same depth in the tree as A or deeper 
- The release time for each unscheduled instruction below 
A is less than or equal to its release time below B.  

Figure 4 shows an example. The enumerator first 
explores node A. After finding node A infeasible, the 
enumerator inserts a certain node-A state into the history 
table and backtracks. When node B is reached, its 
scheduled/unscheduled instructions match those in A’s 
history entry. Because the lower bounds below A and B 

 
 
 
 
 
 
 
 
 

Figure 4: History-based enumeration. Single-issue 
machine. Target length =4. 

 
(shown in Figure 4.c) satisfy the domination conditions, 
the enumerator concludes that node B is infeasible and 
prunes the entire sub-tree below B. 
Fourth Test: Relaxed Scheduling  

Using the tightened release times obtained in the 
second feasibility test, the Rim-Jain algorithm is applied to 
the unscheduled instructions to check if there is a feasible 
relaxed schedule of the target length. If not, that implies 
infeasibility [16]. 

 

5. Superblock Enumeration 
 
The algorithm presented in this paper is based on the 

idea of searching for a feasible schedule at incrementally 
increasing cost-function values. Initially, a feasible 
schedule of zero cost is sought by fixing all exits at their 
lower bounds and using the enumerator’s fixing capability 
(see Section 4) to search for a feasible schedule with non-
branch instructions in the remaining issue slots. If no such 
schedule is found, the cost is incremented by the minimum 
possible value. This is achieved by moving one or more 
branches to later cycles within their scheduling ranges. 
The enumerator is then invoked again with the new fixing 
of exits, and so forth.  

Monotonically increasing cost values and searching for 
a feasible schedule of any total length (within the leaf 
node’s scheduling range) will result in wider scheduling 
ranges than if the search was limited to one total length at 
a time. Therefore, the algorithm described below explores 
all cost values at one total schedule length before moving 
to the next schedule length. The cost is incremented within 
each total length by varying the issue cycles of side exits 
only. The details are described in the next sub-sections. 

 
5.1 Branch Combinations 

 
According to Equation (2), the minimum value of the 

cost function is always zero. Let’s denote the next possible 
costs, in ascending order, by C1, C2, …, Cn. Each possible 
cost Ci can be produced by a number of combinations of 
branch issue cycles. These branch combinations will be 
denoted by B1(Ci), B2(Ci), …, Bm(Ci). Each branch 
combination Bj(Ci) can be represented as a tuple            
(b1, b2, …, bE) of E integers (recall that E is the number of 
side exits), in which the element bi is the delay of exit i 
from its lower bound. 

 
Example: Consider a superblock with three side exits of 
probabilities 0.1, 0.2, 0.3 and scheduling ranges [3,5], 
[6,7], [10,15] respectively. The zero-cost branch 
combination (0,0,0) corresponds to scheduling all side 
exits at their lower bounds of 3, 6 and 10. The next 
possible cost C1 = 0.1 is achieved by only one branch 
combination: B1(C1) = (1,0,0), in which the first side exit 
is scheduled one cycle off its lower bound while the other 
two are scheduled at their lower bounds. (Note that all 
costs in the open interval (0, 0.1) are not possible in this 
case). C2 is equal to 0.2 with two branch combinations: 
B1(C2) = (2,0,0) and B2(C2) = (0,1,0) and so forth.  

In this simple example, increasing the cost 
incrementally and finding the corresponding branch 
combinations was not difficult. However, this computation 
is in general non-trivial. In fact, the problem of deciding 
whether a given cost is possible can be reduced to a 
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Subset-Sum problem, which is known to be NP-complete 
[4]. The details of this reduction are described next. 

 
The Subset-Sum Problem: Given a set S of N positive 
integers {n1, n2, … , nN} with quantities {q1, q2, … , qN} 
and a positive integer K, is there a linear combination   
a1n1 + a2n2 +…+ aNnN , (0 ≤ ai ≤ qi) that is exactly equal to 
K?  

If the costs and exit probabilities in the branch-
combination problem are expressed as integers relative to 
some common denominator, mapping to the Subset-Sum 
problem will be straightforward. Each cost Ci maps to a 
target integer K, thus defining one instance of the Subset-
Sum problem. In each instance, the branch probabilities    
P1, P2, …, PE  map to the integer elements n1, n2, …, nN of 
the set S, and the scheduling ranges map to the quantities   
q1, q2, …, qN of the elements.  

In the above example, we had a three-element set 
{1,2,3} with quantities {2,1,5}. The zero cost maps to K=0, 
and the branch combination (0,0,0) corresponds to a linear 
combination in which all three coefficients are equal to 
zero. The next cost C1 = 0.1 maps to K = 1 with one 
branch combination (1,0,0) mapping to the linear 
combination 1n1 + 0n2 + 0n3 = n1, and so forth.  

The subset-sum problem is weakly NP-complete and 
can be solved efficiently using dynamic programming [4]. 
However, full exploration of the solution space in our case 
requires a subset-sum solver that not only decides whether 
a given cost is possible, but also finds all the branch 
combinations that produce each possible cost. For any 
given cost, the number of possible branch combinations 
could be, in the worst case, as large as the size of the 
power set, which is exponential in the number of branches. 
In practice, however, a feasible schedule is found within a 
small number of branch combinations due to the small 
number of branches and the tightness of their scheduling 
ranges (see the experimental results in Section 6 for counts 
of branches and branch combinations examined). A sub-
set sum solver that finds all solutions has been 
implemented and integrated with the enumeration 
framework of Section 4 to form the superblock scheduling 
solver described in Sub-section 5.3 

 
5.2 Termination Condition 

 
Given a feasible schedule (possibly obtained by a fast 

heuristic) of total length L and cost C, C is an upper bound 
on the cost function, but L is not necessarily an upper 
bound on the total schedule length. A schedule of length 
L+1 might have a lower cost than C if it schedules some 
heavy-weight side exits much earlier. This sub-section 
derives a formula for computing a schedule-length upper 
bound given a cost-function upper bound. This formula is 
used as a termination condition in the optimal superblock 
scheduling algorithm.  

We start by rearranging Equation (2) so that the final 
exit appears in a separate term: 

  ∑∑
==

+−=+=
E

i
iiSf

E

i
iiff DPLSPDPDPSCost

11

)|(|)( ,    (3)                   

where |S| is the schedule length and LS is a lower bound on 
the schedule length.  

Given a cost upper bound UC, the objective is to 
compute an upper bound US on the total schedule length. 
The maximum schedule length we need to consider should 
have a minimum cost less than UC. The minimum cost that 
a schedule of a given length can have occurs when all side 
exits are scheduled at their lower bounds. In this case the 
summation in Equation (3) vanishes, and the minimum 
cost at a given length L is given by 

 )()( SfMin LLPLCost −= .                              (4) 

Equating this to the cost upper bound UC and substituting 
US for L, we get   

)( SSfC LUPU −= .                                   (5) 

Solving this equation for US, gives 

S
f

C
S L

P

U
U +=                                           (6)                    

This equation gives an exclusive upper bound on the 
schedule length that needs to be examined in searching for 
better schedules than a given feasible schedule of cost UC. 
Schedule lengths that are larger than or equal to Us do not 
need to be explored. The optimal algorithm uses this 
equation as a termination condition. 

 
5.3 Superblock Scheduling Algorithm 

 
Putting the above ideas together yields an algorithm for 

finding an optimal schedule for a given superblock DAG. 
The algorithm is listed in Alg 2 and described next. 

The first step on Line 1 uses the Langevin-Cerny 
algorithm to compute tight lower bounds for all 
instructions in the DAG, including side exits. The final-
exit lower bound is also a lower bound schedLB on the 
total schedule length. The next step (Line 2) uses a fast 
heuristic to find an initial feasible schedule. The cost of 
this schedule as calculated by Equation (2) is the initial 
best cost (relative to the Langevin-Cerny lower bounds). 
On Line 3 this best cost is substituted into Equation (6) to 
compute a schedule-length upper bound schedUB. 

The outer loop (starting on Line 5) explores target 
lengths between schedLB and schedUB. For each target 
length, the inner loop (starting on Line 7) explores branch 
combinations. The GetNextBranchComb procedure is an 
interface to the subset-sum solver that gives feasible cost 
values in incrementally increasing order along with all the 
branch combinations that produce each cost. Each 
invocation of this procedure (Line 8) returns one branch 
combination. Based on these branch combinations, the 
issue cycles of the side exits are fixed (Line 11) and then 
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the enumerator is invoked (Line 12) to search for a 
feasible schedule at the current target length that also 
satisfies the branch fixing. The enumerator takes 
advantage of the fixing to further tighten the solution 
space by recursively propagating the tightened release 
times and deadlines to the successors and predecessors of 
each branch (see Figures 5 and 6 for examples). 

  
1    (schedLB, exitLBs) = ComputeLowerBounds() 
2    bestCost = HeuristicSchedule() 
3    schedUB = ComputeUpperBound(bestCost) 
4    targetLength = schedLB 
5    while(targetLength < schedUB)  
6     lengthDone = FALSE 
7      while(!lengthDone) 
8           GetNextBranchComb() 
9   if (targetCost  >=  bestCost) 
10         break 
11              FixSideExits(branchComb) 
12              found=EnumerateToFindFeasibleSchedule(targetLength) 
13              if(found == TRUE) 
14               lengthDone = TRUE 
15       bestCost = targetCost 
16             schedUB = ComputeUpperBound(bestCost) 
17        targetLength++ 
 

Alg 2: Superblock scheduling algorithm 
 
The search at the current target length ends when a 

feasible schedule is found (Line 13) or when the target 
cost reaches the best cost (Line 9), whichever occurs first. 
If a feasible schedule is found, the best cost is first updated 
(Line 15) and the new best cost is substituted into 
Equation (6) to compute a tighter schedule-length upper 
bound schedUB (Line 16). When the search at the current 
target length is complete, the latest schedUB value is 
checked (Line 5) to determine whether the next length 
needs to be searched or not. If the next schedule length is 
greater than or equal to schedUB, the algorithm terminates 
and the last feasible schedule found is the optimal 
schedule.  

 
5.4 Complete Example  

 
The superblock scheduling algorithm is applied to the 

example of Figures 1 and 2 for a single-issue target 
machine. The Critical-Path heuristic is used to find an 
initial feasible schedule. As shown in Figure 2.b, this 
heuristic delays both side exits by one cycle from their 
lower bounds. Using Equation (2), the cost of the initial 
schedule is:  

UC = Cost(SCP) = 1*0.3 + 1*0.2 = 0.5 . 
As shown in Figure 1.b, the total-length lower bound 

LS is 8. Substituting these two values into Equation (6) 
gives the total-length upper bound: 

US = 8 + 0.5/0.5 = 9. 
 

 
 
 

 
Figure 5: Superblock enumeration. First iteration: Target 
length=8, target cost =0. In the relaxed schedule, numbers 
on the left are cycle numbers.  

 
Thus a schedule with a total length of 9 will at best 

have a cost equal to that of the known feasible schedule, 
which implies that searching at a target length of 9 is not 
necessary. The search is therefore limited to a target length 
of 8 (the outer loop in Alg 2 will be repeated only once).  

In the first iteration of the inner loop, shown in Figure 5, 
the zero-cost branch combination (0,0) is explored. Fixing 
the two side exits at their lower bounds and propagating  
the release times and deadlines yields the tightened 
scheduling ranges shown next to the instructions in Figure 
5.a. For instance, by fixing instruction 3 in cycle 2, its 
range is tightened from its static value of [2,3] (see Figure 
1) to [2,2]. This, in turn, tightens the scheduling range of 
instruction 1 to [1,1] (if instruction 3 is scheduled in cycle 
2, the 1-cycle latency implies that instruction 1 must be 
scheduled by a deadline of 1). A similar argument applies 
to instruction 7 and its predecessors 4 and 6. When the 
DAG with these tightened ranges is passed to the 
enumerator, it searches for a schedule that satisfies these 
scheduling ranges. 

The first enumeration step, shown in Figure 5.b, 
temporarily schedules instruction 0 in cycle 0 and 
examines feasibility by trying to find a relaxed schedule 
that satisfies the tightened ranges. As shown in the figure, 
no feasible relaxed schedule is found because after 
scheduling instructions 0 through 4, both instructions 5 
and 6 must be scheduled in cycle 5 to meet their target 
deadlines, which is impossible on a single-issue machine. 
Because there is no other alternative (ready instruction) at 
the root node, this concludes iteration 1. In this case, 
exploring only a single tree node was sufficient to prove 
that there is no feasible schedule with all exits scheduled 
at their lower bounds. 

0 : 0 

1 : 1 

2 : 3 

3 : 4 
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5 : 5 
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Figure 6: Superblock enumeration. Second iteration: Target length=8, target cost =0.2. In part c, the numbers to the left of 
the colons are cycle numbers, while the numbers to the right are instruction numbers. 

  
In the second iteration shown in Figure 6, the subset-

sum solver returns the branch combination (0,1) with  
instruction 3 scheduled at its lower bound and instruction 
7 delayed by one cycle. The resulting ranges (which are 
looser than those of the first iteration) are shown on the 
DAG in Figure 6.a. The enumerator generates the tree of 
Figure 6.b. As shown in the figure, this tree will 
successfully grow into a complete feasible schedule of 
length 8 and cost 0.2.  

This terminates the search at target length 8, and 
because the above calculations have shown that a target 
length of 9 does not need to be considered, the schedule of 
Figure 6.c is a provably optimal schedule. 
 
6. Experimental Results 

 
The optimal superblock scheduling algorithm described 

above was implemented and then applied to a set of 
superblocks generated by the Gnu Compiler Collection 
(GCC). The SPEC CPU fp2000 and int2000 benchmarks2 
were compiled by GCC version 3.4 with static superblock 
formation [10] enabled. The DAGs generated by GCC 
were then scheduled using the optimal technique of this 
paper.  

Scheduling was performed for four different fully 
pipelined machine models:  
- single issue with a unified pipeline 
- dual issue, with one integer and one FP pipeline (branch 
and memory operations are assumed to execute on the 
integer pipeline)  

                                                
2  The four fp2000 benchmarks written in Fortran 90 were 
excluded. One more fp2000 benchmark and two int2000 
benchmarks had to be excluded as well, since they did not 
compile on GCC 3.4 at the time of the experiment.  

- quad issue, with one integer, one memory, one FP and 
one branch pipeline 
- 6- issue with 2 integer, 2 memory, 1 FP and 1 branch 
pipeline  

Instruction latencies are 2 cycles for FP adds, 3 cycles 
for loads and FP multiplies, 9 cycles for FP divides and 1 
cycle for all other instructions. The scheduling 
experiments were performed on a 3-GHz Pentium 4 
processor with 512 MB of main memory. 

Table 1 shows some statistics about the superblocks 
used in the experiments. There were a total of 7961 
superblock DAGs from the fp2000 suite and 33431 DAGs 
from the int2000 suite. The set included large superblocks 
with up to 1236 instructions and 42 branches. Rows 3 and 
4 show the final-exit and side-exit probability distributions. 
Note that exit probabilities are represented as fractions of 
a hundred. As expected, the final exit is the most likely 
exit [12] with an average probability of about 2/3. The 
int2000 benchmarks are characterized by smaller 
superblocks, more branches and consequently lower per-
exit probabilities compared to the fp2000 benchmarks. 
 
Table 1: Superblock distribution in the fp2000 and 
int2000 benchmarks   

 
To choose the best heuristic for producing an initial 

feasible schedule, the three fast heuristics mentioned in 
Section 3.2 were evaluated against the Langevin-Cerny 

FP2000 INT200 
 

  Max  Avg.   Max   Avg. 

DAG Size (insts) 1236 24    454 17 

Exit Count 31 2.8     42 3.3 

Final-Exit Prob (%) 99 68     99     66 

Side-Exit Prob (%) 48 17     49     14 

            (a)  
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lower bounds. Each heuristic was applied to the 
superblocks in the fp2000 suite. The Langevin-Cerny 
lower bounds were then computed for each superblock and 
Equation (2) was used to compute the cost. A heuristic-
based schedule is proved optimal if its cost is zero; 
otherwise it may be sub-optimal. Table 2 shows the 
percentage of zero-cost schedules for each heuristic. These 
results indicate that, among the three fast heuristics, SR 
has the best performance on this particular data set for the 
machine models used in these experiments. Accordingly, 
SR was used to generate the initial feasible schedule for 
the optimal scheduling experiments.  

 
Table 2: Percentage of zero-cost (provably optimal) 
schedules for 3 different heuristics 

 CP DHASY SR 
1-Issue 51 64 88 

2-Issue 68 76 86 

4-Issue 81 86 91 

6-issue 92 94 96 

 
According to Alg 2, when the heuristic-based schedule 

has a non-zero cost, the superblock is passed to the 
enumerator to search for an optimal schedule. Superblock 
problems that are passed to the enumerator are considered 
hard problems. Optimal scheduling results for the hard 
problems in both benchmark suites for the machine 
models under study are summarized in Table 3. The first 
row shows the number of hard superblocks in each case. 
The enumeration results will be analyzed next in terms of 
scheduling speed and performance gain. 
Scheduling Time:  The time limit was set to one second 
per problem. The number and percentage of the problems 

that were not solved within this limit are shown in Rows 2 
and 3 respectively. On average, 98.7% of the superblocks 
were scheduled optimally within one second. The average 
run time per problem for the problems that did not timeout 
is shown in Row 4. This reveals that the vast majority of 
the problems were solved much more quickly than one 
second; in fact two orders of magnitude faster. Row 5 
shows the average number of enumeration-tree nodes that 
were explored per problem, and Row 6 shows the average 
number of branch combinations per problem. Dividing the 
average of Row 5 (2357) by the average of Row 6 (257) 
gives an estimate of about 9 tree nodes per branch 
combination. This indicates that the enumerator was able 
to find feasible schedules or detect infeasible branch 
combinations fairly quickly. Recall that in the example of 
Sub-section 5.4, only one tree node was needed to prove 
that scheduling both branches at their lower bounds is 
infeasible. 
Performance Improvement: Rows 7 and 8 show the 
number and percentage of superblocks whose optimal 
schedules were better than their heuristic schedules. The 
average percentage of 80% indicates that most hard 
problems were improved by optimal scheduling. Rows 9 
and 10 show the number and percentage of hard 
superblocks for which the enumerator was able to find a 
zero-cost optimal schedule. These zero-cost schedules are 
particularly important because their optimality is 
independent of branch probabilities. On average, the 
enumerator was able to find such probability-independent 
schedules for 35% of the hard problems. The last row 
gives the static performance improvement numbers. On 
average, the optimal weighted length for the hard 
problems was 2.7% shorter than the heuristic weighted 
length. 
 

 
Table 3: Superblock enumeration results for the hard problems 

FP2000 INT2000   
1-issue 2-issue 4-issue 6-issue 1-issue 2-issue 4-issue 6-issue 

AVG 

1 Hard Problems 936 1107 706 329 2513 2131 1685 573 1248 

2 Timeouts 6 14 26 12 34 17 18 5 17 

3 % Timeouts 0.6 1.3 3.7 3.6 1.4 0.8 1.1 0.9 1.3 

4 Avg. Soln. Time (ms) 9 11 25 16 5 5 9 9 9 

5 Avg. Nodes 1069 3060 10570 6171 767 887 2687 2271 2357 

6 Avg. Iterations 13 41 16 10 510 408 146 162 257 

7 Imp Blocks 840 903 526 247 2143 1482 1384 463 999 

8 % Imp Blocks 90 82 75 75 85 70 82 81 80 

9 Zero-Cost Solns. 293 430 388 174 474 648 758 302 433 

10 % Zero-Cost Solns. 31 39 55 53 19 30 45 53 35 

11 % Cycle Imp 1.8 1.7 2.2 2.2 2.9 2.4 3.5 4.1 2.7 
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7. Conclusion and Future Work 
 

This paper presents an optimal approach to the superblock 
scheduling problem using enumeration. The method was 
implemented and applied to superblocks generated by the 
GCC compiler using the SPEC CPU2000 benchmarks. 
About 99% of the hard problems were solved within one 
second per problem. The optimal solutions to the hard 
problems were significantly better than heuristic-based 
solutions. 

A natural extension of this work is studying optimal 
scheduling of other global scheduling regions. Traces have 
a very similar structure to superblocks and extending this 
technique to traces appears promising. Optimal scheduling 
of non-linear scheduling regions, such as those used by 
Bernstein et al. [1] and Bharadwaj et al. [2], is the ultimate 
goal of this research. 
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