

Optimal Superblock Scheduling Using Enumeration

Ghassan Shobaki Kent Wilken

 CS Dept., University of California, Davis ECE Dept., University of California, Davis
 shobaki@cs.ucdavis.edu wilken@ece.ucdavis.edu

Abstract
The superblock is a scheduling region that is used by
compilers for exploiting instruction-level parallelism
across basic blocks. Many heuristic techniques have been
proposed for solving this difficult scheduling problem, but
none accurately approximates the optimal solution. This
paper presents a new technique that finds provably
optimal solutions to superblock scheduling problems. The
technique is based on reducing the problem of finding
branch combinations that yield incrementally increasing
weighted execution times to a subset-sum problem, which
is solved by dynamic programming. An enumerative
approach that employs a number of powerful pruning
techniques to efficiently explore the solution space is then
used to search for a feasible schedule for each branch
combination. Experimental evaluation using the SPEC
CPU fp2000 and int2000 benchmarks shows that, within a
per-problem time limit of one second, this combination of
dynamic programming and enumeration optimally solves
about 99% of the hard superblock scheduling problems
with an average solution time of 9 milliseconds per
problem. For 80% of the hard problems, the optimal
schedule is improved compared to the schedule produced
by an established heuristic technique.

Keywords: global instruction scheduling, compiler
optimizations, superblock, optimal scheduling,
enumeration.

1. Introduction

Instruction scheduling is an essential phase of

optimizing compilers that tries to find an ordering of
instructions that minimizes pipeline stalls without
violating dependency or resource constraints [15].
Originally, this reordering was done locally within a basic
block. However, as wider issue machines were designed,
the basic block no longer provided enough parallel
instructions to utilize the functional units. The problem is
more pronounced in control-intensive programs, which are
characterized by smaller basic blocks. This has stimulated

substantial research effort in global instruction scheduling
beyond the basic block.

Many region shapes have been proposed for
performing global instruction scheduling. Common
examples are traces [9], superblocks [12] and multi-path
acyclic regions [1, 2]. A recent paper by Faraboschi et al.
provides an excellent survey of region shapes and
scheduling techniques [8].

The superblock is one of the simplest global scheduling
regions, which makes it an attractive choice in many
compilers. However, scheduling a superblock is
substantially more difficult than basic-block scheduling
due to the presence of multiple branches with conflicting
requirements. Scheduling one branch early may delay
other branches. A number of serious attempts have been
made to resolve this problem using heuristics, including
the Speculative Hedge [6] and Balance Scheduling
heuristics [7]. However, even the most elaborate heuristics
produce sub-optimal solutions on a significant percentage
of the harder problems.

This paper describes the first algorithm for optimal
superblock scheduling. Because the problem is NP-hard
[11] it is not likely that there is an algorithm that exactly
solves all instances in polynomial time. The algorithm
presented in this paper solves about 99% of the hard
superblocks in the SPEC CPU benchmark suite in less
than one second per problem. This constitutes
experimental evidence that intractable instances of the
superblock scheduling problem rarely occur in practice.

In addition to generating improved code as an advanced
compiler optimization, optimal global scheduling provides
the most accurate way of assessing the success of existing
heuristics at exploiting instruction-level parallelism (ILP).
Studying the limits of ILP can also be used as a guide by
hardware architects to avoid wasting hardware resources
on architectural features that compilers are unable to
utilize. In spite of the many global scheduling techniques,
very few attempts have been made to evaluate their quality
relative to optimality.

The optimal technique presented in this paper is based
on an enumerative approach, which efficiently explores
the entire solution space. The efficiency is achieved by
using a number of pruning techniques that have been

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

proposed in previous work for solving the more
fundamental problem of basic-block scheduling [5, 16, 19].
The contribution of this paper can be viewed as a
transformation that decomposes a superblock scheduling
problem into a set of basic-block scheduling problems that
can be solved optimally using enumeration.

The paper is organized as follows. Section 2 defines the
problem and terminology. Section 3 summarizes prior
work. Section 4 describes the enumeration engine, which
is the core of the solver. Section 5 derives the optimal
superblock scheduling algorithm. Section 6 presents the
experimental results. A final conclusion and future work
are covered in Section 7.

2. Problem Definition

An instruction scheduler operates on one scheduling

region at a time. The superblock is a global scheduling
region that consists of a single-entry multiple-exit (SEME)
sequence of basic blocks. Branch instructions inside the
superblock are called side exits, while the end of the last
basic block is called the final exit. In the context of this
paper, the terms exit and branch are used interchangeably.

The input to an instruction scheduler is a directed
acyclic graph (DAG), called the data dependence graph.
Each node in the DAG represents an instruction. A
directed edge of label l from node i to node j is included if
instruction j depends on instruction i with a latency l. If
there is a directed path in the DAG from node m to node n,
m is said to be a predecessor of n and n is said to be a
successor of m. A node with no predecessors is called a
root node, while a node with no successors is called a leaf
node. The DAGs in this paper are represented in a
standard format in which there is only one root node and
one leaf node. Any DAG can be converted to this format
by introducing a dummy root and/or leaf node and adding
edges from (to) the dummy node to (from) the original
root (leaf) nodes.

In addition to satisfying the latency constraints
represented by the DAG, a scheduler must satisfy the
resource constraints of the machine model. A machine
model in this paper consists of a certain number of
functional-unit types (pipelines) and a number of instances
of each type, along with a mapping of instructions to
functional-unit types. To simplify the presentation, it is
assumed that all functional units are fully pipelined and
that each instruction can execute on only one functional-
unit type.

Given a DAG and a machine model, a feasible schedule
is an assignment of an issue cycle to each instruction in the
DAG that satisfies the latency and resource constraints. In
this paper, schedules will follow the convention of starting
at cycle 0, and the total length of a schedule is defined as
the number of the last cycle in which an instruction is
issued. In local scheduling the objective is to minimize the

total length. In superblock scheduling, however, where
there are multiple paths within the scheduling region, the
objective is to minimize the weighted length. The
weighted length W of a schedule S is defined as:

∑
+

=
=

1

1

)(
E

i
iiCPSW , (1)

where E is the number of side exits (E+1 is the total
number of exits), Ci is the issue cycle of exit i in schedule
S and Pi is the probability that exit i is taken. Due to their
role in this equation, exit probabilities are also called
weights in the context of superblock scheduling.

The critical-path distance (CP) of a given node from
the root (leaf) is the length of a longest path between the
node and the root (leaf), where the path length is the sum
of edge labels along the path. The forward lower bound
(FLB) or release time of a node is a lower bound on the
cycle in which the node can be scheduled. The reverse
lower bound (RLB) is a lower bound on the difference
between the node’s issue cycle and the leaf node’s issue
cycle. The reverse lower bound can be used to compute
the deadline of an instruction with respect to a given
schedule length. In a schedule of length L, the leaf node is
scheduled at cycle L. Accordingly, any instruction i in the
DAG must be scheduled by the deadline L-RLB(i) for the
length L to be feasible. For a given length, the scheduling
range of an instruction is the period starting at the release
time and ending at the deadline. Scheduling ranges play an
important role in the enumerative technique presented in
this paper. One way of computing an instruction’s forward
(reverse) lower bound is to use the instruction’s critical-
path distance from the root (leaf). Techniques for
computing tighter lower bounds will be presented in
Section 3.1.

When a lower bound is established on the issue cycle of
each exit, it is convenient to measure the quality of a
superblock schedule by a normalized cost function that
represents weighted delays from the exit lower bounds, or
in equation form:

∑ ∑
+

=

+

=
=−=

1

1

1

1

)()(
E

i

E

i
iiiii DPLCPSCost , (2)

where Li is a lower bound on the issue cycle of exit i and
Di=Ci-Li is the delay of exit i from its lower bound. The
cost function simplifies superblock calculations by
eliminating the lower bound component of the weighted
length. However, since the cost is defined relative to a
certain set of exit lower bounds, two cost functions are
comparable only if they are measured relative to the same
set of exit lower bounds.

Figure 1.a shows an example DAG for a superblock
that consists of three basic blocks. In this DAG, nodes 3
and 7 are side exits defining the ends of two basic blocks,
while node 8, the DAG’s leaf node, is the final exit. The
figure also shows the probability that each of these three
exits is taken.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

3. Previous Work

This work is built on prior work on lower-bound and

enumeration techniques for local instruction scheduling.
This section provides a summary of these techniques. It
also surveys existing heuristic methods for superblock
scheduling.

3.1 Lower Bounds

Various lower-bound computation techniques have

been developed for local instruction scheduling. These
techniques play an important role in optimal scheduling.
Lower bounds are also useful for evaluating the
performance of heuristics. Lower bound techniques are
based on analyzing resource availability versus resource
requirements.

Figure 1: (a) Example superblock DAG. Branch nodes are
shown in dotted lines. (b) Lower bounds for a single-issue
machine. I#: instruction number in the DAG, FLB: forward
lower bound, RLB: reverse lower bound, DL: deadline for
length 8

A fundamental lower-bound algorithm is the relaxed

scheduling algorithm by Rim and Jain [17]. It is based on
relaxing the scheduling problem to a minimum-lateness
release-time and deadline (MLRD) problem, which can be
solved optimally in polynomial time. Given a set of initial
release times and deadlines of all nodes in the DAG, the
algorithm computes a potentially tighter release time for
the DAG’s leaf node, which is a lower bound on the total
schedule length. The initial release times and deadlines are
usually computed using critical-path distances.

The Rim-Jain algorithm considers instructions in non-
decreasing deadline order (the deadlines are for a schedule
length L equal to the leaf node’s initial release time) and
schedules each instruction in the earliest available issue
slot. After scheduling all instructions, the maximum delay

of an instruction from its deadline is added to the initial
leaf-node release time to produce a tighter lower bound on
the schedule length.

In a subsequent work, Langevin and Cerny [13]
observed that an even tighter lower bound can be
computed if the release times of the nodes are themselves
computed by recursively applying the Rim-Jain algorithm
to the sub-graph between each node and the root node.
This has the additional advantage of computing potentially
tighter lower bounds for the internal DAG nodes.

These two lower-bound techniques can be applied to
any DAG whether it represents a basic block or a
superblock. However, Meleis et al. [14] go a step further
and develop tighter lower bounds specific to the
superblock problem by taking branch conflicts into
account.

It is interesting to note that lower-bound techniques can
be applied to the DAG in both directions. In the reverse
direction, the roles of the root and leaf nodes are
interchanged and the directions of all edges are reversed.
The same technique is then applied to compute tighter
reverse lower bounds and consequently tighter deadlines.

In this work, the Rim-Jain technique is used during
enumeration to compute the lower bounds needed by the
branch-and-bound technique, while the more expensive
Langevin-Cerny technique is applied once in each
direction to the entire DAG in a preprocessing step that
computes tight scheduling ranges for all instructions. The
cost function is evaluated based on the Langevin-Cerny
lower bounds computed in this preprocessing step. The
Meleis lower bounds, however, are not used in this paper,
since they are dominated by the enumeration process.

Figure 1.b shows the Langevin-Cerny forward and
reverse lower bounds for the example superblock. The
four columns show the instruction number, forward lower
bound, reverse lower bound and deadline for a length-
eight schedule.

3.2 Heuristics for Superblock Scheduling

List scheduling is the most widely used technique for

performing instruction scheduling [15]. List scheduling is
a greedy algorithm that considers issue slots in order and
maintains a ready list of instructions. An instruction is
ready if all of its predecessors in the DAG have been
issued and the corresponding latencies have been satisfied.
When multiple instructions are ready, one is selected
according to certain heuristics. The critical-path (CP)
distance from the leaf is one of the most commonly used
heuristics.

When the superblock was introduced [12], it was first
scheduled using the critical-path heuristic. However,
subsequent research revealed that a priority based only on
the critical path from the final exit may unnecessarily
delay side exits [6, 7]. This led to the development of

0

1

2

3

4

5

6

7

8

0

1

1

2

3

2

3

6

8

8

6

4

5

4

3

2

1

0

0

2

4

3

4

5

6

7

8

RLBFLB I# DL

 (a) DAG (b) Lower Bounds

1

6

2

3

4

8

7

5

0.3

0.2

0.5

0

1 1

1 1

0

3

0

0 3

0

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

superblock-specific scheduling heuristics. Two fast
heuristics that work well in practice are Successive
Retirement (SR) [3] and Dependence Height and
Speculative Yield (DHASY) [7, 9]. The SR heuristic gives
higher priority to instructions in earlier basic blocks.
Within each basic block, critical path is used as a priority
scheme among local instructions. DHASY is a
generalization of the critical-path heuristic to superblocks.
The weighted sum of critical path distances to all exits is
used instead of the critical-path distance to the final exit.

In addition to these fast heuristics, three more accurate
but computationally expensive heuristics have been
proposed. The G* heuristic [3] tries to find a compromise
between Critical Path and Successive Retirement by
selectively applying successive retirement to the critical
branches. Speculative Hedge [6] avoids over-speculation
by setting each instruction’s priority to the sum of weights
of the branches that it helps schedule early. The most
recent heuristic is Balance Scheduling, which is based on
tight superblock lower bounds [7]. It tries to achieve more
accuracy by determining the instructions that each branch
needs to have scheduled early and selecting branches with
compatible needs.

Figure 2: Superblock scheduling heuristics on a single-
issue machine: (b) critical path (c) successive retirement.
The numbers to the left of the colons are cycle numbers,
while the numbers to the right are instruction numbers.

Figure 2 shows the application of two fast heuristics to

the DAG of Figure 1. The critical-path heuristic, which
ignores side exits succeeds in scheduling the final exit at
its lower bound of 8, but delays each of the side exits by
one cycle. This corresponds to a cost of 0.5 according to
Equation (2). Successive Retirement, on the other hand,
schedules the side exits at their lower bunds, but at the
cost of delaying the final exit by two cycles. Equation (2)
quantifies this cost by a value of 1.0.

Meleis et al. [14] studied the performance of the six
heuristics mentioned above and found that Balance
Scheduling, on average, generates the best schedules. It
finds the optimal schedule for 50% to 88% of the non-
trivial superblocks on different processor models.
However, their compile-speed measurements show that
Balance Scheduling is relatively slow. Its most accurate
form is, on average, 455 times slower than critical-path list
scheduling. These results suggest that even the most
complex heuristic-based approaches produce sub-optimal
schedules on a significant number of real problems.

3.3 Instruction Scheduling using Enumeration

Branch-and-bound enumeration is a well-known

technique in combinatorial optimization [18]. Researchers
have applied enumeration to instruction scheduling but
only in its local form [5, 16, 19]. A particularly important
idea in enumerative approaches to optimal instruction
scheduling is using relaxed scheduling as the lower-bound
method [16]. Another powerful idea is using history
information to prune certain tree nodes if they are
dominated by previously visited nodes [19]. In addition to
these two primary pruning techniques, a secondary
pruning technique, called Node Superiority, can provide
further speedup of the enumeration process [5].

4. Enumeration Framework

The proposed superblock scheduling algorithm is based

on an enumerator that employs the three pruning
techniques mentioned in Section 3.3. This section
describes the enumerator’s structure and illustrates how
these pruning techniques are used.

The enumeration framework explores the solution
space in an iterative manner. In each iteration, the input to
the enumerator is a DAG and a target length. The output is
either a feasible schedule of the target length or a proof
that no such schedule exists. The input DAG includes the
scheduling ranges of all instructions as computed by the
Langevin-Cerny algorithm. The enumerator allows an
arbitrary subset of instructions to be fixed in certain cycles,
and then restricts its search to the sub-space that satisfies
these fixing constraints. This fixing feature plays a key
role in the proposed optimal superblock scheduler.

The enumerator mimics the operation of a slot-by-slot
list scheduler but with the additional powerful feature of
backtracking when it finds that the target schedule length
is no longer feasible. It tries to construct a feasible
schedule incrementally, starting with an empty schedule
and adding one instruction (or stall) at a time. At any
given point in the enumeration, the scheduled instructions
form a partial schedule. In each step the enumerator either
makes forward progress by augmenting the current partial
schedule or determines that the target length cannot be met

0 : 0

1 : 1

2 : 2

4 : 4

3 : 3

5 : 5

8 : 8

7 : 7

6 : 6

0 : 0

1 : 1

2 : 3

3 : 4

4 : 6

6 : 7

5 : 2

7 : 5

8 : x

10 :8

9 : x

Cost = 1.0

Cost = 0.5

 (b) CP (c) SR (a) DAG

1

6

2

3

4

8

7

5

0.3

0.2

0.5

0

1 1

1 1

0

3

0

0 3

0

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

with the current partial schedule, in which case it
backtracks by removing the last instruction added.
Augmenting the current partial schedule is done by
choosing one instruction from the ready list (see Section
3.2). In the case of backtracking, an alternate ready
instruction is attempted and so on. This behavior can be
modeled by an enumeration tree in which scheduling an
instruction (or a stall) in the next available slot is a branch
from the current tree node to a new tree node1.

Figure 3 shows a simple enumeration example, where
the objective is to find a feasible schedule of length 4 on a
single-issue machine. Initially, instructions 0, 1 and 2 are
ready and the enumerator chooses to schedule instruction
0. After scheduling instruction 0, the enumerator has the
option of scheduling either instruction 1 or 2. It first
chooses to schedule instruction 1 (the left branch) then it is
left with the only choice of scheduling instruction 2. After
scheduling instruction 2, a stall must be scheduled to
satisfy its 2-cycle latency. For the target length of 4 to be
met, the remaining two instructions 4 and 5 must be
scheduled in one remaining slot, which is impossible. The
enumerator makes three backtracking steps until it finds
the branch on the right, which successfully constructs the
feasible schedule 0, 2, 1, 3, 4.

Figure 3: Enumeration example for a single-issue
machine. Target length = 4

The enumeration algorithm is listed in Alg 1. Initially,

the current tree node is set to the enumeration tree’s root
node where no instructions are scheduled. The main loop,
starting at Line 2, repeats until a feasible schedule is found
or the entire tree is explored. In this loop, the procedure
FindNextFeasibleNode is called to find a feasible new node.
If such a node is found, the algorithm steps forward to that
node (Line 5); otherwise the algorithm backtracks to the
previous tree node (Line 10).

 The procedure FindNextFeasibleNode fetches the next
priority instruction from the ready list and calls the
ExamineNode procedure to check if scheduling this
instruction (which could be a stall if the ready list is

1 The notions of a branch and node in the enumeration tree
should not be confused with branch instructions and DAG nodes.
When the meaning is not clear from the context, the tree qualifier
will be used.

empty) is feasible. The ExamineNode procedure
temporarily steps to the candidate tree node by scheduling
the given instruction or stall and then performs the
following four tests to check feasibility:
First Test: Node Superiority

For a candidate instruction j, each alternate instruction i
of the same type that has been examined at the same tree
node and found infeasible is checked for the following
conditions:
- Each immediate successor of j in the DAG is also a
successor of i.
- For each common successor k, the latency from j to k is
less than or equal to the latency from i to k.

If these conditions hold, then it can be shown that for
any feasible schedule in which j appears before i, there is a
feasible schedule of the same length in which i appears
before j [5]. Under these conditions, i is said to be
superior to j, and because scheduling i has already been
examined and found infeasible, the option of scheduling j
does not need to be explored.

Enumerate(DAG, targetLength)
1 currentNode= rootNode;
2 while(!(allNodesExpolred || feasibleSolnFound))
3 foundFeasibleNode=FindNextFeasibleNode();
4 if(foundFeasibleNode==TRUE)
5 currentNode=StepForward()
6 else
7 if(currentNode == rootNode)
8 allNodesExplored = TRUE
9 else
10 currentNode=BackTrack()

boolean FindNextFeasibleNode()
11 for each unexamined option at the current node
12 inst=GetNextReadyInst()
13 if(ExamineNode(inst)==TRUE)
14 return TRUE
15 else
16 RestoreState()
17 return FALSE

boolean ExamineNode(inst)
18 if(WasSuperiorNodeExamined(inst)==TRUE)
19 return FALSE
20 if(TightenAndPropagateLowerBounds(inst)==FALSE)
21 return FALSE
22 if(WasDominantHistroryNodeExamined(partialSched)==TRUE)
23 return FALSE
24 if(IsRelaxedScheduleFeasible(unScheduledInsts)==FALSE)
25 return FALSE
26 return TRUE

Alg 1: Enumeration algorithm

Second Test: Lower-Bound Tightening
After scheduling an instruction, the lower bounds of

some other instructions can be tightened. When the

0

1

2

2 2 2 2

4

3

1

2

Infeasible

stall

(b) Enumeration Tree

1 2 0

4 3

(a) DAG

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

enumerator steps from cycle C to cycle C+1, the lower
bounds (release times) of all unscheduled instructions
should be tightened to C+1 (unless they already have a
larger lower bound). Since increasing the lower bound of
an instruction may increase the lower bounds of its
successors, the tightened lower bounds are propagated to
the successors and the scheduling ranges are checked. If
that causes an instruction to have an empty range (its
release time is larger than its deadline), infeasibility is
detected.
Third Test: History-Based Domination

Exploring the entire sub-tree below some tree node A
without finding a feasible schedule, implies that there is no
feasible way of scheduling the remaining instructions in
the remaining issue slots. This information can be kept in
a history table and used to prove the infeasibility of some
other tree node B with the same set of unscheduled
instructions below it. In this case, A is said to dominate B.
History-based domination is checked by considering the
initial conditions of the remaining scheduling sub-
problems below A and B as represented by the release
times of unscheduled instructions and the available
resources (issue slots). The following conditions are
sufficient to conclude that A dominates B [19]:
- B lies at the same depth in the tree as A or deeper
- The release time for each unscheduled instruction below
A is less than or equal to its release time below B.

Figure 4 shows an example. The enumerator first
explores node A. After finding node A infeasible, the
enumerator inserts a certain node-A state into the history
table and backtracks. When node B is reached, its
scheduled/unscheduled instructions match those in A’s
history entry. Because the lower bounds below A and B

Figure 4: History-based enumeration. Single-issue
machine. Target length =4.

(shown in Figure 4.c) satisfy the domination conditions,
the enumerator concludes that node B is infeasible and
prunes the entire sub-tree below B.
Fourth Test: Relaxed Scheduling

Using the tightened release times obtained in the
second feasibility test, the Rim-Jain algorithm is applied to
the unscheduled instructions to check if there is a feasible
relaxed schedule of the target length. If not, that implies
infeasibility [16].

5. Superblock Enumeration

The algorithm presented in this paper is based on the

idea of searching for a feasible schedule at incrementally
increasing cost-function values. Initially, a feasible
schedule of zero cost is sought by fixing all exits at their
lower bounds and using the enumerator’s fixing capability
(see Section 4) to search for a feasible schedule with non-
branch instructions in the remaining issue slots. If no such
schedule is found, the cost is incremented by the minimum
possible value. This is achieved by moving one or more
branches to later cycles within their scheduling ranges.
The enumerator is then invoked again with the new fixing
of exits, and so forth.

Monotonically increasing cost values and searching for
a feasible schedule of any total length (within the leaf
node’s scheduling range) will result in wider scheduling
ranges than if the search was limited to one total length at
a time. Therefore, the algorithm described below explores
all cost values at one total schedule length before moving
to the next schedule length. The cost is incremented within
each total length by varying the issue cycles of side exits
only. The details are described in the next sub-sections.

5.1 Branch Combinations

According to Equation (2), the minimum value of the

cost function is always zero. Let’s denote the next possible
costs, in ascending order, by C1, C2, …, Cn. Each possible
cost Ci can be produced by a number of combinations of
branch issue cycles. These branch combinations will be
denoted by B1(Ci), B2(Ci), …, Bm(Ci). Each branch
combination Bj(Ci) can be represented as a tuple
(b1, b2, …, bE) of E integers (recall that E is the number of
side exits), in which the element bi is the delay of exit i
from its lower bound.

Example: Consider a superblock with three side exits of
probabilities 0.1, 0.2, 0.3 and scheduling ranges [3,5],
[6,7], [10,15] respectively. The zero-cost branch
combination (0,0,0) corresponds to scheduling all side
exits at their lower bounds of 3, 6 and 10. The next
possible cost C1 = 0.1 is achieved by only one branch
combination: B1(C1) = (1,0,0), in which the first side exit
is scheduled one cycle off its lower bound while the other
two are scheduled at their lower bounds. (Note that all
costs in the open interval (0, 0.1) are not possible in this
case). C2 is equal to 0.2 with two branch combinations:
B1(C2) = (2,0,0) and B2(C2) = (0,1,0) and so forth.

In this simple example, increasing the cost
incrementally and finding the corresponding branch
combinations was not difficult. However, this computation
is in general non-trivial. In fact, the problem of deciding
whether a given cost is possible can be reduced to a

0

1

2

2
2

3
3

1

Infeasible

2

Stall Node A Node B

(a) DAG (b) Enumeration Tree (c) Lower Bounds

At Node A:
LB(3) = 4
LB(4) = 4

At Node B:
LB(3) = 5
LB(4) = 4

2 1

3 4

0

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

Subset-Sum problem, which is known to be NP-complete
[4]. The details of this reduction are described next.

The Subset-Sum Problem: Given a set S of N positive
integers {n1, n2, … , nN} with quantities {q1, q2, … , qN}
and a positive integer K, is there a linear combination
a1n1 + a2n2 +…+ aNnN , (0 ≤ ai ≤ qi) that is exactly equal to
K?

If the costs and exit probabilities in the branch-
combination problem are expressed as integers relative to
some common denominator, mapping to the Subset-Sum
problem will be straightforward. Each cost Ci maps to a
target integer K, thus defining one instance of the Subset-
Sum problem. In each instance, the branch probabilities
P1, P2, …, PE map to the integer elements n1, n2, …, nN of
the set S, and the scheduling ranges map to the quantities
q1, q2, …, qN of the elements.

In the above example, we had a three-element set
{1,2,3} with quantities {2,1,5}. The zero cost maps to K=0,
and the branch combination (0,0,0) corresponds to a linear
combination in which all three coefficients are equal to
zero. The next cost C1 = 0.1 maps to K = 1 with one
branch combination (1,0,0) mapping to the linear
combination 1n1 + 0n2 + 0n3 = n1, and so forth.

The subset-sum problem is weakly NP-complete and
can be solved efficiently using dynamic programming [4].
However, full exploration of the solution space in our case
requires a subset-sum solver that not only decides whether
a given cost is possible, but also finds all the branch
combinations that produce each possible cost. For any
given cost, the number of possible branch combinations
could be, in the worst case, as large as the size of the
power set, which is exponential in the number of branches.
In practice, however, a feasible schedule is found within a
small number of branch combinations due to the small
number of branches and the tightness of their scheduling
ranges (see the experimental results in Section 6 for counts
of branches and branch combinations examined). A sub-
set sum solver that finds all solutions has been
implemented and integrated with the enumeration
framework of Section 4 to form the superblock scheduling
solver described in Sub-section 5.3

5.2 Termination Condition

Given a feasible schedule (possibly obtained by a fast

heuristic) of total length L and cost C, C is an upper bound
on the cost function, but L is not necessarily an upper
bound on the total schedule length. A schedule of length
L+1 might have a lower cost than C if it schedules some
heavy-weight side exits much earlier. This sub-section
derives a formula for computing a schedule-length upper
bound given a cost-function upper bound. This formula is
used as a termination condition in the optimal superblock
scheduling algorithm.

We start by rearranging Equation (2) so that the final
exit appears in a separate term:

 ∑∑
==

+−=+=
E

i
iiSf

E

i
iiff DPLSPDPDPSCost

11

)|(|)(, (3)

where |S| is the schedule length and LS is a lower bound on
the schedule length.

Given a cost upper bound UC, the objective is to
compute an upper bound US on the total schedule length.
The maximum schedule length we need to consider should
have a minimum cost less than UC. The minimum cost that
a schedule of a given length can have occurs when all side
exits are scheduled at their lower bounds. In this case the
summation in Equation (3) vanishes, and the minimum
cost at a given length L is given by

)()(SfMin LLPLCost −= . (4)

Equating this to the cost upper bound UC and substituting
US for L, we get

)(SSfC LUPU −= . (5)

Solving this equation for US, gives

S
f

C
S L

P

U
U += (6)

This equation gives an exclusive upper bound on the
schedule length that needs to be examined in searching for
better schedules than a given feasible schedule of cost UC.
Schedule lengths that are larger than or equal to Us do not
need to be explored. The optimal algorithm uses this
equation as a termination condition.

5.3 Superblock Scheduling Algorithm

Putting the above ideas together yields an algorithm for

finding an optimal schedule for a given superblock DAG.
The algorithm is listed in Alg 2 and described next.

The first step on Line 1 uses the Langevin-Cerny
algorithm to compute tight lower bounds for all
instructions in the DAG, including side exits. The final-
exit lower bound is also a lower bound schedLB on the
total schedule length. The next step (Line 2) uses a fast
heuristic to find an initial feasible schedule. The cost of
this schedule as calculated by Equation (2) is the initial
best cost (relative to the Langevin-Cerny lower bounds).
On Line 3 this best cost is substituted into Equation (6) to
compute a schedule-length upper bound schedUB.

The outer loop (starting on Line 5) explores target
lengths between schedLB and schedUB. For each target
length, the inner loop (starting on Line 7) explores branch
combinations. The GetNextBranchComb procedure is an
interface to the subset-sum solver that gives feasible cost
values in incrementally increasing order along with all the
branch combinations that produce each cost. Each
invocation of this procedure (Line 8) returns one branch
combination. Based on these branch combinations, the
issue cycles of the side exits are fixed (Line 11) and then

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

the enumerator is invoked (Line 12) to search for a
feasible schedule at the current target length that also
satisfies the branch fixing. The enumerator takes
advantage of the fixing to further tighten the solution
space by recursively propagating the tightened release
times and deadlines to the successors and predecessors of
each branch (see Figures 5 and 6 for examples).

1 (schedLB, exitLBs) = ComputeLowerBounds()
2 bestCost = HeuristicSchedule()
3 schedUB = ComputeUpperBound(bestCost)
4 targetLength = schedLB
5 while(targetLength < schedUB)
6 lengthDone = FALSE
7 while(!lengthDone)
8 GetNextBranchComb()
9 if (targetCost >= bestCost)
10 break
11 FixSideExits(branchComb)
12 found=EnumerateToFindFeasibleSchedule(targetLength)
13 if(found == TRUE)
14 lengthDone = TRUE
15 bestCost = targetCost
16 schedUB = ComputeUpperBound(bestCost)
17 targetLength++

Alg 2: Superblock scheduling algorithm

The search at the current target length ends when a

feasible schedule is found (Line 13) or when the target
cost reaches the best cost (Line 9), whichever occurs first.
If a feasible schedule is found, the best cost is first updated
(Line 15) and the new best cost is substituted into
Equation (6) to compute a tighter schedule-length upper
bound schedUB (Line 16). When the search at the current
target length is complete, the latest schedUB value is
checked (Line 5) to determine whether the next length
needs to be searched or not. If the next schedule length is
greater than or equal to schedUB, the algorithm terminates
and the last feasible schedule found is the optimal
schedule.

5.4 Complete Example

The superblock scheduling algorithm is applied to the

example of Figures 1 and 2 for a single-issue target
machine. The Critical-Path heuristic is used to find an
initial feasible schedule. As shown in Figure 2.b, this
heuristic delays both side exits by one cycle from their
lower bounds. Using Equation (2), the cost of the initial
schedule is:

UC = Cost(SCP) = 1*0.3 + 1*0.2 = 0.5 .
As shown in Figure 1.b, the total-length lower bound

LS is 8. Substituting these two values into Equation (6)
gives the total-length upper bound:

US = 8 + 0.5/0.5 = 9.

Figure 5: Superblock enumeration. First iteration: Target
length=8, target cost =0. In the relaxed schedule, numbers
on the left are cycle numbers.

Thus a schedule with a total length of 9 will at best

have a cost equal to that of the known feasible schedule,
which implies that searching at a target length of 9 is not
necessary. The search is therefore limited to a target length
of 8 (the outer loop in Alg 2 will be repeated only once).

In the first iteration of the inner loop, shown in Figure 5,
the zero-cost branch combination (0,0) is explored. Fixing
the two side exits at their lower bounds and propagating
the release times and deadlines yields the tightened
scheduling ranges shown next to the instructions in Figure
5.a. For instance, by fixing instruction 3 in cycle 2, its
range is tightened from its static value of [2,3] (see Figure
1) to [2,2]. This, in turn, tightens the scheduling range of
instruction 1 to [1,1] (if instruction 3 is scheduled in cycle
2, the 1-cycle latency implies that instruction 1 must be
scheduled by a deadline of 1). A similar argument applies
to instruction 7 and its predecessors 4 and 6. When the
DAG with these tightened ranges is passed to the
enumerator, it searches for a schedule that satisfies these
scheduling ranges.

The first enumeration step, shown in Figure 5.b,
temporarily schedules instruction 0 in cycle 0 and
examines feasibility by trying to find a relaxed schedule
that satisfies the tightened ranges. As shown in the figure,
no feasible relaxed schedule is found because after
scheduling instructions 0 through 4, both instructions 5
and 6 must be scheduled in cycle 5 to meet their target
deadlines, which is impossible on a single-issue machine.
Because there is no other alternative (ready instruction) at
the root node, this concludes iteration 1. In this case,
exploring only a single tree node was sufficient to prove
that there is no feasible schedule with all exits scheduled
at their lower bounds.

0 : 0

1 : 1

2 : 3

3 : 4

4 : 2

5 : 5

0

 Relaxed schedule

6

 X

?

(b) Enumeration Tree

1

6

2

3

4

8

7

5
0.3

0.2

0.5

0

1 1

1 1

0

3

0

0 3

0

[0,0]

[6,6]

[1,1]

[2,2]

[3,3] [3,5]

[1,4]

[2,5]

[8,8]

 (a) DAG

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

Figure 6: Superblock enumeration. Second iteration: Target length=8, target cost =0.2. In part c, the numbers to the left of
the colons are cycle numbers, while the numbers to the right are instruction numbers.

In the second iteration shown in Figure 6, the subset-

sum solver returns the branch combination (0,1) with
instruction 3 scheduled at its lower bound and instruction
7 delayed by one cycle. The resulting ranges (which are
looser than those of the first iteration) are shown on the
DAG in Figure 6.a. The enumerator generates the tree of
Figure 6.b. As shown in the figure, this tree will
successfully grow into a complete feasible schedule of
length 8 and cost 0.2.

This terminates the search at target length 8, and
because the above calculations have shown that a target
length of 9 does not need to be considered, the schedule of
Figure 6.c is a provably optimal schedule.

6. Experimental Results

The optimal superblock scheduling algorithm described

above was implemented and then applied to a set of
superblocks generated by the Gnu Compiler Collection
(GCC). The SPEC CPU fp2000 and int2000 benchmarks2
were compiled by GCC version 3.4 with static superblock
formation [10] enabled. The DAGs generated by GCC
were then scheduled using the optimal technique of this
paper.

Scheduling was performed for four different fully
pipelined machine models:
- single issue with a unified pipeline
- dual issue, with one integer and one FP pipeline (branch
and memory operations are assumed to execute on the
integer pipeline)

2 The four fp2000 benchmarks written in Fortran 90 were
excluded. One more fp2000 benchmark and two int2000
benchmarks had to be excluded as well, since they did not
compile on GCC 3.4 at the time of the experiment.

- quad issue, with one integer, one memory, one FP and
one branch pipeline
- 6- issue with 2 integer, 2 memory, 1 FP and 1 branch
pipeline

Instruction latencies are 2 cycles for FP adds, 3 cycles
for loads and FP multiplies, 9 cycles for FP divides and 1
cycle for all other instructions. The scheduling
experiments were performed on a 3-GHz Pentium 4
processor with 512 MB of main memory.

Table 1 shows some statistics about the superblocks
used in the experiments. There were a total of 7961
superblock DAGs from the fp2000 suite and 33431 DAGs
from the int2000 suite. The set included large superblocks
with up to 1236 instructions and 42 branches. Rows 3 and
4 show the final-exit and side-exit probability distributions.
Note that exit probabilities are represented as fractions of
a hundred. As expected, the final exit is the most likely
exit [12] with an average probability of about 2/3. The
int2000 benchmarks are characterized by smaller
superblocks, more branches and consequently lower per-
exit probabilities compared to the fp2000 benchmarks.

Table 1: Superblock distribution in the fp2000 and
int2000 benchmarks

To choose the best heuristic for producing an initial

feasible schedule, the three fast heuristics mentioned in
Section 3.2 were evaluated against the Langevin-Cerny

FP2000 INT200

 Max Avg. Max Avg.

DAG Size (insts) 1236 24 454 17

Exit Count 31 2.8 42 3.3

Final-Exit Prob (%) 99 68 99 66

Side-Exit Prob (%) 48 17 49 14

 (a)
 DAG

 (b)
 Enumeration Tree

1:1

0:0

2:3

4:4

3:2

5:5

6:6

8:8

7:7

 (c)
Optimal Schedule
 Cost = 0.2

0

2

6
4 6

5 6

6

7

8

5

1

3

2

4

2
1

6

2

3

4

8

7

5
0.3

0.2

0.5

0

1 1

1 1

0

3

0

0 3

0

[0,0]

[7,7]

[1,1]

[2,2]

[3,4] [3,6]

[1,4]

[2,5]

[8,8]

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

lower bounds. Each heuristic was applied to the
superblocks in the fp2000 suite. The Langevin-Cerny
lower bounds were then computed for each superblock and
Equation (2) was used to compute the cost. A heuristic-
based schedule is proved optimal if its cost is zero;
otherwise it may be sub-optimal. Table 2 shows the
percentage of zero-cost schedules for each heuristic. These
results indicate that, among the three fast heuristics, SR
has the best performance on this particular data set for the
machine models used in these experiments. Accordingly,
SR was used to generate the initial feasible schedule for
the optimal scheduling experiments.

Table 2: Percentage of zero-cost (provably optimal)
schedules for 3 different heuristics

 CP DHASY SR
1-Issue 51 64 88

2-Issue 68 76 86

4-Issue 81 86 91

6-issue 92 94 96

According to Alg 2, when the heuristic-based schedule

has a non-zero cost, the superblock is passed to the
enumerator to search for an optimal schedule. Superblock
problems that are passed to the enumerator are considered
hard problems. Optimal scheduling results for the hard
problems in both benchmark suites for the machine
models under study are summarized in Table 3. The first
row shows the number of hard superblocks in each case.
The enumeration results will be analyzed next in terms of
scheduling speed and performance gain.
Scheduling Time: The time limit was set to one second
per problem. The number and percentage of the problems

that were not solved within this limit are shown in Rows 2
and 3 respectively. On average, 98.7% of the superblocks
were scheduled optimally within one second. The average
run time per problem for the problems that did not timeout
is shown in Row 4. This reveals that the vast majority of
the problems were solved much more quickly than one
second; in fact two orders of magnitude faster. Row 5
shows the average number of enumeration-tree nodes that
were explored per problem, and Row 6 shows the average
number of branch combinations per problem. Dividing the
average of Row 5 (2357) by the average of Row 6 (257)
gives an estimate of about 9 tree nodes per branch
combination. This indicates that the enumerator was able
to find feasible schedules or detect infeasible branch
combinations fairly quickly. Recall that in the example of
Sub-section 5.4, only one tree node was needed to prove
that scheduling both branches at their lower bounds is
infeasible.
Performance Improvement: Rows 7 and 8 show the
number and percentage of superblocks whose optimal
schedules were better than their heuristic schedules. The
average percentage of 80% indicates that most hard
problems were improved by optimal scheduling. Rows 9
and 10 show the number and percentage of hard
superblocks for which the enumerator was able to find a
zero-cost optimal schedule. These zero-cost schedules are
particularly important because their optimality is
independent of branch probabilities. On average, the
enumerator was able to find such probability-independent
schedules for 35% of the hard problems. The last row
gives the static performance improvement numbers. On
average, the optimal weighted length for the hard
problems was 2.7% shorter than the heuristic weighted
length.

Table 3: Superblock enumeration results for the hard problems

FP2000 INT2000
1-issue 2-issue 4-issue 6-issue 1-issue 2-issue 4-issue 6-issue

AVG

1 Hard Problems 936 1107 706 329 2513 2131 1685 573 1248

2 Timeouts 6 14 26 12 34 17 18 5 17

3 % Timeouts 0.6 1.3 3.7 3.6 1.4 0.8 1.1 0.9 1.3

4 Avg. Soln. Time (ms) 9 11 25 16 5 5 9 9 9

5 Avg. Nodes 1069 3060 10570 6171 767 887 2687 2271 2357

6 Avg. Iterations 13 41 16 10 510 408 146 162 257

7 Imp Blocks 840 903 526 247 2143 1482 1384 463 999

8 % Imp Blocks 90 82 75 75 85 70 82 81 80

9 Zero-Cost Solns. 293 430 388 174 474 648 758 302 433

10 % Zero-Cost Solns. 31 39 55 53 19 30 45 53 35

11 % Cycle Imp 1.8 1.7 2.2 2.2 2.9 2.4 3.5 4.1 2.7

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

7. Conclusion and Future Work

This paper presents an optimal approach to the superblock
scheduling problem using enumeration. The method was
implemented and applied to superblocks generated by the
GCC compiler using the SPEC CPU2000 benchmarks.
About 99% of the hard problems were solved within one
second per problem. The optimal solutions to the hard
problems were significantly better than heuristic-based
solutions.

A natural extension of this work is studying optimal
scheduling of other global scheduling regions. Traces have
a very similar structure to superblocks and extending this
technique to traces appears promising. Optimal scheduling
of non-linear scheduling regions, such as those used by
Bernstein et al. [1] and Bharadwaj et al. [2], is the ultimate
goal of this research.

Acknowledgements

This work has benefited greatly from discussions with

Prof. Charles Martel of UC Davis. The authors are grateful
to Mark Heffernan of UC Davis for his contribution to the
experimental setup. Special thanks go to May Alqudsi-
Shobaki for her help in preparing the manuscript. Finally,
the authors would like to thank the anonymous reviewers
for their constructive comments that helped improve the
final paper.

References

1. D. Bernstein and M. Rodeh, “Global Scheduling for Super-
scalar Machines”. In Proc. of Programming Language Design
and Implementation, Jun. 1991, pp 241-255.
2. J. Bharadwaj and C. McKinsey, "Wavefront Scheduling:
Path Based Data Representation and Scheduling of
Subgraphs". Journal of Instruction-Level Parallelism, v. 1 n.
6, pp. 1-6, 2000.
3. C. Chekuri , R. Johnson , R. Motwani , B. Natarajan , B.
Rau and M. Schlansker. "Profile-Driven Instruction Level
Parallel Scheduling with Applications to Superblocks”. In Proc.
29th Int. Symp. on Microarchitecture, Dec. 1996, pp. 58-67.
4. T. Cormen, C. Leiserson and R. Rivest. 1990. Introduction
to Algorithms. MIT Press.
5. H. Chou and C. Chung. "An Optimal Instruction Scheduler
for Superscalar Processor”. IEEE Trans. on Parallel and
Distributed Systems, v.6 n.3, pp. 303-313, Mar. 1995.
6. B. Deitrich and W. Hwu. “Speculative Hedge: Regulating
Compile-Time Speculation Against Profile Variations”. In Proc.
29th Int. Symp. on Microarchitecture, Dec. 1996, pp. 70 -79.
7. A. Eichenberger and W. Meleis, “Balance Scheduling:
Weighting Branch Tradeoffs in Superblocks”. In Proc. 32nd Int.
Symp. on Microarchitecture, Nov. 1999, pp. 272-283.
8. P. Faraboschi, J. Fisher and C. Young. “Instruction
Scheduling for Instruction Level Parallel Processors”.
Proceedings of the IEEE, v. 89 n. 11, pp. 1638-1659, Nov. 2001.

9. J. Fisher. “Trace Scheduling: A Technique for Global
Micro-Code Compaction”. IEEE Trans. on Computers, v. 30 n.7,
pp. 478-490, Jul. 1981.
10. R. Hank, S. Mahlke, R. Bringmann, J. Gyllenhaal and W.
Hwu. “Superblock Formation Using Static Program Analysis”.
In Proc. 26th Int. Symp. on Microarchitecture, Dec. 1993, pp.
247-255.
11. J. Hennessy and T. Gross. “Postpass Code Optimization of
Pipeline Constraints”. ACM Trans. on Programming Languages
and Systems, v. 5, pp. 422-448, 1983.
12. W. Hwu, S. Mahlke, W. Chen, P. Chang, N. Warter, R.
Bringmann, R. Ouellette, R. Hank, T. Kiyohara, G. Haab, J.
Holm and D. Lavery, "The Superblock: An Effective Technique
for VLIW and Superscalar Compilation". Journal of
Supercomputing, v. 7 n. 1/2, pp. 229-248, 1993.
13. M. Langevin and E. Cerny. “A Recursive Technique for
Computing Lower-Bound Performance of Schedules”. ACM
Trans. on Design Automation of Electronic Systems, v. 1 n. 4, pp.
443-456, Oct. 1996.
14. W. Meleis, A. Eichenberger and I. Baev. “Scheduling
Superblocks with Bound-Based Branch Trade-offs”. IEEE Trans.
on Computers, v. 50 n. 8 , pp. 784-797, Aug. 2001.
15. S. Muchnick. 1997. Advanced Compiler Design and
Implementation. Morgan Kaufmann.
16. M. Narasimhan and J. Ramanujam, “A Fast Approach to
Computing Exact Solutions to the Resource-Constrained
Scheduling Problem”. ACM Trans. on Design Automation of
Electronic Systems, v.6 n.4, p.490-500, Oct. 2001.
17. M. Rim and R. Jain. “Lower-Bound Performance
Estimation for the High-Level Synthesis Scheduling Problem”.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, v.13 n. 4 , pp. 451 –458, Apr. 1994.
18. L. Wolsey. 1998. Integer Programming. John Wiley and
Sons.
19. K. Wilken, G. Shobaki, J. Liu and M. Heffernan, "A Faster
Approach to Optimal Resource-Constrained Scheduling".
Submitted for publication.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

